
3
A Runtime Monitoring Tool for

Actor-Based Systems

Duncan Paul Attard1, Ian Cassar1, Adrian Francalanza1, Luca Aceto2

and Anna Ingólfsdóttir2

1Department of Computer Science, Faculty of ICT, University of Malta,
Malta
2School of Computer Science, Reykjavı́k University, Iceland

Abstract

This chapter discusses detectEr, an experimental runtime monitoring tool
that can be used to formally verify concurrent systems developed in Erlang.
Formal correctness properties in detectEr are expressed using a monitorable
subset of Hennessy-Milner Logic with recursion, and synthesised into actor-
based runtime monitors. Our exposition focusses on how the specification
logic is enriched and extended with pattern-matching and conditional con-
structs which allow monitors to be adept at processing the data obtained
dynamically from the system’s execution trace. The tool leverages the native
tracing functionality provided by the Erlang language platform so as to
produce asynchronous monitors that can be instrumented to run alongside
the system with minimal effort. To demonstrate how detectEr can be used in
practice, this material also provides a hands-on guide that is especially aimed
at users wishing to use our tool to monitor Erlang applications.

3.1 Introduction

Concurrency [30] refers to software systems whose functionality is
expressed in terms of multiple components or processes that are specifi-
cally designed to work simultaneously with each other. In recent
years, a concurrency-oriented [3] approach to software development has

49

50 A Runtime Monitoring Tool for Actor-Based Systems

become increasingly commonplace, and is greatly favoured over monolithic-
style approaches. This is, in part, owed to the rigidity that the latter types of
architectures are synonymous with, where attempts at addressing scalability
concerns usually lead to notoriously complex and often, inadequate solutions.
Instead, concurrency recasts the notion of system design in a way that makes
it possible to avail oneself of the multi-processor and multi-core platforms
that are prevalent nowadays.

Formally ensuring the correctness of concurrent systems is an arduous,
albeit necessary, task, especially since the interactions between fine-grained
computational components can easily harbour subtle software bugs. Despite
several success stories in their application to real-life applications, static
verification techniques such as Model Checking (MC) scale poorly in con-
current scenarios, particularly because the system state space that needs to
be exhaustively verified grows exponentially with respect to the size of the
system [13, 14] – this is on account of the considerable number of possible
execution paths that result from process interleaving. Moreover, situations
often arise whereby verification cannot be performed statically (i.e., pre-
deployment), as certain application components might not always be available
for inspection before the system starts executing (e.g. in systems where func-
tional components such as add-ons are downloaded and installed dynamically
at runtime). There are also cases where the internal workings of a component
(e.g. source code or execution graph) are not accessible and need to be
treated as a black box. In these cases, Runtime Verification (RV) presents an
appealing compromise towards ensuring the correctness of component-based
applications. It is a lightweight verification technique that analyses the current
runtime execution path of the system under scrutiny by considering partial
executions incrementally, up to the current execution point [17, 26]. Its nature
inherently circumvents the scalability issues attributed to MC and provides a
means for post-deployment verification. Despite these advantages, RV has
limited expressiveness and cannot be used to verify arbitrary specifications
such as (general) liveness properties [27].

This chapter discusses the implementation of a prototype RV tool called
detectEr, that targets concurrent, component-based applications written in
Erlang. The presented material aspires to introduce this tool from a pragmatic
standpoint, and thus omits technical details that may be abstruse to users of
the tool. Interested readers should consult previous work [4, 19, 21] for details
regarding the monitor synthesis and runtime behaviour of the monitoring
tool.

3.2 Background 51

The content that follows is organised into three sections. Section 3.2
gives a concise overview of the ideas behind RV and monitoring; this is
followed by a review of mHML, the logic used for specifying correctness
properties in our tool. Although this section helps to make the presentation
self-contained, it may be safely skipped by readers familiar with the subject
or merely interested in using the tool. Section 3.3 revisits the logic mHML
from Section 3.2, and examines how it was adapted to address the practical
requirements of users wishing to define correctness properties for Erlang con-
current programs. It also very briefly touches on the compilation process that
transforms mHML specification scripts into executable runtime monitors.
The final section takes the form of a hands-on tutorial that guides readers
through the basic steps that need to be performed in order to instrument an
Erlang application with runtime monitors using the tool.

3.2 Background

An executing system results in the generation of a (possibly infinite) sequence
of events known as a trace. These events are the upshot of internal or external
system behaviours, such as message exchanges between processes or function
invocations. An execution, i.e., a finite prefix of an infinite trace, is consumed
and processed by a software entity known as a monitor, tasked with the
job of checking whether the execution provides enough evidence so as to
determine whether a property is satisfied or violated. Correctness specifica-
tions (properties) serve to unambiguously describe the behaviour to which
the executing system should adhere to. Verdicts denote monitoring outcomes
and are assumed to be definite and non-retractable (i.e., once given, cannot
change). These typically consist of judgements relating to property violations
and satisfactions, but may also include inconclusive verdicts for when the
exhibited execution trace does not permit any definite judgement in relation
to the property being monitored for [4, 6, 17, 19, 26]. A RV monitor for
some correctness property is typically synthesised automatically from a high-
level specification that finitely describes the property. Property specifications
are given in terms of formal logics [4, 6, 7, 19] or other formalisms such
as regular expressions [20] or automata [5, 15, 29]. Figure 3.1 depicts a
correctness specification (denoted by ϕ) that is translated into an executable
monitor, Monitorϕ, and instrumented with the running system. Trace events
are sequentially analysed by the monitor whenever these are generated by the
system through the instrumentation mechanism. Once the monitor reaches a
verdict, it typically stops executing.

52 A Runtime Monitoring Tool for Actor-Based Systems

High-Level Specification ϕ

x (correct) monitor synthesis

Monitorϕ e1 e2 e3 e4 e5 · · ·
execution trace

system events

System

✓

?

✗

satisfaction violation

inconclusive

runtime

design time

analyses exhibits

Figure 3.1 Runtime monitor synthesis and operational set-up.

3.2.1 Runtime Monitoring Criteria

Monitor synthesis, i.e., the translation procedure from specifications to mon-
itors and the associated system instrumentation, should ideally provide some
guarantees of correctness. This covers both aspects that relate to how monitor
verdicts correspond to the semantics of the property being monitored for
(e.g. a monitor trace rejection should correspond to the system violating
the property being monitored for), as well as requirements that the monitors
instrumented with the executing system under scrutiny do not introduce fresh
bugs themselves (consult our previous work [9, 18, 19, 21] for a detailed
rendition on the subject). Equally important is the efficiency with which
monitors execute, as this can adversely affect the monitored system or even
alter its functional behaviour (e.g. slowdown due to inefficient monitors might
cause the system to violate time-dependent properties that would not have
been violated in the unmonitored system). A monitoring set-up that induces
considerable levels of performance overhead may be deemed too costly to be
feasibly used in practice.

3.2.2 A Branching-Time Logic for Specifying
Correctness Properties

Specification logics can be categorised into two classes. Linear-time logics
[6, 13, 26] treat time as having one possible future, and regard the behaviour

3.2 Background 53

of a system under observation in terms of execution traces or paths. On the
other hand, branching-time logics [1, 13] make it possible to perceive time
instances as potentially having more than one future, thereby giving rise to a
tree of possible execution paths that may be (non-deterministically) taken by
the executing system at runtime.

μHML [1, 25] is a branching-time logic that can be used to specify
correctness properties over Labelled Transition Systems (LTSs) — graphs
modelling the possible behaviours that can be exhibited by executing pro-
cesses (see Figure 3.3 for a depiction of two LTSs). A LTS consists of a set
of system states p, q ∈ SYS, a set of actions α ∈ ACT, and finally, a ternary
transition relation between states labelled by actions, p

α−→ q. When p
α−→ q

for no process q, the notation p
α
�−→ is used. Additionally, p =⇒ q denotes

p(
τ−→)∗q, whereas p

α
=⇒ q, is written in place of p =⇒ · α−→ · =⇒ q.

Actions labelled by τ are used to denote unobservable (silent) actions that are
performed by the system internally.

The μHML syntax, given in Figure 3.2, assumes a countable set of logical
variables X,Y ∈ LVAR, thereby allowing formulae to recursively express
largest and least fixpoints using maxX.ϕ and minX.ϕ respectively; these
constructs bind free instances of the variable X in ϕ. In addition to the
standard constructs for truth, falsity, conjunction and disjunction, the syntax
also includes the necessity and possibility modalities.

The semantics of the logic is defined in terms of the function mapping
μHML formulae ϕ to the set of LTS states S ⊆ SYS satisfying them.
Figure 3.2 describes the semantics for both open and closed formulae, and
uses a map ρ ∈ LVAR ⇀ 2SYS from variables to sets of system states to
enable an inductive definition on the structure of the formula ϕ. The formula
tt is satisfied by all processes, while ff is satisfied by none; conjunctions
and disjunctions bear the standard set-theoretic meaning of intersection and
union. Necessity formulae [α]ϕ state that for all system executions producing
event α (possibly none), the subsequent system state must then satisfy ϕ

(i.e., ∀p′, p α
=⇒ p′ implies p′ ∈ �ϕ, ρ� must hold). Possibility formulae 〈α〉ϕ

require the existence of at least one system execution with event α whereby
the subsequent state then satisfies ϕ (i.e., ∃p′, p α

=⇒ p′ and p′ ∈ �ϕ, ρ�
must hold). The recursive formulae maxX.ϕ and minX.ϕ are respectively
satisfied by the largest and least set of system states satisfying ϕ. The
semantics of recursive variables X with respect to an environment instance ρ
is given by the mapping of X in ρ, i.e., the set of processes associated with X.
Closed formulae (i.e., formulae containing no free variables) are interpreted

54 A Runtime Monitoring Tool for Actor-Based Systems

Sy
nt

ax

ϕ
,φ

∈
μ

H
M

L
::
=

ff
(f

al
si

ty
)

|
tt

(t
ru

th
)

|
ϕ
∧
φ

(c
on

ju
nc

ti
on

)
|

ϕ
∨
φ

(d
is

ju
nc

ti
on

)

|
[α
]ϕ

(n
ec

es
si

ty
)

|
〈α

〉ϕ
(p

os
si

bi
li

ty
)

|
m

ax
X
.ϕ

(m
ax

.fi
xp

oi
nt
)

|
m

in
X
.ϕ

(m
in

.fi
xp

oi
nt
)

|
X

(r
ec

ur
si

ve
va

ri
ab

le
)

Se
m

an
ti

cs

�f
f,
ρ
�

de
f

=
∅

�t
t,
ρ
�

de
f

=
S

Y
S

�ϕ
∧
φ
,ρ

�
de

f
=

�ϕ
,ρ

�
∩

�φ
,ρ

�
�ϕ

∨
φ
,ρ

�
de

f
=

�ϕ
,ρ

�
∪

�φ
,ρ

�

�[
α
]ϕ
,ρ

�
de

f
=

{ p
|∀
p
′ .
p

α
=
⇒
p
′ im

pl
ie

s
p
′ ∈

�ϕ
,ρ

�}
�〈α

〉ϕ
,ρ

�
de

f
=

{ p
|∃
p
′ .
p

α
=
⇒
p
′ an

d
p
′ ∈

�ϕ
,ρ

�}

� m
ax
X
.ϕ
,ρ

�
de

f
=

⋃
{S

|S
⊆

�ϕ
,ρ
[X

�→
S
]�
}

�m
in
X
.ϕ
,ρ

�
de

f
=

⋂
{S

|�
ϕ
,ρ
[X

�→
S
]�
⊆
S
}

�X
,ρ

�
de

f
=
ρ
(X

)

F
ig

ur
e

3.
2

T
he

sy
nt

ax
an

d
se

m
an

ti
cs

of
μ

H
M

L
.

3.2 Background 55

independently of the environment ρ, and the shorthand �ϕ� is used to denote
�ϕ, ρ�, i.e., the set of system states in SYS that satisfy ϕ. In view of this, we
say that a system (state) p satisfies some closed formula ϕ whenever p ∈ �ϕ�,
and conversely, that it violates ϕ whenever p /∈ �ϕ�.

Example 3.2.1. The μHML formula 〈α〉tt describes systems that can
produce action α, while [α]ff describes systems that cannot produce
action α.

ϕ1 = maxX.
(
[req]([resp]X ∧ [resp][resp]ff)

)

ϕ2 = minX.(〈req〉〈resp〉X ∨ 〈lim〉tt)
Formula ϕ1 describes a property that prohibits a system from producing
duplicate responses in answer to client requests. System p whose LTS is
depicted in Figure 3.3a violates ϕ1 through any trace in the regular language
(req.resp)+.resp. Formula ϕ2 describes systems that can reach a service
limit after a number (possibly zero) of request and response interactions;
system q depicted in Figure 3.3b satisfies ϕ2 through any trace in the regular
language (req.resp)∗.lim. �

3.2.3 Monitoring μHML

Despite its limitations (i.e., monitors can only analyse single execution
traces), RV can be still effectively applied in cases where correctness prop-
erties can be shown to be satisfied (or violated) by analysing a single finite
execution. As explained previously, the formula [α]ff states that all α-actions
performed by a satisfying system state should satisfy property ff afterwards.
Since no system state can satisfy ff, the only way how to satisfy [α]ff is for a
system not to perform α. From a RV perspective, for a monitor to detect a vio-
lation of this requirement, observing one negative witness execution trace that

p p′ p′′

req

resp

req

resp

(a)

q q′′q′

req

resp

lim

(b)
Figure 3.3 The LTSs depicting the behaviour of two servers p and q.

56 A Runtime Monitoring Tool for Actor-Based Systems

starts with action α suffices to show that property ϕ is infringed. Dually, when
monitoring for the formula 〈α〉tt, observing one positive witness that starts
with action α suffices to show that property ϕ is satisfied.

Example 3.2.2. The μHML formula ϕ3 = 〈lim〉tt requires that “a process
can perform action lim”. System q in Figure 3.3b can exhibit the trace lim.ε
which suffices to show that system q satisfies ϕ3. Yet, q may also exhibit
other traces, such as those matching (req.resp)∗, that all start with the event
req. These traces do not provide enough evidence that system q satisfies
ϕ3. Stated otherwise, the monitor for formula ϕ3 can reach an acceptance
verdict only when a trace starting with event lim is observed. Otherwise, no
verdict relating to the satisfaction or violation of the formula can be reached;
in our specific case, the monitors we consider will reach an inconclusive
verdict. �

The availability of a single finite runtime trace does however restrict the
applicability of RV in cases such as those involving correctness properties
describing infinite or branching executions. In view of this, certain properties
expressed using the full expressive power of a branching-time logic such
as μHML cannot be monitored for at runtime. The work by Francalanza
et al. [19] explores the limits of monitorability for μHML, identifies a
syntactic logical subset called mHML, and shows it to be monitorable and
maximally expressive with respect to the constraints of runtime monitoring.
The syntax of mHML, given in Figure 3.4, consists of two syntactic classes,
Safety HML (sHML), describing invariant properties stipulating that bad
things do not happen, and Co-Safety HML (cHML), describing properties
that eventually hold after a finite number of events [2, 6, 23]. Formulae ϕ1

and ϕ2 from Example 3.2.1 are instances of sHML and cHML specifications
respectively.

Monitorable Logic Syntax

ψ ∈ mHML
def
= sHML ∪ cHML where:

θ, ϑ ∈ sHML ::= tt | ff | θ ∧ ϑ | [α]θ | maxX.θ | X

π,
 ∈ cHML ::= tt | ff | π ∨
 | 〈α〉π | minX.π | X

Figure 3.4 The syntax of mHML.

3.3 A Tool for Monitoring Erlang Applications 57

3.3 A Tool for Monitoring Erlang Applications

We briefly review the implementation of our RV tool detectEr that analyses
the correctness of concurrent programs developed in Erlang. It builds on the
work by Francalanza et al. [19] which specifies a synthesis procedure that
generates correct monitor descriptions from formulae written in mHML. We
adapt this synthesis procedure so as to produce concurrent monitors in the
form of Erlang actors that are instrumented with the running system via the
tracing mechanism exposed by the VM of the host language. The synthe-
sis procedure exploits the compositional semantics of mHML formulae to
generate a choreography of monitor (actor) components that independently
analyse the individual subformulae constituting a global formula, while still
guaranteeing the correctness of the overall monitoring process.

In the sequel we refrain from delving into the specifics of how these
concurrent monitors are synthesised; readers are encouraged to consult our
previous work [4, 21], where the synthesis procedure is discussed at length.
Instead, we limit ourselves to a high-level description of the main concepts
and technologies required by readers to be able to adequately use the mon-
itoring tool. In particular, we discuss the mechanisms of the host language
used by the tool, the adaptations to the specification logic that facilitate the
handling of data, and finally, give an overview of the tool’s compilation
process.

3.3.1 Concurrency-Oriented Development Using Erlang

Erlang is a general-purpose, concurrent programming language suitable for
the development of fault-tolerant and distributed systems [3, 12, 22]. It adopts
the actor model for concurrency as the primary means for structuring its
applications. An actor is a concurrency unit of decomposition that represents
a processing entity sharing no mutable memory with other actors. It interacts
with other actors by sending (asynchronous) messages, and changes its
internal state based on the messages received from other actors. In Erlang,
actors are implemented as lightweight processes that are uniquely identified
via their process PID (a number triple). Each process owns a message queue,
known as a mailbox, to which messages from other processes can be sent in
a non-blocking fashion; these can be consumed selectively at a later stage
by the recipient process. Messages are comprised of elements of Erlang data
types, including integers, floats, atoms, functions, binaries, etc.. Since process
PIDs are allocated dynamically to newly spawned processes, Erlang provides

58 A Runtime Monitoring Tool for Actor-Based Systems

a mechanism for registering a PID with a fixed alias name. This allows
external entities to refer to a specific process statically via the registered name
alias [3, 12].

The Erlang Virtual Machine (EVM) offers a powerful and flexible tracing
mechanism that makes it possible to observe process behaviour without
modifying the system source code through commonly used instrumenta-
tion techniques such as Aspect Oriented Programming (AOP) [3, 12]. Its
flexibility stems from the fact that it can be selectively applied on specific
processes as required, thereby fine tuning the tracing effort to the desired
level of granularity. When traced, processes generate action messages that are
directed by the Erlang runtime to a specially designated tracer process. Trace
messages assume the form of Erlang tuples that describe the nature of trace
events (e.g. function calls, message sends and receives, garbage collection
triggers, etc.) and are deposited (like any other message) asynchronously
inside the tracer’s mailbox. Tracing serves as the basis for a number of
utilities, including Erlang’s text-based tracing facility dbg, and trace tool
builder ttb [3]. Our tool, detectEr, employs this tracing mechanism to achieve
lightweight trace event extraction for monitoring purposes; refer to the work
by Attard et al. [4] for further details.

3.3.2 Reasoning about Data

Adapting mHML to be used for specifying the behaviour of Erlang programs
adequately requires auxiliary functionality that describes system events car-
rying data; this involves mechanisms for generalising over specific data
values and for expressing data dependencies. detectEr assumes a richer set of
system events that carry data. Our account focusses on two types of events,
namely outputs i ! d and inputs i? d, where i ranges over process PIDs, and
d denotes the data payload associated with the action in the form of Erlang
data values (e.g. PID, lists, tuples, atoms, etc.). In addition, our tool enriches
the syntax of Figure 3.4 by introducing pattern-matching extensions for event
actions (see Figure 3.5). Necessity and possibility formulae may contain event
patterns instead of specific events: these possess the same structure of the
aforementioned data-carrying events, but may also employ variables (Erlang-
style alphanumeric identifiers starting with an upper-case letter) in place of
values. Variables denote quantifications over data and are dynamically bound
to values when they are pattern-matched to specific system events at runtime.
Event patterns also allow us to express data dependencies across multiple
events. Intuitively, whenever a variable is used in a pattern inside a necessity
or possibility formula and again in the ensuing guarded subformula, the first

3.3 A Tool for Monitoring Erlang Applications 59

〈PID ! Data 〉ϕ

Action pattern

Variable PID binds with
the actual value of PID

from trace events

Variable Data binds with
the actual data payload

from trace events

Action type

Figure 3.5 The anatomy of action patterns for the enriched mHML syntax.

variable instance acts as a binder for subsequent variable uses. The next
example illustrates this concept.

Example 3.3.1. The client-server set-up shown in Figure 3.6 consists of a
successor server process (with PID <0.33.0>) that increments the numeric
payloads it receives from requesting clients by 1. Client requests should
adhere to the following protocol. A client sends a tuple of the form
{tag,return addr,value to increment} where the first element is a qualifier
tag stating that it is a client request (tag = req). The client then awaits
for an answer back from the server in the form of a message with format
{resp,incremented value}. The server obtains the identity of the client from
the client request data return addr, which should carry the PID of the client
sending the request (e.g. <0.38.0> in the case of Figure 3.6). One attempt
at verifying the correctness of the executing system is by specifying a safety
property stating that

Server
PID: <0.33.0>

Client
PID: <0.38.0>

system

Monitorϕ3
✗

violation

{req, <0.38.0>, 19}

{resp, 19}

an
al

ys
es

1

2

(a) The incorrect server implementation.

Server
PID: <0.33.0>

Client
PID: <0.38.0>

system

Monitorϕ3 ?

inconclusive

{req, <0.38.0>, 19}

{resp, 20}

an
al

ys
es

1

2

(b) The correct server implementation.

Figure 3.6 Runtime verifying the correctness of a client-server system.

60 A Runtime Monitoring Tool for Actor-Based Systems

“the numeric payload contained in the server’s response cannot
equal the one sent in the original client request.”

This requirement can be expressed as follows:

ϕ3 = [Srv ? {req,Clt,Num}] [Clt ! {resp,Num}] ff

The two necessity constructs in the sHML formula ϕ3 describe a request-
response interaction between the client and server processes. The first
necessity [Srv ? {req,Clt,Num}] specifies an input event data pattern
that conforms to the structure of the data sent by the client when initiating
its interaction with the server (i.e., the action labelled by 1 in Figure 3.6);
meanwhile, the second necessity [Clt ! {resp,Num}] ff specifies an output
action data pattern that conforms to the structure of the data sent by the
server in reply to the client’s request (i.e., action 2 in Figure 3.6). Formula
ϕ3 matches events in the execution trace whenever the server Srv receives a
request with numeric payload Num from client Clt, and replies back to the
same client Clt with an unchanged value Num. Note the dependency between
the patterns in the two necessities: the values matched to the variable Clt and
Num in first pattern are then instantiated in the subsequent necessity pattern.

To illustrate concretely how binding actually works, we can consider
how the two different executions of client-server system depicted in
Figures 3.6a and 3.6b are monitored at runtime. When the event pattern Srv
? {req,Clt,Num} from the first necessity is matched to the first trace event
<0.33.0> ? {req, <0.38.0>,19} (resulting from the execution of action
1), the free pattern variables Srv, Clt and Num become bound to the runtime
values <0.33.0>, <0.38.0> and 19 respectively. The runtime binding of
variables Srv, Clt and Num in turn, also instantiates subsequent (guarded)
patterns in the second necessity — this leaves us with the (continuation)
residual formula [<0.38.0> ! {resp, 19}] ff to check for. This closed
formula can now match the second trace event (due to action 2), only if an
incorrectly implemented server responds to the initial client request with the
same numeric payload sent to it, as is the case in Figure 3.6a. This leads to
a violation detection. Contrastingly, Figure 3.6b shows the case where the
server’s reply sent back to the client contains the value ‘20’ that does not
match the runtime binding for the subformula [Clt ! {resp,Num}] ff of ϕ3.
After the first pattern-match, Num is bound to ‘19’, and this does not match
with event {resp, 20} of action 2 in Figure 3.6b (Clt is bound to <0.38.0>

as before), thus leading to an inconclusive verdict. �

3.3 A Tool for Monitoring Erlang Applications 61

3.3.2.1 Properties with specific PIDs
Since process PIDs are allocated at runtime, there is no direct way for a
correctness property to refer to a specific process. Nevertheless, the tool
still provides an indirect method how to specify this via the process PID
registering mechanism offered by the host language. For instance, in the case
of formula ϕ3 from Example 3.3.1, one could refer to a particular process
(instead of any arbitrary process that is dynamically bound to variable Srv in
the pattern [Srv ? {req,Clt,Num}]) using the notation @srv in place of Srv.
This would then map to the process that is registered with the fixed (atom)
name srv in the system and, subsequently, the respective event analysis would
only match events sent specifically to the process whose PID is registered
as srv.

3.3.2.2 Further reasoning about data
Readers might have been wary of the fact that formula ϕ3 in Example 3.3.1
only guards against cases where the server merely echoes back the same
numeric payload sent to it by clients. This only partially addresses the ideal
correctness requirements, because it does not capture the full behaviour
expected of the successor server in Figure 3.6. Reformulating the property
from Example 3.3.1 to read as

“the numeric payload contained in the server’s response must be
equal to the successor of the one sent in the original client request.”

while more specific, requires the monitor to check whether all responses
issued by the server in reply to client requests do in fact contain the successor
of the number enclosed in said requests.

Our logic handles this expressiveness requirement by extending the
enriched mHML syntax from this section with conditional constructs and
predicates, thus enabling it to perform complex reasoning on data values
acquired dynamically through pattern matching. Data predicates1, together
with boolean expressions, are evaluated to values b ∈ {false, true}. Con-
ditionals, written as if b then θ else ϑ for sHML formulae and if b then
π else � for cHML formulae, evaluate to θ and π respectively when
b evaluates to true, and to ϑ and � otherwise. The else clause may be
omitted if not required. Correctness formulae of the latter form are given

1Data predicates are assumed to be decidable (i.e., guaranteed to terminate). Our imple-
mentation makes use of a restricted subset of Erlang side effect-free functions employed in
standard guard expressions (e.g. is list/1, is number/1, is pid/1, etc.) [12].

62 A Runtime Monitoring Tool for Actor-Based Systems

an inconclusive interpretation whenever the boolean condition inside the if
clause evaluates to false. Conditional constructs increase the expressiveness
of mHML, because they make it possible to formalise properties that are
otherwise hard to express using the basic form of the logic. When compiled,
conditional formulae are translated into monitors whose runtime analysis
branches depending on dynamic decisions made on data obtained at runtime.

Example 3.3.2. The reformulated safety property “the numeric payload
contained in the server’s response must be equal to the successor of the
one sent in the original client request” can be specified as follows using the
extended sHML syntax:

ϕ4 =[Srv ? {req,Clt,Num}] [Clt ! {resp, Succ}]
if(Succ �= Num + 1) then ff

Formula ϕ4 differs slightly from the one specified in Example 3.3.1. It
introduces a new variable Succ that binds to the server’s return value. This,
in turn, enables the conditional construct to determine whether the successor
operation is correctly implemented by the server, thus ensuring that ϕ4 is
violated only when the value bound to Succ is not the successor of Num. An
inconclusive verdict is assumed by the formula whenever (Succ �= Num + 1)
does not hold, i.e., Succ is indeed the successor of Num, as in the case of
Figure 3.6b. �

3.3.3 Monitor Compilation

Following closely the synthesis function of [4], our tool is able to parse
mHML formulae and generate Erlang code that monitors for the input
formulae. The inherent concurrency features offered by Erlang, together with
the modular structure of the synthesis function are used to translate formulae
into choreographed collections of (sub)monitors. These are expressed as
concurrent processes that execute independently of one another and analyse
different parts of the exhibited system trace (e.g. one submonitor may be
analysing the second event in an execution trace of length five, whereas
another may forge ahead and analyse the fourth event in the trace). In order
to ensure that submonitors have access to the same trace events, they are
organised as supervision trees [3, 12]: the (parent) monitor to which the
submonitors are attached forks (i.e., replicates and forwards) individual trace
events to its children. The moment a verdict is reached by any submonitor
process, all monitoring processes are terminated, and said verdict is used to
declare the final monitoring outcome. Interested readers are referred to our

3.4 detectEr in Practice 63

previous work [4, 21] for details on how these monitor choreographies are
organised.

Figure 3.7 outlines the compilation steps required to transform a for-
mula script file (e.g. script.hml) into a corresponding Erlang source code
implementing the monitor functionality (e.g. monitor.erl). The tool instru-
ments the synthesised monitors to run asynchronously with the system to
be analysed using the native tracing functionality provided by the EVM.
Crucially, this type of instrumentation requires no changes to the monitor
source code (or the target system binaries). In Figure 3.7, the file packaging
component of the compiler leaves the system source files unchanged; this
increases confidence in the correctness of the resulting monitoring set-up. In
addition to the monitor source file, Figure 3.7 shows also a second module,
launcher.erl, that is generated automatically based on the specified system
start up configuration. The launcher is tasked with the responsibility of
starting the system and corresponding monitors in tandem. Said modules,
together with other supporting tool-related source code files are afterwards
compiled into executable modules (.beam files), which are then packaged
and placed alongside other system binary files.

3.4 detectEr in Practice

We revisit the runtime monitoring tool depicted in Figure 3.7 from a user’s
perspective, and present a brief guide showcasing its main functionality. This
guide, presented in the form of a tutorial, goes through the steps required

mHML
parsing

Code
generation

monitor synthesis

script.hml

+

Configuration

+

Original system
executable files

monitor.erl

launcher.erl

File
packaging

Erlang
compilation

monitor instrumentation

Tool
supporting
libraries

Original system executable files
· · ·

monitor.beam, launcher.beam

detectEr compiler

Figure 3.7 The monitor synthesis process and instrumentation pipeline.

64 A Runtime Monitoring Tool for Actor-Based Systems

to apply our tool to monitor an Erlang implementation of the client-server
system seen earlier in Example 3.3.1. It shows how a simple (but useful)
safety property can be scripted as a sHML formula, and compiled into a
runtime monitor that is used to verify the incorrect and correct behaviour of
the successor server illustrated in Figures 3.6a and 3.6b. cHML properties
from Figure 3.4 can also be monitored for using the same sequence of steps.

The current prototype tool implementation is capable of instrumenting
only one monitor inside the target system. Nevertheless, the tool’s compi-
lation and instrumentation processes were developed with extensibility in
mind, and the steps that are outlined in the following tutorial will remain
valid once the tool is extended to support multiple monitors. Although the
example presented in this guide is fairly basic, it conveys the essence of how
the tool should be applied in practice; more complex properties [8, 10] would
be approached following the same instructions and procedures outlined in the
coming sections.

3.4.1 Creating the Target System

The initial distribution of the tool is available from https://bitbucket.

org/duncanatt/detecter-lite, and requires a working installation of
Erlang. This guide assumes that GNU make is installed on the host system.
OSX users can acquire make by installing the XCode Command Line Tools;
Windows users can install the MinGW suite of tools. Although Linux was
used to create this tutorial, the steps below can be replicated on any other
operating system.

3.4.1.1 Setting up the Erlang project
To facilitate the development of Erlang applications, detectEr includes a
generic makefile which we use in this guide. The following make targets are
provided:

• init: Creates the standard Erlang project structure;
• clean: Removes Erlang .beam and other temporary files;
• all: Cleans and compiles the Erlang project;
• instrument: Synthesises and instruments monitors into the target

system, given the HML script, target system binary directory, and
application entry point configuration.

We begin by creating a target directory called example. This contains
the client-server system Erlang project and all its associated source code

3.4 detectEr in Practice 65

files. At the root of the example directory, we also place the aforementioned
makefile, since this is used to manage the build process of our simple Erlang
application. The latest version of the makefile can be downloaded directly
from the project site using wget:

duncan@term:/$ mkdir example
duncan@term:/$ cd example
duncan@term:/example$ wget https://bitbucket.org/duncanatt/detecter-lite\
/raw/detecter-lite-1.0/Makefile

Once the makefile is downloaded, the standard Erlang directory structure is
created using the init target:

duncan@term:/example$ make init
duncan@term:/example$ ls -l
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 include
-rw-rw-r-- 1 duncan duncan 5463 May 15 16:53 Makefile
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 src
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 test

To avoid writing the Erlang server manually from scratch, the guide
borrows a number of sample source code files that are included in the tool’s
distribution. For simplicity, we assume that the tool is set up in the same
directory as our example project directory. The plus one module that forms
part of the tool distribution, implements a version of the successor server
as described in Figure 3.6. This file, together with its dependencies should
be copied into the src and include directories as shown below; these
commands result in the creation of a directory structure that corresponds to
the one shown in Figure 3.8a.

duncan@term:/example$ cd src
duncan@term:/example/src$ cp ../../detecter-lite/test/plus_one.erl .
duncan@term:/example/src$ cp ../../detecter-lite/src/mon/log.erl .
duncan@term:/example/src$ cd ../include/
duncan@term:/example/include$ cp ../../detecter-lite/include/* .

After the files have been copied successfully into their respective directo-
ries, the Erlang project can be built by invoking make:

duncan@term:/example/include$ cd ..
duncan@term:/example$ make

Compiling Erlang source file: src/log.erl to ebin/log.beam

66 A Runtime Monitoring Tool for Actor-Based Systems

Compiling Erlang source file: src/plus_one.erl to ebin/plus_one.beam

>-------------------------------<
Build completed successfully!

>-------------------------------<

example

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus one.erl

test

(a) The example project directory sturuc-
ture before compilation.

example

ebin

formula.beam

launcher.beam

log.beam

main mon.beam

plus one.beam

prop.beam

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus one.erl

test

(b) The example project directory sturuc-
ture after compilation and instrumentation.

Figure 3.8 Creating the Erlang project directory structure.

3.4.1.2 Running and testing the server
With the build now completed, the plus one successor server can be
launched and tested. Since we have not developed a complete application,

3.4 detectEr in Practice 67

but only the server part, testing is conducted using the Erlang shell in place
of a full client implementation. For illustrative purposes, the plus one server
may exhibit different behaviours at runtime depending on the flag it is started
up with. Concretely, the plus one server and shell can be launched from the
terminal as follows:

1 duncan@term:/example$ erl -pa ebin -eval "plus_one:start(bad)"
2
3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 Eshell V7.2 (abort with Ĝ)
5
6 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value‘0’\,and\,mode ‘bad’.
7 1> _

The plus one server is intentionally started using the startup flag bad,
in order to simulate the incorrect server behaviour depicted in Figure 3.6a.
This serves its purpose later when scripting the formula used to verify the
server’s behaviour. We can confirm that the server started up successfully
by ensuring that the plus one start up log (line 6) shows up in the ter-
minal. Once loaded, the server can be tested by submitting requests to it
using the Erlang ! (send) operator (line 8 below). Following the protocol
outlined in Example 3.3.1, the test request is sent to the process identified
by the Erlang registered process name plus one. This test request observes
the tuple format {req, return addr,value to increment}, where return addr
corresponds to the PID of the sender actor (in this case, the Erlang shell),
and value to increment contains the actual numeric data payload, i.e., the
number the client wishes to increment. In Erlang, a process may obtain its
own PID through the function call self(). Note that commands typed in the
Erlang shell must terminate with a period symbol, otherwise these will not be
processed.

8 1> plus_one ! {req, self(), 19}.
9

10 [<0.33.0> - plus_one:41] - Received request with value ‘19’.
11 [<0.33.0> - plus_one:46] - Sending response with value ‘{resp,19}’, Current cnt ‘1’.
12 {req,<0.38.0>,19}
13 2> _

As can be gleaned from the logs above, the plus one server receives
the number ‘19’ as payload, and echoes back that same value to the shell
(lines 10–11). A correct implementation of the server should have replied
with a value of ‘20’, that corresponds to the client’s request being
incremented by ‘1’. The server’s response can be extracted from the Erlang

68 A Runtime Monitoring Tool for Actor-Based Systems

shell by invoking the flush() function to empty the shell’s mailbox (line
14). After confirming that the server is working (incorrectly) as intended, the
Erlang shell can be closed by typing “q().” at the terminal.

14 2> flush().
15 Shell got {resp,19}
16 ok
17 3> _

3.4.2 Instrumenting the Test System

We are now in a position to generate a monitor that verifies the safety property
below, a generalisation of the property discussed earlier in Example 3.3.1:

“After any sequence of request-response interactions with arbi-
trary clients, the numeric payload contained in the server’s
response following a client request must never equal the one sent
in the original client request.”

The monitor synthesised for this property should detect the violating
behaviour exhibited by the plus one server.

3.4.2.1 Property specification
Properties using our tool are specified in plain text files that are processed to
produce monitors in the form of Erlang code. These, together with other sup-
porting source files, are compiled to executable Erlang .beam files and copied
into the target system’s binary directory, ebin. As explained in Section 3.3.3,
the tool also creates a launcher module that is used to bootstrap the system
together with the synthesised monitor. Once loaded, the system executes as
it normally would, while concurrently, the monitor passively observes the
system’s behaviour expressed in terms of the messages exchanged between it
and its environment. A violation will be promptly flagged when discovered
by the monitor analysing the trace generated by our successor server. The
aforestated safety property can be scripted by pasting the sHML formula
given below into a plain text editor, and saving it as prop.hml in the example
directory.

1 max(‘X’,
2 [Srv ? {req, Clt, Num}][Clt ! {resp, Num}] ff
3 &&
4 [Srv ? {req, Clt, Num}][Clt ! {resp, Other}] ‘X’)

3.4 detectEr in Practice 69

This recursive sHML formula makes use of a conjunction (&&) construct
to express the two possible behaviours expected of the system. The violating
behaviour, specified using [Srv ? {req, Clt, Num }][Clt ! {resp, Num }]
ff, demands that a violation be flagged when the server Srv receives
a request containing Num from client Clt, and returns to Clt the
same value Num. The recursive (non-violating) behaviour, expressed by
[Srv ? {req, Clt, Num }][Clt ! {resp, Other }] ‘X’, requires the mon-
itor to recurse whenever a request received from Clt is answered with some
value Other, i.e., not just the successor of Num. This is in line with the
property above, as it requires the monitor to detect violations only when
the same value of Num is returned by a server in reply to a client’s request.
Recursion, made possible by the maximal fixpoint construct max(‘X’,...)
and the recursive variable ‘X’, allows the monitor to unfold repeatedly,
thereby continuously analysing the system trace until the violating behaviour
is detected. Note that the formula in prop.hml is an extension of the
simpler property ϕ3 from Example 3.3.1. In ϕ3, the absence of recursion
restricts the corresponding monitor to analyse, at most, two trace events
before terminating. Note also that a more comprehensive interpretation of
the aforementioned correctness property would of course require the formula
to check that each number in the server’s response is actually the successor
of the one sent in the client’s request, as discussed earlier in Example 3.3.2.
This can be expressed by modifying line 4 in the above script to

max(‘X’, . . . &&
[Srv ? {req, Clt, Num}][Clt ! {resp, Other}] if Other =:= Num + 1 then ‘X’)

In what follows, we stick to the weaker variant of the property to simplify our
presentation.

3.4.2.2 Monitor synthesis and instrumentation
The monitor corresponding to the sHML script created above is synthesised
using the instrument target from the application makefile:

duncan@term:/example$ cd ../detecter-lite
duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[bad]}"

70 A Runtime Monitoring Tool for Actor-Based Systems

The instrument target requires the following command line arguments:

• hml: The relative or absolute path that leads to the formula script file;
• app-bin-dir: The target application’s binary base directory;
• MFA: The target application’s entry point function, encoded as a {Mod,
Fun, [Args]} tuple, where we specify the plus one module’s start
function passing bad as argument, like previously.

Monitor synthesis and instrumentation (refer to Figure 3.7) results in the
Erlang project directory structure shown in Figure 3.8b. All the original target
system binaries remain untouched, and the plus one server application can
be still run without monitors, as before (see Section 3.4.1.2).

3.4.2.3 Running the monitored system
The instrumented system can be started up by using the automatically
generated launcher module as shown:

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2

3 Erlang/OTP 18 [erts-7.2] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 Eshell V7.2 (abort with ^G)
5

6 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
7 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial cnt value ‘0’ and mode ‘bad’.
8

9 [<0.32.0> - main_mon:24] - System to be monitored started.
10 [<0.34.0> - main_mon:62] - Resolved procs [].
11 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula env.
12 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
13 [<0.34.0> - main_mon:84] - Starting main monitor loop.
14 1> _

As indicated by the above logs, the plus one server and corresponding
monitor are now executing in parallel with PIDs <0.33.0> and <0.34.0>

that are dynamically assigned at runtime once the respective processes
are spawned (lines 6–7). The synthesised monitor corresponding to the
recursion in the formula of Section 3.4.2.1 eagerly unfolds one itera-
tion of the formula (lines 10–11) exposing a conjunction construct at top
level (see Francalanza et al. [21] for a detailed discussion of how recur-
sion is handled in the synthesised monitors). The “conjunction monitor”
mon and spawns its two submonitor actors once it starts executing (line
12); these correspond to the violation submonitor created from subfor-
mula [Srv ? {req, Clt,Num }][Clt ! {resp, Num }] ff and the recursive

3.4 detectEr in Practice 71

submonitor created from [Srv ? {req, Clt, Num }][Clt ! {resp, Other }]
‘X’. As before, the server is tested using the same request, sent from the
Erlang shell (line 15):

15 1> plus_one ! {req, self(), 19}.
16
17 [<0.33.0> - plus_one:41] - Received request with value ‘19’.
18 [<0.41.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.
19 [<0.42.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.
20 [<0.33.0> - plus_one:46] - Sending response with value ‘{resp,19}’, Current cnt ‘1’.
21
22 {req,<0.38.0>,19}
23 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,19}}.
24 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,19}}.
25 [<0.41.0> - formula:67] - mon_ff matched ‘ff’ action.
26 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.
27 [<0.34.0> - main_mon:113] -
28
29 Main monitor/tracer received ‘ff’ - *** Violation detected! ***
30
31 2> _

The violation (PID <0.41.0>) and recursive (PID <0.42.0>) submon-
itor processes acquire trace events from their parent “conjunction monitor”
process mon and as soon as new trace events are reported by the EVM. For
instance, the trace event generated by the message {req, self(),19} sent
from the shell is forwarded by mon and to its child submonitors (lines 18–19).
Next, the plus one server computes the result and sends it back to the Erlang
shell (line 20). This causes the second trace event to be generated by the
system and reported by the EVM’s tracing mechanism; once again this trace
event is forwarded to, and processed by both submonitors (lines 23–24). At
this point, the recursive submonitor tries to unfold in preparation for the next
computation (line 26), while the violation submonitor flags a violation verdict
ff (line 25), which is in turn sent to the main monitor. As a single detection
suffices to ensure a global verdict, the main monitor terminates accordingly
with ff (line 29); consult the work by Attard et al. [4] for reasons on why this
is the case.

3.4.2.4 Running the correct server
So far, the plus one successor server has been intentionally launched in bad

mode in order to demonstrate how violations are handled by our monitor. We
now re-instrument the system in order to emulate the correct successor server
behaviour depicted in Figure 3.6b; invoking the instrument target differs

72 A Runtime Monitoring Tool for Actor-Based Systems

only in the MFA tuple used to start the server, where instead of bad, the flag
good is used:

duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[good]}"

The server should now behave correctly, and return the successor value
of any numeric payload that we choose to send to it from the Erlang shell.

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"

2

3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]

4 Eshell V7.2 (abort with Ĝ)

5

6 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].

7 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial cnt value ‘0’ and mode ‘good’.

8

9 [<0.32.0> - main_mon:24] - System to be monitored started.

10 [<0.34.0> - main_mon:62] - Resolved procs [].

11 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula environment.

12 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.

13 [<0.34.0> - main_mon:84] - Starting main monitor loop.

14 1> _

15 1> plus_one ! {req, self(), 19}.

16

17 [<0.33.0> - plus_one:41] - Received request with value ‘19’.

18 [<0.41.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.

19 [<0.42.0> - formula:120] - mon_nec evaluating action: {recv,<0.33.0>,{req,<0.38.0>,19}}.

20 [<0.33.0> - plus_one:46] - Sending response with value ‘{resp,20}’, Current cnt ‘1’.

21

22 {req,<0.38.0>,19}

23 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,20}}.

24 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{resp,20}}.

25 [<0.41.0> - formula:59] - mon_id no match.

26 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.

27 [<0.42.0> - formula:91] - mon_and spawned processes ‘<0.44.0>’ and ‘<0.45.0>’.

28 2> _

When the client request {req, self(),19} is submitted to the server
from the Erlang shell (line 15), this again generates a response from the server
answering back with the tuple {resp,20}. Although the sequence of trace
events is similar to the ones in Section 3.4.2.3, the data in these events is
different: the server response now carries value ‘20’ as opposed to ‘19’. This
causes the violation submonitor to terminate with an inconclusive verdict
(line 25) and the recursive submonitor to unfold (line 26) in preparation for
the next trace events. Stated otherwise, no violation is detected by the monitor
up to the current point of execution.

3.5 Conclusion 73

3.5 Conclusion

We have presented an overview of detectEr from the perspective of a user
wishing to employ this tool to verify Erlang systems at runtime. The tool
automatically synthesises monitoring code from specifications written in
the monitorable subset of the Hennessy-Milner Logic with maximal and
minimal fixpoints [25, 19]. The monitoring code which is then instrumented
to run alongside the system under scrutiny infers specification satisfactions or
violations by analysing the runtime execution trace exhibited by the system.
One salient aspect of the tool is that the instrumentation employs the tracing
facility of the host language virtual machine. It therefore requires no access
to system source code and relies only on the application’s binary files. The
execution of the monitor and the system being analysed is decoupled — this
may lead to late (satisfaction or violation) detections from the monitor. In
spite of this, the lightweight instrumentation approach adopted by detectEr
leaves the target system binaries untouched, thus making it possible to
employ our tool in cases where (commercial) software with licenses and/or
support agreements explicitly forbid the modification of binary code.

3.5.1 Related and Future Work

Apart from being a manifestation of the work due to Francalanza et al. [19],
the tool detectEr was also used as a starting point for a number of other
investigations. Cassar et al. [11] explored choreographed reconfigurations
for submonitors as means to lower the monitoring computational overhead,
whereas in subsequent work [8], the authors also explored modifications to
the tool to be able to synchronise more closely the executions of the system
and the monitor, thereby avoiding problems associated with late detections.
In other work by Cassar et al. [10], the investigators consider extensions
to the tool that enable the runtime analysis to administer adaptation actions
to the system once a violation is detected. Following this work, the authors
also developed a type-based approach [9] to ensure that runtime adaptations
are administered correctly by the tool. We are presently considering tool
extensions that enable monitoring analysis to be distributed across sites and
also alternative monitor synthesis procedures that guarantee a degree of
property enforcement.

There has also been an extensive body of work [16, 28] on the runtime
checking of session types. Lange et al. [24] demonstrate the correspondence
between session types and a fragment of the modal μ-calculus, which has
been previously shown by Larsen [25] to be a reformulation of the logic

74 A Runtime Monitoring Tool for Actor-Based Systems

μHML. Crucially, the monitors we study consider the system from a global
level. By contrast, the aforementioned works project global multiparty ses-
sion types to local endpoint types, which are then synthesised into local
monitors that analyse traffic at individual channel endpoints.

Acknowledgments This work was partly supported by the project “Theo-
FoMon: Theoretical Foundations for Monitorability” (nr.163406-051) of the
Icelandic Research Fund.

References

[1] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba.
Reactive Systems: Modelling, Specification and Verification. Cambridge
Univ. Press, New York, NY, USA, first edition, 2007.

[2] Bowen Alpern and Fred B. Schneider. Recognizing Safety and Liveness.
Distributed Computing, 2(3):117–126, 1987.

[3] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, first edition, 2007.

[4] Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a
Branching-Time Logic. In RV, volume 10012 of LNCS, pages 473–481.
Springer, 2016.

[5] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and
David E. Rydeheard. Quantified Event Automata: Towards Expressive
and Efficient Runtime Monitors. In FM, volume 7436 of LNCS, pages
68–84. Springer, 2012.

[6] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime
Verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol.,
20(4):14, 2011.

[7] Andreas Klaus Bauer and Yliès Falcone. Decentralised LTL Monitor-
ing. In FM, volume 7436 of LNCS, pages 85–100. Springer, 2012.

[8] Ian Cassar and Adrian Francalanza. On Synchronous and Asynchronous
Monitor Instrumentation for Actor-Based Systems. In FOCLASA,
volume 175 of EPTCS, pages 54–68, 2014.

[9] Ian Cassar and Adrian Francalanza. Runtime Adaptation for Actor
Systems. In RV, volume 9333 of LNCS, pages 38–54. Springer, 2015.

[10] Ian Cassar and Adrian Francalanza. On Implementing a Monitor-
Oriented Programming Framework for Actor Systems. In IFM, volume
9681 of LNCS, pages 176–192. Springer, 2016.

References 75

[11] Ian Cassar, Adrian Francalanza, and Simon Said. Improving Runtime
Overheads for detectEr. In FESCA, volume 178 of EPTCS, pages 1–8,
2015.

[12] Francesco Cesarini and Simon Thompson. Erlang Programming.
O’Reilly Media, first edition, 2009.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, first edition, 1999.

[14] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani.
Model Checking and the State Explosion Problem. In LASER, volume
7682 of LNCS, pages 1–30. Springer, 2011.

[15] Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A
Monitoring Tool for Erlang. In RV, volume 7186 of LNCS, pages 370–
374. Springer, 2011.

[16] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. Practical interruptible conversations: Distributed
dynamic verification with multiparty session types and Python. Formal
Methods in System Design, 46(3):197–225, 2015.

[17] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can
you verify and enforce at runtime? STTT, 14(3):349–382, 2012.

[18] Adrian Francalanza. A Theory of Monitors. In FoSSaCS, volume 9634
of LNCS, pages 145–161. Springer, 2016.

[19] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. On Verifying
Hennessy-Milner Logic with Recursion at Runtime. In RV, volume 9333
of LNCS, pages 71–86. Springer, 2015.

[20] Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed
System Contract Monitoring. J. Log. Algebr. Program., 82(5–7):186–
215, 2013.

[21] Adrian Francalanza and Aldrin Seychell. Synthesising Correct Concur-
rent Runtime Monitors. Formal Methods in System Design, 46(3):226–
261, 2015.

[22] Fred Hebert. Learn You Some Erlang for Great Good!: A Beginner’s
Guide. No Starch Press, first edition, 2013.

[23] Orna Kupferman. Variations on Safety. In TACAS, volume 8413 of
LNCS, pages 1–14. Springer, 2014.

[24] Julien Lange and Nobuko Yoshida. Characteristic Formulae for Session
Types. In TACAS, volume 9636 of LNCS, pages 833–850. Springer,
2016.

76 A Runtime Monitoring Tool for Actor-Based Systems

[25] Kim Guldstrand Larsen. Proof Systems for Satisfiability in Hennessy-
Milner Logic with Recursion. Theor. Comput. Sci., 72(2&3):265–288,
1990.

[26] Martin Leucker and Christian Schallhart. A Brief Account of Runtime
Verification. J. Log. Algebr. Program., 78(5):293–303, 2009.

[27] Zohar Manna and Amir Pnueli. Completing the Temporal Picture.
Theor. Comput. Sci., 83(1):91–130, 1991.

[28] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed Run-
time Monitoring for Multiparty Conversations. In BEAT, volume 162 of
EPTCS, pages 19–26, 2014.

[29] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. Marq:
Monitoring at Runtime with QEA. In TACAS, volume 9035 of LNCS,
pages 596–610. Springer, 2015.

[30] A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, first
edition, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

