
2
Contract-Oriented Programming with Timed

Session Types

Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande,
Maurizio Murgia, Alessandro Sebastian Podda and Livio Pompianu

University of Cagliari, Italy

Abstract

Contract-oriented programming is a software engineering paradigm which
proposes the use of behavioural contracts to discipline the interaction among
software components. In a distributed setting, the various components of
an application may be developed and run by untrustworthy parties, which
could opportunistically diverge from the expected behaviour when they find
it convenient. The use of contracts in this setting is essential: by binding
the behaviour of each component to a contract, and by sanctioning contract
violations, components are incentivized to behave in a correct and cooperative
manner.

This chapter is a step-by-step tutorial on programming contract-oriented
distributed applications. The glue between components is a middleware
which establishes sessions between services with compliant contracts, and
monitors sessions to detect and punish violations. Contracts are formalised as
timed session types, which describe timed communication protocols between
two components at the endpoints of a session. We illustrate some basic prim-
itives of contract-oriented programming: advertising contracts, performing
contractual actions, and dealing with violations. We then show how to exploit
these primitives to develop some small distributed applications.

2.1 Introduction

Developing trustworthy distributed applications can be a challenging task.
A key issue is that the services that compose a distributed application may
be under the governance of different providers, which may compete against

27

28 Contract-Oriented Programming with Timed Session Types

each other. Furthermore, services interact through open networks, where
competitors and adversaries can try to exploit their vulnerabilities.

A possible countermeasure to these issues is to use behavioural contracts
to discipline the interaction among services. These are formal descriptions of
service behaviour, which can be used at static or dynamic time to discover
and bind services, and to guarantee that they interact in a protected manner:
namely, when a service does not behave as prescribed by its contract, it can
be blamed and sanctioned for a contract breach.

In previous work [7] we presented a middleware that uses behavioural
contracts to discipline the interactions among distrusting services. Since it
supports the COntract-Oriented paradigm, we called it “CO2 middleware”.

Figure 2.1 illustrates the main features of the CO2 middleware. In (1), the
participant A advertises its contract to the middleware, making it available
to other participants. In (2), the middleware determines that the contracts
of A and B are compliant: this means that interactions which respect the
contracts are deadlock-free. Upon compliance, the middleware establishes
a session through which the two participants can interact. This interac-
tion consists of sending and receiving messages, similarly to a standard
message-oriented middleware (MOM): for instance, in (3) participant A

Figure 2.1 Contract-oriented interactions in the CO2 middleware.

2.2 Timed Session Types 29

delivers to the middleware a message for B, which can then collect it from
the middleware.

Unlike standard MOMs, the interaction happening in each session is
monitored by the middleware, which checks whether contracts are respected
or not. In particular, the execution monitor verifies that actions occur when
prescribed by their contracts, and it detects when some expected action is
missing. For instance, in (4) the execution monitor has detected an attempt
of participant B to do some illegal action. Upon detection of a contract
violation, the middleware punishes the culprit, by suitably decreasing its
reputation. This is a measure of the trustworthiness of a participant in its past
interactions: the lower its reputation is, the lower the probability of being able
to establish new sessions with it.

Item (5) shows another mechanism for establishing sessions: here, the
participant C advertises a contract, and D just accepts it. This means that the
middleware associates D with the canonical compliant of the contract of C,
and it establishes a session between C and D. The interaction happening in
this session then proceeds as described previously.

In this chapter we illustrate how to program contract-oriented distributed
applications which run on the CO2 middleware. A public instance of the
middleware is accessible from co2.unica.it, together with all examples
and experiments we carried out.

2.2 Timed Session Types

The CO2 middleware currently supports two kinds of contracts:

• first-order binary session types [18];
• timed session types (TSTs) [6].

In this section we illustrate TSTs with the help of a small case study, an online
store which receives orders from customers. The use of untimed session types
in contract-oriented applications is discussed in the literature [3, 4, 8].

2.2.1 Specifying Contracts

Timed session types extend binary session types [18, 26] with clocks and
timing constraints, similarly to the way timed automata [1] extend (classic)
finite state automata. We informally describe the syntax of TSTs below, and
we refer to [5, 6] for the full technical development.

30 Contract-Oriented Programming with Timed Session Types

Guards. Guards describe timing constraints, and they are conjunctions of
simple guards of the form t ◦ d, where t is a clock, d ∈ N, and ◦ is a relation
in <, <=, =, >=, >. For instance, the guard t<60,u>10 is true whenever the
value of clock t is less than 60, and the value of clock u is greater than 10.
The value of clocks is in R≥0, like for timed automata.

Send and receive. A TST describes the behaviour of a single participant A
at the end-point of a session. Participants can perform two kinds of actions:

• a send action !a{g;t1,...,tk} stipulates that A will output a message
with label a in a time window where the guard g is true. The clocks
t1,...,tk will be reset after the output is performed.

• a receive action ?a{g;t1,...,tk} stipulates that A will be available
to receive a message with label a at any instant within the time window
where the guard g is true. The clocks t1,...,tk will be reset after the
input is received.

When g = true, the guard can be omitted.
For instance, consider the contract store1 between the store and a

customer, from the point of view of the store.

store1 = "?order {;t} . ! price{t <60}"

The store declares that it will receive an order at any time. After it has
been received, the store will send the corresponding price within 60 seconds.

Internal and external choices. TSTs also feature two forms of choice:

• !a1{g1;R1} + ... + !an{gn;Rn}
This is an internal choice, stipulating that A will decide at run-time
which one of the output actions !ai{gi;Ri} (with 1 ≤ i ≤ n) to
perform, and at which time instant. After the action is performed, all
clocks in the set Ri = {t1,...,tk} are reset.

• ?a1{g1;R1} & ...& ?an{gn;Rn}
This is an external choice, stipulating that A will be able to receive
any of the inputs !ai{gi;Ri}, in the declared time windows. The
actual choice of the action, and of the instant when it is performed,
will be made by the participant at the other endpoint of the session.
After the action is performed, all clocks in the set Ri = {t1,...,tk}
are reset.

2.2 Timed Session Types 31

With these ingredients, we can refine the contract of our store as follows:

store2 = "?order {;t} . (! price{t <60} + ! unavailable {t <10})"

This version of the contract deals with the case where the store receives
an unknown or invalid product code. In this case, the internal choice allows
the store to inform the buyer that the requested item is unavailable.

Recursion. The contracts shown so far can only handle a bounded (statically
known) number of interactions. We can overcome this limitation by using
recursive TSTs. For instance, the contract store3 below models a store
which handles an arbitrary number of orders from a buyer:

store3 = "REC ’x’ [? addtocart {t <60;t}.’x’
& ? checkout {t <60;t}.(

! price{t <20;t}.(
? accept{t <10} & ? reject{t <10})

+ ! unavailable {t <20})]"

The contract store3 allows buyers to add some item to the cart, or
checkout. When a buyer chooses addtocart, the store must allow him to
add more items: this is done recursively. After a checkout, the store must
send the overall price, or inform the buyer that the requested items are
unavailable. If the store sends a price, it must expect a response from the
buyer, who can either accept or reject the price.

Context. Action labels are grouped into contexts, which can be created
and made public through the middleware APIs. Each context defines the
labels related to an application domain, and it associates each label with
a type and a verification link. The type (e.g., int, string) is that of the
messages exchanged with that label. The verification link is used by the
runtime monitor (described later on in this section) to delegate the verification
of messages to a trusted third party. For instance, the middleware supports
Paypal as a verification link for online payments [7].

2.2.2 Compliance

Besides being used to specify the interaction protocols between pairs of
services, TSTs feature the following primitives:

• a decidable notion of compliance between two TSTs;
• an algorithm to detect if a TST admits a compliant one;
• a computable canonical compliant construction.

32 Contract-Oriented Programming with Timed Session Types

These primitives are exploited by the CO2 middleware to establish sessions
between services: more specifically, the middleware only allows interac-
tions between services with compliant contracts. Intuitively, compliance
guarantees that, if all services respect all their contracts, then the overall
distributed application (obtained by composing the services) will not
deadlock.

Below we illustrate the primitives of TSTs by examples; a comprehensive
formal treatment is in [5].

Informally, two TSTs are compliant if, in the interactions where both
participants respect their contract, the deadlock state is not reachable
(see [5] for details). For instance, recall the simple version of the store
contract:

store1 = "?order {;t} . ! price{t <60}"

and consider the following buyer contracts:

buyer1 = "!order {;u} . ? price{u <70}"
buyer2 = "!order {;u} . (? price{u <70} & ? unavailable)"
buyer3 = "!order {;u} . (? price{u <30} & ? unavailable)"
buyer4 = "!order{u <20} . ? price{u <70}"

We have that:

• store1 and buyer1 are compliant: indeed, the time frame where
buyer1 is available to receive price is larger than the one where the
store can send;

• store1 and buyer2 are compliant: although the action ?unavailable
enables a further interaction, this is never chosen by the store
store1.

• store1 and buyer3 are not compliant, because the store may choose to
send price 60 seconds after he got the order, while buyer2 is only able
to receive within 30 seconds.

• store1 and buyer4 are not compliant. Here the reason is more subtle:
assume that the buyer sends the order at time 19: at that point, the store
receives the order and resets the clock t; after that, the store has 60
seconds more to send price. Now, assume that the store chooses to send
price after 59 seconds (which fits within the declared time window of
60 seconds). The total elapsed time is 19+59=78 seconds, but the buyer
is only able to receive before 70 seconds.

2.2 Timed Session Types 33

We can check if two contracts are compliant through the middleware
Java APIs1. We show how to do this through the Groovy2 interactive
shell3.

cS1 = new TST(store1)
cS1. isCompliantWith(new TST(buyer1))
>>> true
cS1. isCompliantWith(new TST(buyer3))
>>> false

Consider now the second version of the store contract:

store2 = "?order {;t} . (! price{t <60} + ! unavailable {t <10})"

The contract store2 is compliant with the buyer contract buyer2
discussed before, while it is not compliant with:

buyer5 = "!order {;u} . (?price{u <90})"
buyer6 = "!order {;u} . (?price{u <90} + ? unavailable {u>5,u <12})"

The problem with buyer5 is that the buyer is only accepting a mes-
sage labelled price, while store2 can also choose to send unavailable.
Although this option is present in buyer6, the latter contract is not compliant
with store2 as well. In this case the reason is that the time window for
receiving unavailable does not include that for sending it (recall that the
sender can choose any instant satisfying the guard in its output action). To
illustrate some less obvious aspects of compliance, consider the following
buyer contract:

buyer7 = "!order{u <100} . ? price{u <70}"

This contract stipulates that the buyer can wait up to 100 seconds for
sending an order, and then she can wait until 60 seconds (from the start of
the session), to receive the price from the store.

Now, assume that some store contract is compliant with buyer7. Then,
the store must be able to receive the order at least until time 100. If the buyer
chooses to send the order at time 90 (which is allowed by contract buyer7),
then the store would never be able to send price before time 70. Therefore,
no contract can be compliant with buyer7.

The issue highlighted by the previous example must be dealt with care: if
one publishes a service whose contract does not admit a compliant one, then

1co2.unica.it/downloads/co2api/
2groovy-lang.org/download.html
3On Unix-like systems, copy the API’s jar in $HOME/.groovy/lib/. Then, add import

co2api.* to $HOME/.groovy/groovysh.rc, and run groovysh.

34 Contract-Oriented Programming with Timed Session Types

the middleware will never connect that service with others. To check whether
a contract admits a compliant one, we can query the middleware APIs:

cB7 = new TST(buyer7)
>>> !order{u<100} . ?price{u<70}

cB7. hasCompliant ()
>>> false

Recall from Section 2.1 that the CO2 middleware also allows a service to
accept another service’s contract, as per item (5) in Figure 2.1. E.g., assume
that the store has advertised the contract store2 above. When the buyer uses
the primitive accept, the middleware associates the buyer with the canonical
compliant of store2, constructed through the method dualOf, i.e.:

cS2 = new TST(store2)
>>> ?order{;t} . (!price{t<60} + !unavailable{t<10})

cB2 = cS2.dualOf ()
>>> !order{;t} . (?price{t<60} & ?unavailable{t<10})

Intuitively, if a TST admits a compliant one, then its canonical compliant
is constructed as follows:

1. output labels !a are translated into input labels ?a, and vice versa;
2. internal choices are translated into external choices, and vice versa;
3. prefixes and recursive calls are preserved;
4. guards are suitably adjusted in order to ensure compliance.

Consider now the following contract of a store which receives an order
and a coupon, and then sends a discounted price to the buyer:

store4 = "?order{t <60} . ? coupon{t <30;t} . ! price{t <60}"

In this case store4 admits a compliant one, but this cannot be obtained
by simply swapping input/output actions and internal/external choices.

cS4 = new TST(store4)
cB4 = new TST("! order{t <60} . ! coupon{t <30;t} . ?price{t <60})")
cS4. isCompliantWith(cB4)
>>> false

Indeed, the canonical compliant construction gives:

cB5 = cS4. dualOf()
>>> !order{t<30} . ?coupon{t<30;t} . ?price{t<60}

2.2 Timed Session Types 35

2.2.3 Run-Time Monitoring of Contracts

In order to detect (and sanction) contract violations, the CO2 middleware
monitors all the interactions that happen through sessions. The monitor
guarantees that, in each reachable configuration, only one participant can be
“on duty” (i.e., she has to perform some actions); and if no one is on duty nor
culpable, then both participants have reached success. Here we illustrate how
runtime monitoring works, by making a store and a buyer interact.

To this purpose, we split the paper in two columns: in the left column we
show the store behaviour, while in the right column we show the buyer. We
assume that both participants call the middleware APIs through the Groovy
shell, as shown before. Note that the interaction between the two participants
is asynchronous: when needed, we will highlight the points where one of the
participants performs a time delay.

Both participants start by creating a connection co2 with the middleware:

usr = " testuser1@gmail.com"
pwd = " testuser1 "
co2 = new CO2ServerConnection(

usr ,pwd)

usr = " testuser2@gmail.com"
pwd = " testuser2 "
co2 = new CO2ServerConnection(

usr ,pwd)

Then, the participants create their contracts, and advertise them to the
middleware through the primitive tell. The variables pS and pB are the
handles to the published contracts.

cS = new TST(store2)
pS = cS.toPrivate (co2).tell()

cB = new TST(buyer2)
pB = cB. toPrivate (co2).tell()

Now the middleware has two compliant contracts in its collection, hence
it can establish a session between the store and the buyer. To obtain a handle
to the session, both participants use the blocking primitive waitForSession:

sS = pS.waitForSession() sB = pB. waitForSession()

At this point, participants can query the session to see who is “on duty”
(namely, one is on duty if the contract prescribes her to perform the next
action), and to check if they have violated the contract:

sS. amIOnDuty ()
>>> false
sS. amICulpable ()
>>> false

sB.amIOnDuty ()
>>> true
sB. amICulpable ()
>>> false

36 Contract-Oriented Programming with Timed Session Types

Note that the first action must be performed by the buyer, who must send
the order. This is accomplished by the send primitive. Dually, the store
waits for the receipt of the message, using the waitForReceive primitive:

msg = sS. waitForReceive()
msg. getStringValue()
>>> 0123
sS.amIOnDuty ()
>>> true

// send at an arbitrary time
sB.send(" order", " 0123")

sB. amIOnDuty ()
>>> false

Since there are no time constraints on sending order, this action can be
successfully performed at any time; once this is done, the waitForReceive
unlocks the store. The store is now on duty, and it must send price within
60 seconds, or unavailable within 10 seconds. Now, assume that the store
tries to send unavailable after the deadline:

// wait more than 10 seconds

sS.send(" unavailable ")
>>> ContractException

msg = sB. waitForReceive()

>>> ContractViolationException:
"The other participant is culpable"

On the store’s side, the send throws a ContractException; on the buyer
side, the waitForReceive throws an exception which reports the violation
of the store. At this point, if the two participants check the state of the session,
they find that none of them is still on duty, and that the store is culpable:

session.amIOnDuty ()
>>> false
session. amICulpable ()
>>> true

session. amIOnDuty ()
>>> false
session. amICulpable ()
>>> false

At this point, the session is terminated, and the reputation of the store is
suitably decreased.

2.3 Contract-Oriented Programming

In this section we develop some simple contract-oriented services, using the
middleware APIs via their Java binding4.

4Full code listings are available at co2.unica.it

2.3 Contract-Oriented Programming 37

2.3.1 A Simple Store

We start with a basic store service, which advertises the contract store2:

1 String store2 ="? order{;t }.(!price{t <60} + ! unavailable {t <10})";
2 TST c = new TST(store2);

4 CO2ServerConnection co2 =
5 new CO2ServerConnection("testuser@co2 .unica.it", " pa55w0rd");
6 Private r = c. toPrivate (co2);
7 Public p = r.tell(); //advertises the contract store2

9 Session s = p. waitForSession();//blocks until session is created
10 String id = s. waitForReceive(). getStringValue();

12 if(isAvailable (id)) { s.send(" price", getPrice (id)); }
13 else { s.send(" unavailable "); }

At lines 1-2, the store constructs a TST c for contract store2. At
lines 4-5, the store connects to the middleware, providing its credentials. At
line 6, the Private object represents the contract in a state where it has not
been advertised to the middleware yet. To advertise the contract, we invoke
the tell method at line 7. This call returns a Public object, modelling a
latent contract that can be “fused” with a compliant one to establish a new
session. At line 9, the store waits for a session to be established; the returned
Session object allows the store to interact with a buyer. At line 10, the
store waits for the receipt of a message, containing the code of the product
requested by the buyer. At lines 12-13, the store sends the message price
(with the corresponding value) if the item is available, otherwise it sends
unavailable.

2.3.2 A Simple Buyer

We now show a buyer that can interact with the store. This buyer just accepts
the already published contract store2. The contract is identified by its hash,
which is obtained from Public.getContractID().

1 CO2ServerConnection co2 = new CO2ServerConnection(...);

3 String storeCID = "0x...";
4 Integer desiredPrice = 10;

6 Public p = Public. accept(co2 , storeCID , TST. class);
7 Session s = p. waitForSession();

9 s.send("order", " 11235811 ");

38 Contract-Oriented Programming with Timed Session Types

11 try {
12 Message m = s. waitForReceive();
13 switch (m. getLabel ()) {
14 case " unavailable ": break;
15 case " price":
16 Integer price = Integer. parseInt (m.getStringValue());
17 if (price > desiredPrice) { /* abort the purchase */ }
18 else { /* proceed with the purchase */ }
19 }
20 } catch(ContractViolationException e){/*The store is culpable */}

At line 6, the buyer accepts the store’s contract, identified by storeCID.
The call to Public.accept returns a Public object. At this point a session
with the store is already established, and waitForSession just returns the
corresponding Session object (line 7). Now, the buyer sends the item code
(line 9), waits for the store response (line 12), and finally in the try-catch
statement it handles the messages price and unavailable.

Note that the accept primitive allows a participant to establish ses-
sions with a chosen counterpart; instead, this is not allowed by the
tell primitive, which can establish a session whenever two contracts are
compliant.

2.3.3 A Dishonest Store

Consider now a more complex store, which relies on external distributors to
retrieve items. As before, the store takes an order from the buyer; however,
now it invokes an external distributor if the requested item is not in stock. If
the distributor can provide the item, then the store confirms the order to the
buyer; otherwise, it informs the buyer that the item is unavailable.

Our first attempt to implement this refined store is the following.

1 TST cB = new TST(store2);
2 TST cD = new TST("!req {;t }.(?ok{t <10} & ?no{t <10})");

4 Public pB = cB. toPrivate (co2).tell();
5 Session sB = pB. waitForSession();
6 String id = sB. waitForReceive().getStringValue();

8 if (isAvailable (id)) { // handled internally
9 sB.send(" price", getPrice (id));

10 }
11 else { // handled with a distributor
12 Public pD = cD.toPrivate (co2).tell();
13 Session sD = pD.waitForSession();

15 sD.send("req", id);

2.3 Contract-Oriented Programming 39

16 Message mD = sD.waitForReceive();

18 switch (mD. getLabel ()) {
19 case "no" : sB.send(" unavailable "); break;
20 case "ok" : sB.send(" price", getPrice (id)); break;
21 }
22 }

At lines 1-2 we construct two TSTs: cB for interacting with buyers, and
cD for interacting with distributors. In cD, the store first sends a request for
some item to the distributor, and then waits for an ok or no answer, according
to whether the distributor is able to provide the requested item or not. At
lines 4-6, the store advertises cB, and it waits for a buyer to join the session;
then, it receives the order, and checks if the requested item is in stock (line 8).
If so, the store sends the price of the item to the buyer (line 9).

If the item is not in stock, the store advertises cD to find a distributor
(lines 12-13). When a session sD is established, the store forwards the item
identifier to the distributor (line 15), and then it waits for a reply. If the
reply is no, the store sends unavailable to the buyer, otherwise it sends a
price.

Note that this implementation of the store is dishonest, namely it may
violate contracts [11]. This happens in the following two cases:

1. Assume that the store has received the buyer’s order, but the requested
item is not in stock. Then, the store advertises the contract cD to find
a distributor. Note that there is no guarantee that the session sD will
be established within a given deadline, nor that it will be established at
all. If more than 60 seconds pass on the waitForSession at line 13,
the store becomes culpable with respect to the contract cB. Indeed, such
contract requires the store to perform an action before 60 seconds (10
seconds if the action is unavailable).

2. Moreover, if the session sD is established in timely fashion, a slow or
unresponsive distributor could make the store violate the contract cB.
For instance, assume that the distributor sends message no after nearly
10 seconds. In this case, the store may not have enough time to send
unavailable to the buyer within 10 seconds, and so it becomes
culpable at session sB.

We have simulated the scenario described in Item 1, by making the
store interact with slow or unresponsive distributors (see Figure 2.2).

40 Contract-Oriented Programming with Timed Session Types

Figure 2.2 Reputation of the dishonest and honest stores as a function of the number of
sessions with malicious distributors.

The experimental results show that, although the store is not culpable in all
the sessions, its reputation decreases over time. Recovering from such situa-
tion is not straightforward, since the reputation system of the CO2 middleware
features defensive techniques against self-promoting attacks [25].

2.3.4 An Honest Store

In order to implement an honest store, we must address the fact that, if the
distributor delays its message to the maximum allowed time, the store may
not have enough time to respond to the buyer. To cope with this scenario,
we adjust the timing constraints in the contract between the store and the
distributor, and we implement a revised version of the store as follows.

1 TST cB = new TST(store2);
2 TST cD = new TST("!req {;t} . (?ok{t <5} & ?no{t <5})");

4 Public pB = cB. toPrivate (co2).tell();
5 Session sB = pB. waitForSession();
6 String id = sB. waitForReceive().getStringValue();

8 if (isAvailable (id)) { // handled internally
9 sB.send(" price", getPrice (id));

10 }

2.3 Contract-Oriented Programming 41

11 else { // handled with the distributor
12 Public pD = cD.toPrivate (co2).tell(3 * 1000);
13 try {
14 Session sD = pD. waitForSession();
15 sD.send("req", id);

17 try{
18 Message mD = sD. waitForReceive();

20 switch (mD. getLabel ()) {
21 case "no": sB.send(" unavailable "); break;
22 case "ok": sB.send(" price", getPrice (id)); break;
23 }
24 } catch(ContractViolationException e){
25 //the distributor did not respect its contract
26 sB.send(" unavailable ");
27 }
28 } catch(ContractExpiredException e) {
29 //no distributor found
30 sB.send("unavailable ");
31 }
32 }

The parameter in the tell at line 12 specifies a deadline of 3 seconds:
if the session sD is not established within the deadline, the contract cD
is retracted from the middleware, and a ContractExpiredException is
thrown. The store catches the exception at line 28, sending unavailable
to the buyer.

Instead, if the session sD is established, the store forwards the item iden-
tifier to the distributor (line 15), and then waits for the receipt of a response
from it. If the distributor sends neither ok nor no within the deadline specified
in cD (5 seconds), the middleware assigns the blame to the distributor for
a contract breach, and unblocks the waitForReceive in the store with
a ContractViolationException (line 24). In the exception handler, the
store fulfils the contract cB by sending unavailable to the buyer.

2.3.5 A Recursive Honest Store

We now present another version of the store, which uses the recursive contract
store3 on page 31. As in the previous version, if the buyer requests an item
that is not in stock, the store resorts to an external distributor.

1 TST cB = new TST(store3);
2 TST cD = new TST("!req {;t }.(?ok{t<5} & ?no{t <5})");

4 Public pB = cB.toPrivate (co2).tell();
5 Session sB = pB. waitForSession();

42 Contract-Oriented Programming with Timed Session Types

6 List <String > orders = new ArrayList <>();
7 Message mB;

9 try {
10 do {
11 mB = sB. waitForReceive();
12 if (mB. getLabel (). equals(" addtocart ")){
13 orders.add(mB. getStringValue());
14 }
15 } while(!mB.getLabel ().equals(" checkout "));

17 if (isAvailable (orders)) { // handled internally
18 sB.send(" price", getPrice (orders));
19 String res = sB.waitForReceive().getLabel ();
20 switch (res){
21 case " accept": // handle the order
22 case " reject": // terminate
23 }
24 }
25 else { // handled with the distributor
26 Public pD = cD.toPrivate (co2).tell(5 * 1000);
27 try {
28 Session sD = pD. waitForSession();
29 sD.send("req", getOutOfStockItems(orders));
30 try{
31 switch (sD. waitForReceive(). getLabel ()) {
32 case "no": sB.send(" unavailable "); break;
33 case "ok":
34 sB.send(" price", getPrice (orders));
35 try{
36 String res =
37 sB. waitForReceive(). getLabel ();
38 switch (res) {
39 case " accept": // handle the order
40 case " reject": // terminate
41 }
42 }
43 catch (ContractViolationException e) {
44 //the buyer is culpable, terminate
45 }
46 }
47 } catch (ContractViolationException e){
48 //the distributor did not respect its contract
49 sB.send(" unavailable ");
50 }
51 }
52 catch (ContractExpiredException e) {
53 //no distributor found
54 sB.send("unavailable ");
55 }
56 }
57 } catch(ContractViolationException e){/*the buyer is culpable */}

2.4 Conclusions 43

After advertising the contract cB, the store waits for a session sB with
the buyer (lines 4-5). After the session is established, the store can receive
addtocart multiple times: for each addtocart, it saves the corresponding
item identifier in a list. The loop terminates when the buyer selects checkout.
If all requested items are available, the store sends the total price to the
buyer (line 18). After that, the store expects either accept or reject from
the buyer. If the buyer does not respect his deadlines, an exception is thrown,
and it is caught at line 57. If the buyer replies on time, the store advertises
the contract cD, and waits for a session sD with the distributor (lines 26-28).
If the session is not established within 5 seconds, an exception is thrown.
The store handles the exception at line 52, by sending unavailable to the
buyer. If a session with the distributor is established within the deadline,
the store requests the unavailable items, and waits for a response (line 31).
If the distributor sends no, the store answers unavailable to the buyer
(line 32). If the distributor sends ok, then the interaction between store and
buyer proceeds as if the items were in stock. If the distributor does not reply
within the deadline, an exception is thrown. The store handles it at line 47, by
sending unavailable to the buyer. An untimed specification of this store is
proved honest in [4]. We conjecture that also this timed version of the store
respects contracts in all possible contexts.

2.4 Conclusions

We have explored the use of behavioural contracts as service-level agree-
ments among the components of a distributed application. In particular, we
have considered a middleware where services can advertise contracts (in the
form of timed session types, TSTs), and interact through sessions, which are
only created between services with compliant contracts. The primitives of
the middleware exploit the theory of TSTs: in particular, a decidable notion
of compliance between TSTs, a decidable procedure to detect when a TST
admits a compliant one, and a decidable runtime monitoring. The middleware
has been validated in [7] through a series of experiments, which measure the
scalability of the approach when the number of exchanged contracts grows,
and the effectiveness of the reputation system.

Although the current version of the middleware only features binary
(either timed or untimed) session types as contracts, the underlying idea
can be extended to other contract models. Indeed, the middleware only
makes mild assumptions about the nature of contracts, e.g., that they feature:

44 Contract-Oriented Programming with Timed Session Types

(i) monitorable send and receive actions, (ii) some notion of accepting a
contract or a role, or (iii) some notion of compliance with a sound (but
not necessarily complete) verification algorithm. Other timed models of
contracts would be ideal candidates for extensions of the middleware. For
instance, communicating timed automata [13] (which are timed automata
with unbounded communication channels) would allow for multi-party
sessions.

Security issues should be seriously taken into account when developing
contract-oriented applications. As we have shown for the dishonest online
store in Section 2.3, adversaries could make a service sanctioned by exploit-
ing discrepancies between its contracts and its actual behaviour. Since these
mismatches are not always easy to spot, analysis techniques are needed in
order to ensure that a service will not be susceptible to this kind of attacks.
A starting point could be the analyses in [8, 9], that can detect whether a
contract-oriented specification is honest; the Diogenes toolchain [3] extends
this check to Java code. Since these analyses do not take into account
time constraints, further work is needed to extend these techniques to timed
applications.

2.4.1 Related Work

The theoretical foundations of our middleware are timed session types
and CO2 [12, 10], a specification language for contract-oriented services.
The middleware implements the main primitives of CO2 (tell, send,
receive), and it introduces new concepts, such as the accept primitive,
time constraints, and reputation.

From the theoretical viewpoint, the idea of constraint-based interactions
has been investigated in other process calculi, such as Concurrent Constraint
Programming (CCP) [24], and cc-pi [16]. The kind of interactions they induce
is quite different from ours. In CCP, processes can interact by telling and
asking for the validity of constraints on a global constraint store. In cc-pi,
interaction is a mix of name communication à la π-calculus [21] and tell à
la CCP (which is used to put constraints on names). In cc-pi consistency plays
a crucial role: tells restrict the future interactions with other processes,
since adding constraints can lead to more inconsistencies; by contrast, in our
middleware advertising a contract enables interaction with other services, so
consistency is immaterial, but compliance is a key notion.

Several formalisms for expressing timed communication protocols have
been proposed over the years. The work [14] addresses a timed extension of

2.4 Conclusions 45

multi-party asynchronous session types [19]. Unlike ours, the approach pur-
sued in [14] is top-down: a global type, specifying the overall communication
protocol of a set of services, is projected onto a set of local types. Then,
a composition of services preserves the properties of the global type (e.g.,
deadlock-freedom) if each service type-checks against the associated local
type. The CO2 middleware, instead, fosters a bottom-up approach to service
composition. Both our approach and [14, 23] use runtime monitoring to
detect contract violations and assign the blame to the party that is responsible
for a contract violation. The CO2 middleware also exploits these data in its
reputation system.

The work [13] studies communicating timed automata, a timed version
of communicating finite-state machines [15]. In this model, participants in a
network communicate asynchronously through bi-directional FIFO channels;
similarly to [14], clocks, guards and resets are used to impose time con-
straints on when communications can happen. An approximate (sound, but
not complete) decidable technique allows one to check when a system of au-
tomata enjoys progress. This technique is based on multiparty compatibility,
a condition that guarantees deadlock-freedom of untimed systems [20].

From the application viewpoint, several works have investigated the
problem of service selection in open dynamic environments [2, 22, 27, 28].
This problem consists in matching client requests with service offers, in a
way that, among the services respecting the given functional constraints, the
one that maximises some non-functional constraints is selected. These non-
functional constraints are often based on quality of service (QoS) metrics,
e.g. cost, reputation, guaranteed throughput or availability, etc. The selection
mechanism featured in our middleware does not search for the “best” contract
that is compliant with a given one (actually, typical compliance relations
in behavioural contracts are qualitative, rather than quantitative); the only
QoS parameter we take into account is the reputation of services. In some
approaches [2, 28] clients can require a sequence of tasks together with a
set of non-functional constraints, and the goal is to find an assignment of
tasks to services that optimises all the given constraints. There are two main
differences between these approaches and ours. First, unlike behavioural con-
tracts, tasks are considered as atomic activities, not requiring any interaction
between clients and services. Second, unlike ours, these approaches do not
consider the possibility that a service may not fulfil the required task.

Some works have explored service selection mechanisms where func-
tional constraints can be required in addition to QoS constraints [22]: the
first are described by a web service ontology, while the others are defined as

46 Contract-Oriented Programming with Timed Session Types

requested and offered ranges of basic QoS attributes. Runtime monitor and
reputation systems are also implemented, which, similarly to ours, help to
marginalise those services that do not respect the advertised QoS constraints.
Some kinds of QoS constraints cannot be verified by the service broker,
so their verification is delegated to clients. This can be easily exploited
by malicious participants to carry on slandering attacks to the reputation
system [17]: an attacker could destroy another participant’s reputation by
involving it in many sessions, and each time declare that the required QoS
constraints have been violated. In our middleware there is no need to assume
that participants are trusted, as the verification of contracts is delegated to the
middleware itself and to trusted third parties.

Acknowledgments This work is partially supported by Aut. Reg. of Sar-
dinia grants L.R.7/2007 CRP-17285 (TRICS), P.I.A. 2013 (“NOMAD”),
and by EU COST Action IC1201 “Behavioural Types for Reliable Large-
Scale Software Systems” (BETTY). Alessandro Sebastian Podda gratefully
acknowledges Sardinia Regional Government for the financial support of
her PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the
Autonomous Region of Sardinia, European Social Fund 2007–2013 – Axis
IV Human Resources, Objective l.3, Line of Activity l.3.1).

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[2] Danilo Ardagna and Barbara Pernici. Adaptive service composition in
flexible processes. IEEE Trans. Software Eng., 33(6):369–384, 2007.

[3] Nicola Atzei and Massimo Bartoletti. Developing honest Java programs
with Diogenes. In Formal Techniques for Distributed Objects, Com-
ponents, and Systems (FORTE), volume 9688 of LNCS, pages 52–61.
Springer, 2016.

[4] Nicola Atzei, Massimo Bartoletti, Maurizio Murgia, Emilio Tuosto, and
Roberto Zunino. Contract-oriented design of distributed applications: a
tutorial. tcs.unica.it/papers/diogenes-tutorial.pdf, 2016.

[5] Massimo Bartoletti, Tiziana Cimoli, and Maurizio Murgia. Timed
session types, 2015. Pre-print available at tcs.unica.it/papers/
tst.pdf

References 47

[6] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro
Sebastian Podda, and Livio Pompianu. Compliance and subtyping in
timed session types. In Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), volume 9039 of LNCS, pages
161–177. Springer, 2015.

[7] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro
Sebastian Podda, and Livio Pompianu. A contract-oriented middleware.
In Formal Aspects of Component Software (FACS), volume 9539 of
LNCS, pages 86–104. Springer, 2015. co2.unica.it

[8] Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto
Zunino. Verifiable abstractions for contract-oriented systems. Journal of
Logical and Algebraic Methods in Programming (JLAMP), 86:159–207,
2017.

[9] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino.
Honesty by typing. Logical Methods in Computer Science, 12(4), 2016.
Pre-print available at: arxiv.org/abs/1211.2609

[10] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-
oriented computing in CO2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[11] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. On the re-
alizability of contracts in dishonest systems. In COORDINATION,
volume 7274 of LNCS, pages 245–260. Springer, 2012.

[12] Massimo Bartoletti and Roberto Zunino. A calculus of contracting
processes. In IEEE Symposium on Logic in Computer Science (LICS),
pages 332–341. IEEE Computer Society, 2010.

[13] Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines
together. In CONCUR, volume 42 of LIPIcs, pages 283–296. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015.

[14] Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty
session types. In CONCUR, volume 8704 of LNCS, pages 419–434.
Springer, 2014.

[15] Daniel Brand and Pitro Zafiropulo. On communicating finite-state
machines. J. ACM, 30(2):323–342, 1983.

[16] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based
language for specifying service level agreements. In European Sympo-
sium on Programming (ESOP), volume 4421 of LNCS, pages 18–32.
Springer, 2007.

[17] Kevin J. Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of
attack and defense techniques for reputation systems. ACM Comput.
Surv., 42(1), 2009.

48 Contract-Oriented Programming with Timed Session Types

[18] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type disciplines for structured communication-based pro-
gramming. In European Symposium on Programming (ESOP), volume
1381 of LNCS, pages 22–138. Springer, 1998.

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 273–284. ACM,
2008.

[20] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From commu-
nicating machines to graphical choreographies. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 221–232. ACM, 2015.

[21] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, I and II. Information and Computation, 100(1):1–40,41–77,
September 1992.

[22] A. Mukhija, Andrew Dingwall-Smith, and D.S. Rosenblum. QoS-
aware service composition in Dino. In ECOWS, volume 5900 of LNCS,
pages 3–12. Springer, 2007.

[23] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime
monitoring for multiparty conversations. In BEAT, volume 162 of
EPTCS, pages 19–26, 2014.

[24] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint pro-
gramming. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 232–245. ACM, 1990.

[25] Mudhakar Srivatsa, Li Xiong, and Ling Liu. TrustGuard: counter-
ing vulnerabilities in reputation management for decentralized overlay
networks. In International Conference on World Wide Web (WWW),
pages 422–431. ACM, 2005.

[26] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE, pages 398–413, 1994.

[27] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for Web
services selection with end-to-end QoS constraints. ACM Transactions
on the Web, 1(1):6, 2007.

[28] Liangzhao Zeng, Boualem Benatallah, Anne HH Ngu, Marlon Dumas,
Jayant Kalagnanam, and Henry Chang. QoS-aware middleware for Web
services composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

