15

Protocol-Driven MPI Program Generation

Nicholas Ng and Nobuko Yoshida

Imperial College London, UK

Abstract

This chapter presents Parameterised Scribble (Pabble), an extension of the
Scribble language to capture scalable protocols, and a top-down, code
generation framework of Message-Passing Interface (MPI) programs.

The code generation process begins with defining a Pabble protocol for
the topology of the MPI application. An MPI parallel program skeleton
is automatically generated from the protocol, which can then be merged
with code kernels defining their behaviours. The merging process is fully
automated through the use of an aspect-oriented compilation tool.

Pabble protocols are parameterised over the number of roles at runtime,
and are grounded on theories of parameterised multiparty session types
(MPST) where valid Pabble protocols can ensure safety and progress of
communication in the generated MPI programs. Using the framework, pro-
grammers only need to supply the intended Pabble protocol and provide
code kernels to obtain parallelised programs. Since the skeleton generation
and the merging process are automatic, the framework not only simplifies
the development of MPI programs, the output programs are efficient and
scalable MPI applications, that are guaranteed, free from communication
mismatch, type errors or deadlocks by construction, improving productivity
of programmers.

15.1 Introduction

The Message Passing Interface (MPI) [8] is the de-facto standard for parallel
programming on high-performance computing systems. Despite the advances
in novel techniques and models such as the Partitioned Global Address Space

329

330 Protocol-Driven MPI Program Generation

(PGAS) used by X10 [3, 10, 17] for simplifying parallel programming, MPI is
still by far the most widely used parallel programming library in the scientific
community. However, parallel programming with the MPI library is a well-
documented difficult task, in which reasoning about interactions between
distributed processes is difficult at scale, and communication mismatches are
amongst the most common pitfalls by MPI users [6].

To apply behavioural types in safe, scalable parallel programming, this
chapter presents a parallel programming workflow based on a protocol
language Pabble, which we will explain in more details in Section 15.5.
Figure 15.1 shows the overview of our approach, and this chapter explains
the core use case of the approach highlighted in the figure. A Pabble protocol
is an abstract representation of the communication topology, or parallel com-
munication patterns of a parallel application. We consider every application
a coupling between sequential, computation code that defines functional
behaviours of processes in the application, and a communication topology
that connects the processes together as a coherent application. Hence, to build
a parallel application, we first define the communication protocol, written in
Pabble. A valid Pabble protocol is guaranteed free of interactions and patterns
that introduce communication errors and deadlocks. The Pabble protocol
is used to generate an annotated MPI program backbone (Section 15.6),
specifying the interactions between parallel processes. Based on the Pabble
protocol, computation kernels are written in C language (C99), using queues
to pass data locally between the kernels. The kernels are then merged with
the MPI backbone by LARA [2], an aspect-oriented compilation tool, to
transform the backbone and the kernels into a complete MPI application
(Section 15.7).

Communication protocol Sequential code

a-1 a-2 b
Custom Pabble \T/Common protocols Sequential

global protocols | repository kernels (C99)
| Output(s)

g Y
Pabble tool Protocol compiler

(Automatic)
Local protocol
'

MPI backbone

Optimised MPI
application

de

LARA weaver | Non-Optimised MP!I

application

Figure 15.1 Pabble-based MPI program generation workflow (core flow highlighted).

15.2 Pabble: Parameterised Scribble 331

In addition to the merge, LARA can also perform pragma directed opti-
misations on the source code to overlap communication and computation,
improving the runtime performance. The details of the optimisations, rigor-
ous evaluations of the approach, and a pre-generated repository of common
protocols are omitted from this chapter, but can be found in the original
paper [12].

15.2 Pabble: Parameterised Scribble

In this section we introduce Parameterised Scribble (Pabble) [14, 15], a
developer friendly notation for specifying application level interaction proto-
col based on the theory of parameterised multiparty session types [5]. As the
name suggests, Pabble is a parametric evolution of Scribble [16, 18], which
itself is based on the theory of multiparty session types [1, 9]. We begin with
an example Scribble protocol to explain the basic syntax of Pabble and the
Scribble family of protocol languages, and why parameterisation is important
for protocols describing scalable, parallel program topologies.

module example;
global protocol Ring(role Workerl, role Worker2, role Worker3) {
rec LOOP {
Data(T) from Workerl to Worker2;
Data(T) from Worker2 to Worker3;
DataLast (T) from Worker3 to Workeril;
continue LOOP; }

Listing 15.1 Ring protocol in Scribble.

This Ring protocol describes a series of communications in which the
role Worker1 passes a message of type Data(T) to Worker3 by forwarding
through Worker2, and receives back a DataLast (T) message from Worker3

to complete the ring. It is easy to notice that explicitly describing all
interactions among distinct roles is verbose and inflexible: for example, when
extending the protocol with an additional role Worker4, we must rewrite
the whole protocol. On the other hand, we observe that these worker roles
have identical communication patterns that can be logically grouped together:
Worker;; receives a message from Worker; and the last Worker sends
a message to Worker;. In order to capture these replicable patterns, we
introduce an extension of Scribble with dependent types, namely Pabble. In
Pabble, multiple participants can be grouped in the same role and indexed.

332 Protocol-Driven MPI Program Generation

This greatly enhances the expressive power and modularity of the protocols.
Here ‘parameterised’ refers to the number of participants in a role that can be
changed by parameters.

module example;
const N = 3;
global protocol Ring(role Worker([1..N]) {
rec LOOP {
Data(T) from Worker[i:1..N-1] to Worker[i+1];
DataLast (T) from Worker [N] to Worker[1];
continue LOOP; }

Listing 15.2 Parametrised Ring protocol in Pabble.

Our ring example is rewritten in the syntax of Pabble shown above. The
role Worker[1..N] declares workers with indices 1 up to an arbitrary
integer N. The Worker roles can be identified individually by their indices,
for example, Worker[1] refers to the first and Worker [N] refers to the
last. In the body of the protocol, the sender, Worker[i:1..N-1], declares
multiple Workers, bound by the bound variable i, and iterates from 1 to
N-1. The receivers, Worker [i+1], are calculated on their indices for each
instance of the bound variable i. The second line is a message sent back from
Worker [N] to Worker[1].

local protocol Ring at Worker[1..N](role Worker[1..N]){
rec LOOP {
if Worker[i:2..N] Data(T) from Worker[i-1];
if Worker[i:1..N-1] Data(T) to Worker[i+1];
if Worker[1] DatalLast (T) from Worker[N];
if Worker [N] DataLast(T) to Worker[1];
continue LOOP; }
}

The above code shows the local protocol of Ring, which is a localised
version of Listing 15.2 at the Worker role. It represents the Worker [1. .N]
parameterised role, and corresponds to multiple endpoints in the same logical
grouping. A Pabble local protocol is automatically generated from its global
protocol following the projection algorithm in [14], and programmers only
need to define the global protocol to use Pabble for MPI development.

Above servers as a primer on the Pabble language, sufficient for our
introductory example; Later, the full syntax and explanations of the Pabble
language will be given in Section 15.5.

15.3 MPI Backbone 333

15.3 MPI Backbone

A typical MPI program follows a Single Program, Multiple Data (SPMD)
parallel programming model, where a single source code is executed by
multiple parallel processors. This model shares a lot of similarities with the
parameterised local protocols in Pabble which groups together similar roles
in a single protocol, except that local protocols can be generated from global
protocols which are easier to express overall communication or topologies.
As a running example, we use the Pabble protocol presented earlier to
demonstrate the framework and implement a ring accumulator that calculates
a sum of values from each Worker and distribute to all.

int main(int argc, char *argv([])
{ MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &meta.pid);
MPI_Comm_size (MPI_COMM_WORLD, &meta.nprocs);
#pragma pabble type T
typedef void T; [= typedef double T;]
MPI_Datatype MPI_T; |:> MPI_Datatype MPI.T = MPI_DDUBLE;|

T *bufData_r, *bufData_s;

#pragma pabble kernel Init [= init(Init, "input.txt")]
#pragma pabble predicate Ring
while (1) {
if (cond0) {
bufData_r = (T *)calloc(meta.buflen(Data), sizeof (T));
MPI_Irecv(bufData_r, meta.buflen(Data), MPI_T, o)
MPI_Wait (&req[0], &stat[0]);
pabble_recvq_enqueue (Data, bufData_r);
#pragma pabble kernel Data [= accumulate(Data);
}
if (condl) {
#pragma pabble kernel Data [= accumulate(Data);
bufData = pabble_sendq_dequeue () ;

MPI_Isend(bufData, meta.buflen(Data), MPI_T, o)
MPI_Wait (&req[1], &stat[1]);
free(bufData) ;

}

MPI_Finalize();
}
return EXIT_SUCCESS; }

Listing 15.3 MPI backbone generated from the Ring protocol.

334 Protocol-Driven MPI Program Generation

15.3.1 MPI Backbone Generation from Ring Protocol

Based on the Pabble Ring protocol in the introduction, our code generation
framework generates an MPI backbone code (e.g. Listing 15.3). First it auto-
matically generates local protocols from a global protocol as an intermediate
step to make MPI code generation more straightforward. The MPI backbone
generation procedure is described in details later in Section 15.6, here we
focus on the generated MPI backbone code output.

An MPI backbone is a C99 program with boilerplate code for ini-
tialising and finalising the MPI environment of a typical MPI application
(lines 24 and 30 respectively), and MPI primitives for message passing
(e.g. MPI_Isend/MPI_Irecv!). Therefore the MPI backbone realises the
interaction between participants as specified in the Pabble protocol, without
supporting any specific application functionality. The backbone has three
kinds of #pragma annotations as placeholders for kernel functions, types and
program logic. The annotations are explained in Section 15.7.1. The boxed
code in Listing 15.3 represents how the backbone are converted to code that
calls the kernel functions in the MPI program.

On lines 5 and 6, generic type T and MPI_T are defined datatypes for
C and MPI respectively. T and MPI_T are refined later when an exact type
(e.g. int or composite struct type) is known with the kernels.

Following the type declarations, other variable declarations including the
buffers (line 9), and their allocation and deallocation are managed by the
backbone. They are generated as guarded blocks of code, which come directly
from the local protocol. lines 15-21 shows a guarded receive that correspond
to if Worker[i:2..N] Data(T)from Worker[i-1] in the protocol and
lines 22-28 for if Worker[i:1..N-1] Data(T)to Worker[i+1].

Given the MPI backbone, we can then implement computation kernels for
the MPI program.

15.4 Computation Kernels

Computation kernels are C functions that describe the algorithmic behaviour
of the application. Conceptually, each message interaction defined in Pabble
(e.g. Label(T) from Sender to Receiver), and — through the automatic
MPI backbone generation — the MPI backbone, can be associated to a kernel
by its label (e.g. Label).

"We use MPI_Isend/MPI_Irecv with MPI_Wait in place of the equivalent MPI_Send/MPI_Recv
respectively. To simplify presentation we write MPI_Send/MPI_Recv in the rest of the chapter.

15.4 Computation Kernels 335

Sender Process Receiver Process

(1) Execute Label kernel

MPI.Send — Message of type T MPI_Recv

(2) Execute Label kernel

Figure 15.2 Global view of Label (T) from Sender to Receiver;.

Figure 15.2 shows how kernels are invoked in a message-passing state-
ment between two processes named Sender and Receiver respectively.
Since a message interaction statement involves two participants (e.g. Sender
and Receiver), the kernel serves two purposes: (1) produce a message for
sending and (2) consume a message after it has been received. The two parts
of the kernel are defined in the same function, but runs on the sending process
and the receiving process respectively. The kernels are top-level functions and
do not send or receive messages directly through MPI calls. Instead, messages
are passed between kernels and the MPI backbone (derived from the Pabble
protocol) via a queue API: in order to send a message, the producer kernel
(e.g. (1)) of the sending process enqueues the message to its send queue; and a
received message can be accessed by a consumer kernel (e.g. (2)), dequeuing
from its receive queue. This allows the decoupling between computation
(as defined by the kernels) and communication (as described in the MPI
backbone).

15.4.1 Writing a Kernel

We now explain how a user writes a kernel file, which contains the set
of kernel functions related to a Pabble protocol for an application. As an
example, we implement accumulator in a ring topology below.

A minimal kernel file must define a variable meta of meta_t type, which
contains the process id (i.e. meta.pid), total number of spawned pro-
cesses (i.e. meta.nprocs) and a callback function that takes one param-
eter (message label) and returns the send/receive size of message payload
(i.e. unsigned int meta.bufsize(int label)). The meta.buflen
function returns the buffer size for the MPI primitives based on the label
given, as a lookup table to manage the buffer sizes centrally. Process id and
total number of spawned processes will be populated automatically by the
backbone code generated. The kernel file includes the definitions of the kernel
functions, annotated with pragmas, associating the kernels with message
labels. The pragmas that are allowed are detailed in Section 15.7. The kernels
can use file (i.e. static) scope variables for local data storage. Our ring

336 Protocol-Driven MPI Program Generation

accumulator kernel file starts with the following declarations for local data
and meta:

Kernel file header
typedef struct {
double* values; int N;
} local_data_t;
static local_data_t *local;

unsigned int buflen(int label) { return 1; }
meta_t meta = { 0, 1, MPI_COMM_NULL, &buflen};

15.4.1.1 Initialisation

Most parallel applications require explicit partitioning of input data. In these
cases, the programmer writes a kernel function for partitioning, such that each
participant has a subset of the input data. Input data are usually partitioned
with a layout similar to the layout of the participants. In our ring accumulator
example, the processes are arranged linearly, and the input file contains an
array of at least meta.nprocs elements, so meta.nprocs initial values are
read into the local->values array. In our example initialisation function
below, we also set the current accumulated value to be our initial value of
local->values[meta.pid].

Kernel: Init

#pragma pabble kernel Init

void init(int id, const char *filename)

{ FILE *fp = fopen(filename, "r");
local = (local_data_t *)malloc(sizeof (local_data_t));
local->values = NULL; local->N = 0;

int nprocs = meta.nprocs;
for (int i=0; i<nprocs; i++)

fscanf (fp, "%f", &local->values[i]);
fclose(fp); local->N = nprocs;
local->accumulated = local->values[meta.pid];

15.4.1.2 Passing data between backbone and kernel

through queues
The kernels are void functions with at least one parameter, which is the
label of the kernel. Inside the kernel, no MPI primitive should be used to
perform message passing. Data received from another participant or data that
need to be sent to another participant can be accessed using a receive queue

15.4 Computation Kernels 337

Kernel: Data

#pragma pabble kernel Data
void accumulate(int id)
{ double *rcvd_val;
if (!pabble_recvq_isempty () && pabble_recvq_top_id() == id) {
rcvd_val = (double *)pabble_recvq_dequeue();
local->accumulated += *rcvd_val;
} else {
accumulated_val = (double *)calloc(meta.buflen(id), sizeof (double));
*accumulated_val = local->accumulated
pabble_send_enqueue (id, accumulated_val);
}
}

and send queue. Consider the following kernel for the label Data in the ring
accumulator example:

Each kernel has access to a send and receive queue local to the whole
process, which holds pointers to the buffer to be sent and the buffer containing
the received messages, respectively. The queues are the only mechanism
for kernels to interface the MPI backbone. The simplest kernel is one that
forwards incoming messages from the receive queue directly to the send
queue. In the above function, when the kernel function is called, it either
consumes a message from the receive queue if it is not empty (i.e. after a
receive), or produce a message for the send queue (i.e. before a send).

Kernels can have extra parameters. For example, in the init function
above, filename is a parameter that is not specified by the protocol (i.e. Init
()). When such functions are called, all extra parameters are supplied by
command-line arguments in the final generated MPI application.

15.4.1.3 Predicates

A predicate kernel is similar to a normal void kernel, but with a function
signature that returns an int (as a boolean), it is used as a conditional
variable, where the value of the variable is determined by the body of the
kernel. In the iter() predicate kernel, we use the number of processes
to determine when the ring protocol has completed a cycle (i.e. executed
meta.nproc times) and terminate the while-loop.

Kernel: Ring

#pragma pabble predicate Ring
int iter() { static int i = O; return i++ < meta.nprocs }

338 Protocol-Driven MPI Program Generation

Aftere writing the computation kernels, we can then use the framework
to merge the MPI backbones with the computation kernels, and we get a
complete MPI program. The resulting MPI program is shown in Listing 15.3
(boxed code).

15.5 The Pabble Language

In this section, we present more details of the Pabble language, including
its syntax, and the well-formedness conditions (i.e. syntactic restrictions to
ensure protocol correctness) of the language.

15.5.1 Global Protocols Syntax

Figure 15.3 lists the core syntax of Pabble, which consists of two protocol
declarations, global and local. A global protocol is declared with the protocol
name (str denotes a string) with role and group parameters followed by the
body G. Role R is a name with argument expressions. The argument expres-
sions are ranges or arithmetic expressions h, and the number of arguments
corresponds to the dimension of the array of roles: for example, Worker
[1..4][1..2] denotes a 2-D array with size 4 and 2 in the two dimensions
respectively, forming a 4-by-2 array of roles.

Declared roles can be grouped by specifying a named group using the
keyword group, followed by the group name and the set of roles. For
example,

group EvenWorker={Worker[2][2], Worker[4][2]}

creates a group which consists of two Workers. A special built-in group, A11,
is defined as all processes in a session. We can encode collective operators
such as many-to-many and many-to-one communication with A11, which will
be explained later.

Apart from specifying ranges by constants, ranges can also be specified
using expressions. Expression e consists of operators for numbers, logarithm,
left and right logical shifts (<<, >>), numbers, variables (z, j, k), and constants
(M, N). Constants are either bound outside the protocol declaration or are
left free (unbound) to represent an arbitrary number. As in [11], when the
constants are bound, they are declared by numbers outside the protocol,
e.g. const N = 10 or lower and upper bounds, e.g. const N = 1..10.
We also allow leaving the declaration free (unbound), e.g. const N, as a
shorthand to represent an arbitrary constant with lower and upper bounds
0 and max respectively, i.e. const N = 0..max, where max is a special

15.5 The Pabble Language

Global Pabble

339

global protocol str(para) { G }

Parameter
para = role R4, ..., Role declaration
group str = {Ry, .3, Group declaration
Global protocol body
G == I(T) from R to R; Interaction
| choice at R { Gy Y or ... or { Gy } Choice
| foreach (b) { G % Foreach
| allreduce op.(T); Reduction
| recl { G 13 Recursion
| continue [; Continue
| GG Sequential composition
Payload type
T == int |float |... Data types
Expression
e = eope Binary expressions
| num Integers
| 4,4,k,... |N Variables, constants
op u= ope |- |/ |h|<<|> |1log |... Binary operations
ope =+ | *x|... Commutative operations
Role
Rq = sir Role declaration
| strle.el..le..€] Param. role declaration
R = str Roles
| strlh]...[A] Param. roles
| All All group role
h = ble Role parameter
b = d:e.e Binding range

Local Pabble

local protocol str at Rg(para) { L }

Local protocol body
L == [if RJI(T) from R;
[if R]I(T) to R;

(Conditional) Receive
(Conditional) Send

|

| choice at R{ Ly Y} or ... or { Ly } Choice
| foreach (b) { L } Foreach
| allreduce op.(T); Reduction
| recl {L3Z Recursion
| continue [; Continue
| L L Sequential composition

Figure 15.3 Pabble syntax.

value representing the maximum possible value or practically unbounded.

Binding range expression b takes the form of ¢ :

e1..e, which means i is

ranged from e; to e,. Binding variables always bind to a range expression
and not individual values. Indices in a Pabble protocol must be bound with

340 Protocol-Driven MPI Program Generation

the binding range expression, the details are omitted here, please see indices
well-formed conditions in [14].

In a global protocol G, I[(T) from Ry to Ry is called an interaction
statement, which represents passing a message with label [and type T from
one role R; to another role Ry. Ry is a sender role and Ry is a receiver
role. choice at R { G1 } or ... or { Gy } means the role R will
select one of the global types Gi,...,Gn. rec | { G } is recursion with
the label | which declares a label for continue [statement. foreach (b)
{G?} denotes a for-loop whose iteration is specified by b. For example,
foreach (i:1..n){ G I represents the iteration from 1 to n of G where
G is parameterised by i.

Finally, allreduce op.(T) means all processes perform a distributed
reduction of value with type T' with the operator op. (like MPI_Allreduce
in MPI), and sends the resulting value from the reduction to all processes. It
takes a mandatory predefined operator op. where op. must be a commutative
and associative arithmetic operation so they can correspond to MPI reduction
operations which have the same requirements. Pabble currently supports sum
and product.

We allow using simple expressions (e.g. Worker[i:0..2xN-1]) to
parameterise ranges. In addition, indices can also be calculated by expres-
sions on bound variables (e.g. Worker [i+1]) to refer to relative positions of
roles.

There are restrictions on the indices on such as relative indices calcula-
tions and index bounds presented below. The restrictions ensure termination
of the projection algorithm and safety of the communication topology at
runtime.

15.5.1.1 Restriction on constants
In Pabble protocols, constants can be defined by

(1) A single numeric value (const N = 3); or
(2) Lower and upper bound constraints not involving the max keyword; or
(3) A range defined with the max keyword.

(1) sets a fixed value to a constant, as exemplified in Listing 15.2. (2) gives
runtime constants a lower bound and an upper bound, e.g. the number of pro-
cesses spawned in a scalable protocol, which is unknown at design time and
will be defined and immutable once the execution begins. To ensure Pabble
protocols are communication-safe in all possible values of constants, we must
ensure that all parameterised role indices stay within their declared range.

15.5 The Pabble Language 341

Such conditions prevent sending or receiving from an invalid (non-existent)
role which will lead to communication mismatch at runtime.

The following explains how to determine whether the protocol will be
valid for all combinations of constants:

const M = 1..3;

const N = 2..5;

global protocol P(role R[1..N1]1) {
T from R[i:1..M] to R[i+1];

}

The basic constraints from the constants are:
1<MM<3,2<NandN<5

We then calculate the range of R[i+1] as R[2. .M+1]. Since the objective is
to ensure that the role parameters in the protocol body (i.e. 1. .Mand 2. .M+1)
stay within the bounds of 1. .N, we define a constraint set to be:

1<1&M<Nand1<2&M+1<N

which are lower and upper bound inequalities of the two ranges. From them,
we obtain this inequality as a result:

M+1<N

By comparing this against the basic constraints on the constants, we can
check that not all outcomes belong to the regions and thus this is not a
communication-safe protocol (an example of a unsafe case isM = 3 and N
= 2). On the other hand, if we alter line 4 to T from R[i:1..N-1] to R
[i+1];, the constraints are unconditionally true and so we can guarantee all
combinations of constants M and N will not cause communication errors.

(3) is a special case of (2), where the upper bound of a constant is set to
the max keyword. We write const N = 0. .max to represent a range without
upper bound, here it means the constant N can be any integer value larger
than 1. Since it is not possible to enumerate all values of N, we apply a more
restrictive constraint on the expressions, allowing only range calculation that
uses addition or subtractions on integers (e.g. 1+1).

15.5.2 Local Protocols

As mentioned in Section 15.2, local protocols are localised versions of the
global protocols at each role, and are used directly for skeleton generation.
They are generated from a global protocol by a projection algorithm detailed

342 Protocol-Driven MPI Program Generation

in [14]. Local protocol L consists of the same syntax of the global type except
the input from R (receive) and the output to R (send). The main declaration
local protocol str at R. (...) { L } means the protocol is located
at role R.. We call R, the endpoint role. In Pabble, multiple local protocol
instances can reside in the same parameterised local protocol. This is because
each local protocol is a local specification for a participant of the interaction.
When there are multiple participants with a similar interaction structure that
fulfil the same role in the protocol, such as the Worker role from our Ring
example from the introduction, the participants are grouped together as a
single parameterised role. The local protocol for a collection of participants
can be specified in a single parameterised local protocol, using conditional
statements on the role indices to capture corner cases. For example, in
a general case of a pipeline interaction, all participants receive from one
neighbour and send to another neighbour, except the first participant which
initiates the pipeline and is only a sender and the last participant which ends
the pipeline and does not send. In these cases we use conditional statements
to guard the input or output statements. To express conditional statements
in local protocols, if R may be prepended to an input or output statement.
if R input/output statement will be ignored if the local role does not match
R. More complicated matches can be performed with a parameterised role,
where the role parameter range of the condition is matched against the
parameter of the local role. For example, if Worker[1..3] will match
Worker [2] but not Worker [4]. It is also possible to bind a variable to the
range in the condition, e.g. if Worker[i:1..3], and i can be used in the
same statement.

15.6 MPI Backbone Generation

Below we explain how Pabble statements are translated into MPI blocks.

15.6.1 Interaction

An interaction statement in a Pabble protocol is projected in the local protocol
as two parts: receive and send. The correspondence is shown in Figure 15.4.
The first line of the local protocol shows a receive statement, written in
Pabble as if P[dstId] from P[srcId]. The statement is translated to a
block of MPI code in 3 parts. First, memory is dynamically allocated for the
receive buffer (line 2), the buffer is of Type and its size fetched from the
function meta.bufsize(Label). The function is defined in the kernels and

15.6 MPI Backbone Generation 343

Label (T'ype) from P[srcldz] —y if Pldstldx] Label(Type) from P[srcldz];
to P[dstldz]; if Plsrcldx] Label(Type) to Pldstldz];
Interaction

if (meta.pid == role_P(dstldx)) {
buf = (Type *)calloc(meta.bufsize(Label), sizeof (Type));
MPI_Recv(buf, meta.bufsize(Label), MPI_Type, role_P(srcldx), Label, ...);
pabble_recvq_enqueue (Label, buf);

#pragma pabble kernel Label

}

if (meta.pid == role_P(srcldxz)) {

#pragma pabble kernel Label
buf = pabble_recvq_dequeue () ;
MPI_Send(buf, meta.bufsize(Label), MPI_Type, dstldx, Label, ...);
free(buf);

}

Figure 15.4 Pabble interaction statement and its MPI backbone.

returns the size of message for the given message label. Next, the program
calls MPI_Recv to receive a message (line 3) from participant P [srcRole]
in Pabble. role_P(srcIdx) is a lookup macro from the generated backbone
to return the process id of the sender. Finally, the received message, stored
in the receive buffer buf, is enqueued into a global receive queue with
pabble_recvq_enqueue() (line 4), followed by the pragma indicating a
kernel of label Label should be inserted. The block of receive code is guarded
by an if-condition, which executes the above block of MPI code only if the
current process id matches the receiver process id.

The next line in the local protocol is a send statement, converse of the
receive statement, written as if P[srcIdx] Label(Type)to P[dstIdx].
The MPI code begins with the pragma annotation, then dequeuing the global
send queue with pabble_sendq_dequeue() and sends the dequeued buffer
with MPI_Send. After this, the send buffer, which is no longer needed, is
deallocated. The block of send code is similarly guarded by an if-condition
to ensure it is only executed by the sender. By allocating memory before
receive and deallocating memory after send, the backbone manages memory
for the user systematically. Since the protocol and the backbone makes no
assumption about memory management on user’s computation kernel, this
mechanism helps the separation of concern between the protocol (i.e. the
generated backbone) and the user kernels, and leaves open the possibility
of optimal memory management during merge without breaking existing
kernels.

344 Protocol-Driven MPI Program Generation

15.6.2 Parallel Interaction

A Pabble parallel interaction statement is written as Label (Type)from
P[i:1..N-1] to P[i+1], meaning all processes with indices from 1 to
N-1 send a message to its next neighbour. P[1] initiates sending to P[2],
and P [2] receives from P[1] then sends a message to P[3], and so on. As
shown in Figure 15.5, the local protocol encapsulates the behaviour of all
P[1..N] processes, and the statement is realised in the local as conditional
receive followed by a conditional send, similar to ordinary interaction. The
difference is the use of a range of process ids in the condition, and relative
indices in the sender/receiver indices. The generated MPI code makes use
of expression with meta.pid (current process id) to calculate the relative
index.

15.6.3 Internal Interaction

When role with name __self is used in a protocol, it means that both the
sending and receiving endpoints are internal to the processes, and there is no
interaction with external processes. This statement applies to all processes,
and is not to be confused with self-messaging, e.g. Label() from P[1]
to P[1], which would lead to deadlock. The statement does not use any
MPI primitives. The purpose of using this special role is to create optional
insertion point for the MPI backbone, which may be used for optional kernels
such as initialisation or finalisation, hence it generates a pragma in the MPI
backbone.

Label (T'ype) from P[i:1..N-1] — if P[i:2..N] Label(Type) from P[i-1];
to P[i+1]; if P[i:1..N-1] Label(Type) to P[i+1];

Parallel Interaction

if (role_P(2)<=meta.pid&&meta.pid<=role_P(N)) {
buf = (Type *)calloc(meta.bufsize(Label), sizeof (T'ype));
MPI_Recv(..., meta.pid-1, Label, ...);
pabble_recvq_enqueue (Label, buf);

#pragma pabble kernel Label

if (role_P(1)<=meta.pid&&meta.pid<=role_P(N-1)) {
#pragma pabble kernel Label

buf = pabble_sendq_dequeue () ;

MPI_Send(..., meta.pid+1, Label, ...); free(buf);
}

Figure 15.5 Pabble parallel interaction statement and its MPI backbone.

15.6 MPI Backbone Generation 345

Internal () from __self to __self; #pragma pabble Internal

Figure 15.6 Pabble internal interaction statement and its MPI backbone.

15.6.4 Control-flow: lteration and For-loop

rec and foreach are iteration statements. Specifically rec/continue is
recursion, where the iteration conditions are not specified explicitly in the
protocol, and translates to while-loops. The loop condition is the same in all
processes, otherwise be known as collective loops. The loop generated by rec
has a #pragma pabble predicate annotation, so that the loop condition
can be later replaced by a kernel (see Section 15.7.1).

The foreach construct, on the other hand, specifies a counting loop,
iterating over the integer values in the range specified in the protocol from
the lower bound (e.g. 0) to the upper bound value (e.g. N-1). This construct
can be naturally translated into a C for-loop.

15.6.5 Control-flow: Choice

Conditional branching in Pabble is performed by label branching and selec-
tion. We use the example given in Figure 15.8 to explain. The deciding
process, e.g. P [master], makes a choice and executes the statements in the
selected branch. Each branch starts by sending a unique label, e.g. BranchO,
to the decision receiver, e.g. P [worker]. Hence for a well-formed Pabble
protocol, the first line of each branch is from the deciding process to the same
process but using a different label.

Note that the decision is only known between the two processes in the first
statement, and other processes should be explicitly notified or use broadcast
to propagate the decision. The MPI backbone is generated with a different
structure as the local protocol. First, the MPI backbone contains an outer

rec LoopName { ... continue LoopName; } foreach (i:0..N-1) { ... }
Iteration Foreach
#pragma pabble predicate LoopName for (int i=0; i<=N-1; i++) {
while (1) { e
} }

Figure 15.7 Control-flow: Pabble iteration statements and their corresponding MPI
backbones.

346 Protocol-Driven MPI Program Generation

choice at P[master] { choice at P[master] {
BranchO(Type) from P[master] if P[worker] BranchO(Type) from P[master];
to P[worker]; — if P[master] BranchO(Type) to P[worker];

Yor{ ... 3%} Yor{ ... 3%}

Choice

if (rank==role_P(master)) {
#pragma pabble predicate BranchO
if (1) {

MPI_Send(..., MPI_Type, role_P(worker), BranchO, ...);
} else
#pragma pabble predicate Branchl
if () { ...}
} else {
MPI_Probe(role_P(master), MPI_ANY_TAG, comm, &status);
switch (status.MPI_TAG) {
case BranchO:

if (rank==role_P (worker)) {

MPI_Recv(..., MPI_Type, role_P(master), BranchO, ...);
pabble_recvq_enqueue (BranchO, buf); }
break;

#pragma pabble Branchl
case Branchl: ...
}
}

Figure 15.8 Control-flow: Pabble choice and its corresponding MPI backbone.

if-then-else, splitting the deciding process (lines 1-9) and the decision
receiver (lines 9-21). In the deciding process, a block of if-then-else-if
code is generated to perform a send with different label (called MPI tag),
e.g. line 5. This statement is generated with all the queue and memory
management code as described above for ordinary interaction statements.
Each of the if-condition is annotated with #pragma pabble predicate
BranchLabel, so that the conditions can be replaced by predicate kernels
(see Section 15.7.1). For the decision receiver, MPI_Probe is used to peek
the received label, then the switch statement is used to perform the correct
receive (for different branches).

15.6.6 Collective Operations: Scatter, Gather and All-to-all

Collective operations are written in Pabble as multicast or multi-receive
message interactions. While it is possible to convert these interactions into

15.6 MPI Backbone Generation 347

multiple blocks of MPI code following the rules in Figure 15.7 (e.g. loop
through receivers for scatter), we take advantage of the efficient and expres-
sive collective primitives in MPI. Figure 15.9 shows the conversion of Pabble
statements into MPI collective operations. We describe only the most generic
collective operations, i.e. MPI_Scatter, MPI_Gather and MPI_Alltoall.
Translating collective operations from Pabble to MPI uses both global
Pabble protocol statements and local protocol. If a statement involves the
A11 role as sender, receiver or both, it is a collective operation. Figure 15.9
shows that translated blocks of MPI code do not use if-statements to dis-
tinguish between sending and receiving processes. This is because collective

Label (Type) from P[rootRole] to All;
Label (T'ype) from All to P[rootRolel;
Label(Type) from All to All;

Collective operation: (a) Scatter
rbuf = (Type *)calloc(meta.buflen(Label), sizeof (T'ype));
#pragma pabble kernel Label
sbuf = pabble_sendq_dequeue () ;
MPI_Scatter (sbuf, meta.buflen(Label), MPI_Type,
rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);
pabble_recvq_enqueue (Label, rbuf);
#pragma pabble kernel Label
free(sbuf);

Collective operation: (b) Gather
rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs, sizeof (T'ype));
#pragma pabble kernel Label
sbuf = pabble_sendq_dequeue () ;
MPI_Gather (sbuf, meta.buflen(Label), MPI_Type,
rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);
pabble_recvq_enqueue (Label, rbuf);
#pragma pabble kernel Label
free(sbuf);

Collective operation: (c) All-to-All
rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs, sizeof (T'ype));
#pragma pabble kernel Label
sbuf = pabble_sendq_dequeue () ;
MPI_Alltoall(sbuf, meta.buflen(Label), MPI_Type,
rbuf, meta.buflen(Label), MPI_Type, ...);
pabble_recvq_enqueue (Label, rbuf);
#pragma pabble kernel Label
free(sbuf);

Figure 15.9 Collective operations: Pabble collectives and their corresponding MPI
backbones.

348 Protocol-Driven MPI Program Generation

primitives in MPI are executed by both the senders and the receivers, and
the runtime decides whether it is a sender or a receiver by inspecting the
rootRole parameter (which is a process rank) in the MPI_Scatter or
MPI_Gather call. Otherwise the conversion is similar to their point-to-point
counterparts in Figure 15.4.

15.6.7 Process Scaling

In addition to the translation of Pabble statements into MPI code, we
also define the process mapping between a Pabble protocol and a Pabble-
generated MPI program. Typical usage of MPI programs can be parame-
terised on the number of spawned processes at runtime via program argu-
ments. Hence, given a Pabble protocol with scalable roles, we describe the
rules below to map (parameterised) roles into MPI processes.

A Pabble protocol for MPI code generation can contain any number of
constant values (e.g. const M = 10), which are converted in the backbone
as C constants (e.g. #define M 10), but it can use at most one scalable
constant [13], and will scale with the total number of spawned processes. A
scalable constant, defined in Section 15.5.1.1 as constant type (3), is written:

const N = 1..max;

The constant can then be used for defining parameterised roles, and used
in indices of parameterised message interaction statements. For example, to
declare an N x N role P, we write in the protocol:

global protocol P (role P[1..NJ[1..N])

which results in a total of N? participants in the protocol, but N is not
known until execution time. MPI backbone code generated based on this
Pabble protocol uses N throughout. Since the only parameter in a scalable
MPI program is its size (i.e. number of spawned processes), the following
code is generated in the backbone to calculate, from size, the value of C
local variable N:

MPI_Comm_size (MPI_COMM_WORLD, &meta.nprocs);
int N = (int)pow(meta.nprocs, 1/2);

15.7 Merging MPI Backbone and Kernels
15.7.1 Annotation-Guided Merging Process

To combine the MPI backbone with the kernels, our aspect-oriented design-
flow inserts kernel function calls into the MPI backbone code. The insertion

15.7 Merging MPI Backbone and Kernels 349

points are realised as #pragmas in the MPI backbone code, generated from
the input protocol as placeholders where functional code is inserted. There
are multiple types of annotations whose syntax is given as:

#pragma pabble [<entry point type>] <entry point id> [(paramO, ...)]

where entry point type is one of kernel, type or predicate, and entry point
id is an alphanumeric identifier.

15.7.2 Kernel Function

#pragma pabble kernel Label defines the insertion point of kernel func-
tions in the MPI backbone code. Label is the label of the interaction
statement, e.g. Label (T) from Sender to Receiver, and the annotation
is replaced by the kernel function associated to the label Label. Programmers
must use the same pragma to manually annotate the implementation of the
kernel function. The first row in Table 15.1 shows an example.

15.7.3 Datatypes

#pragma pabble type TypeName annotates a generic type name in the
backbone, and also annotates the concrete definition of the datatype in the
kernels. In the second row of Table 15.1, the C datatype T is defined to
be void since the protocol does not have any information to realise the
type. The kernel defines T to be a concrete type of double, and hence our
tool transforms the typedef in the backbone into double and infers the
corresponding MPI_Datatype (MPI derived datatypes) to the built-in MPI
integer primitive type, i.e. MPI_Datatype MPI_T = MPI_DOUBLE. From the

Table 15.1 Annotations in backbone and kernel

Generated MPI backbone User supplied kernel Merged code
=
o Q
E'S #pragma pabble kernel Label
Sz g #pragma pabble kernel Label void kernel_func(int label) kernel_func(Label);
= {...}

#pragma pabble type T
typedef void T;
MPI_Datatype MPI_T;

typedef double T;
MPI_Datatype MPI_T
= MPI_DOUBLE;

#pragma pabble type T
typedef double T;

#pragma pabble predicate Cond #pragma pabble predicate Cond
while (1) int condition()
{ ...} { ... return bool; }

while (condition())
{...}

Conditionals Datatypes

350 Protocol-Driven MPI Program Generation

given type we can also generate MPI datatypes for structures of primitive
types, e.g. struct { int x, int y, double m 1} is transformed to its
MPI-equivalent datatype.

15.7.4 Conditionals

#pragma pabble predicate Label annotates predicates, e.g. loop con-
ditions or if-conditions, in the backbone. Since a Pabble communication
protocol (and transitively, the MPI backbone) does not specify a loop con-
dition, the default loop condition is 1, i.e. always true. This annotation
introduces a way to insert a conditional expression defined as a kernel
function. It precedes the while-loop, as shown in the third row of Table 15.1,
to label the loop with the name Label. The kernel function that defines
expressions must use the same annotation as the backbone, e.g. #pragma
pabble predicate Label. After the merge, this kernel function is called
when the loop condition is evaluated.

15.8 Related Work

The general approach of describing parallel patterns and reusing them with
different computation modules can date back to [4] by Darlington et al.,
where parallel patterns are described as higher order skeleton functions,
written in a functional language. Parallel applications are implemented as
functions that combine with the skeletons and transformed. Their system
targets specialised parallel machines, and our approach targets MPI, a stan-
dard for parallel programming in a range of hardware configurations. The
approach, also known as algorithmic skeleton frameworks for parallel pro-
gramming, is surveyed in [7]. Some of these tools also target MPI for
high-level structured parallel programming, and only works with a limited set
of parallel patterns. Our code generation workflow based on Pabble supports
generic patterns written in Pabble and guarantees communication safety in
the generated MPI code.

15.9 Conclusion

In this chapter we presented a protocol-based workflow for constructing
safe and efficient parallel applications. The framework consists of two
parts, a safe-by-construction parallel interaction backbone, generated from
the Pabble protocol language, and an aspect-oriented compilation workflow

References 351

to mechanically insert computation code into the backbone. Our approach
simplifies parallel programming by making use of parallel communication
patterns, described with our Pabble protocol description language, and build-
ing independent kernel code around the patterns as sequential C code. This
approach is flexible, where multiple sets of kernels can share a common par-
allel communication pattern, since the computation and the communication
are maintained separately.

Acknowledgements This work is supported EPSRC projects EP/K034413/1,
EP/KO11715/1, EP/L00058X/1 and EP/N027833/1; and by EU FP7 612985
(UpScale).

References

[1] L. Bettini, M. Coppo, L. DAntoni, M. D. Luca, M. Dezani-Ciancaglini,
and N. Yoshida. Global Progress in Dynamically Interleaved Multiparty
Sessions. In CONCUR 2008, volume 5201 of LNCS. Springer, 2008.

[2] J. a. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre,
P. Diniz, and Z. Petrov. LARA: an aspect-oriented programming
language for embedded systems. In AOSD ’12. ACM Press, 2012.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA ’05. ACM
Press, 2005.

[4] J. Darlington, A. Field, P. Harrison, P. H. J. Kelly, D. W. N. Sharp, and
Q. Wu. Parallel programming using skeleton functions. In PARLE 93,
1993.

[5] P.--M. Denielou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised Multi-
party Session Types. Logical Methods in Computer Science, 8(4):1-46,
October 2012.

[6] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov. Automated, scalable debugging of MPI programs with Intel
Message Checker. In SE-HPCS °05. ACM Press, 2005.

[7] H. Gonzilez-Vélez and M. Leyton. A Survey of Algorithmic Skele-
ton Frameworks: High-level Structured Parallel Programming Enablers.
Softw. Pract. Exper., 40(12):1135-1160, 2010.

[8] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1999.

352 Protocol-Driven MPI Program Generation

[9] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous
Session Types. JACM, 63(1):9:1-9:67, 2016.

[10] J. K. Lee and J. Palsberg. Featherweight X10. In PPoPP ’10. ACM
Press, 2010.

[11] J. Magee and J. Kramer. Concurrency — state models and Java programs
(2. ed.). Wiley, 2006.

[12] N. Ng, J. G. Coutinho, and N. Yoshida. Protocols by Default: Safe
MPI Code Generation based on Session Types. volume 9031 of LNCS.
Springer, 2015.

[13] N. Ng and N. Yoshida. Pabble: Parameterised Scribble for Parallel
Programming. In PDP 2014, pages 707-714, 2014.

[14] N. Ng and N. Yoshida. Pabble: parameterised Scribble. SOCA, 9(3—4),
2015.

[15] Pabble project on GitHub. https://github.com/pabble-lang

[16] Scribble homepage. http://scribble.org/

[17] X10 homepage. http://x10-1lang.org

[18] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble Protocol
Language. In TGC 2013, volume 8358 of LNCS. Springer, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

