5

The DCR Workbench: Declarative
Choreographies for Collaborative
Processes

Seren Debois and Thomas T. Hildebrandt

Department of Computer Science, IT University of Copenhagen,
Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Abstract

The DCR Workbench is an online tool for simulation and analysis of col-
laborative distributed processes specified as DCR graphs. The Workbench
is a robust and comprehensive implementation of DCR graphs, providing
concrete syntax, specification by refinement, visualisation, simulation, static
analysis, time analysis, enforcement, declarative subprocesses, data depen-
dencies, translation to other declarative models, and more. This chapter
introduces the Workbench and, through the features of the Workbench,
surveys the DCR formalism. The Workbench is available on-line at http:
//dcr.tools.

5.1 Introduction

Citizens, businesses and public organisations increasingly rely on distributed
business processes. Many such processes involve at the same time informa-
tion systems, humans and mechanical artefacts, and are thus highly unpre-
dictable. Moreover, such processes are constantly evolving due to advances
in technology, improvement in business practices, and changes in legislation.

In this climate of distribution and continuous change, the traditional
vision of verifying a system once and for all against a final formal description
has little hope of realisation. Instead, we need tools and techniques for
describing, building, and analysing systems of continuously changing dis-
tributed collaborative processes. Dynamic Condition Response graphs, DCR
graphs, is a formal model developed in response to this need.

99

100 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Developed through a series of research projects, DCR graphs today stands
on three pillars: a substantial body of academic publications on both case
studies [8, 10, 15, 17, 20, 38] and formal aspects [2, 6, 7, 12-14, 16, 18,
21-25, 29-31, 34, 37]; the DCR Workbench, implementing most major
advances of the formalism (the subject of this chapter); and a commer-
cial adaptive case-management system developed by independent vendor
Exformatics A/S [9, 11, 15, 19, 23, 28].

Declarative process notations such as DCR graphs, DECLARE [33, 40]
and GSM [26] generally support specification and analysis of requirements,
whereas imperative notations such as Workflow Nets [1] and BPMN [32]
generally support implementation of requirements. DCR graphs have the
advantage of serving as both the specification of requirements and the run-
time representation of a process instance, which can be adapted dynamically
if the requirements change.

The DCR Workbench is a comprehensive tool for modelling with DCR
graphs and analysing DCR models. The Workbench serves the dual purposes
of being a communication and teaching tool, used both in classroom settings
and in discussions with industry, as well as a test-bed for experimentation
with new analysis and variants.

This chapter gives an introduction to DCR graphs in general and the
Workbench in particular. As we shall see, the Workbench implements a
majority of published DCR graph variants and analysis methods, as well
as some work-in-progress experimental additions and algorithms that have
yet to be published. Through the features of the Workbench, the chapter
also provides a survey of the state-of-the-art of DCR graphs variants, their
technical properties, and their published analysis methods and algorithms.

5.1.1 History of the DCR Workbench

DCR graphs were introduced in 2010 [18,29] by Thomas Hildebrandt and his
group at the ITU. Soon after, Danish vendor of adaptive case-management
solutions, Exformatics A/S, entered into a long-term collaboration with the
ITU group; a collaboration which continues to this day. The continued
financial support and interest of Exformatics A/S has been instrumental in
the development of the formalism.

DCR graphs were implemented repeatedly as the formalism evolved.
Notably, an early implementation created by industrial PhD Tijs Slaats in
collaboration with Exformatics A/S [37] eventually grew into that company’s
current commercial DCR tool [9, 15, 28], available at dcrgraphs.net. In

5.1 Introduction 101

2013 this tool was solidifying into a commercial offering. While the backing
of commercial vendor was extremely helpful to DCR graph, the Exformat-
ics tool was becoming too heavyweight for quick academic experiments.
Accordingly, the ITU group in 2013 commenced development of a nimbler
implementation. This effort was spearheaded by Sgren Debois and became
the DCR Workbench of the present chapter.

The two tools have different goals: Exformatics’ offering is aimed at
non-expert commercial users and emphasises stability and usability. Con-
versely, the DCR Workbench is aimed at academics and prioritises ease-of-
experimentation overall. This division has so far been productive: sufficiently
good ideas implemented in the Workbench has later been re-implemented by
Exformatics in their commercial offering [8—10, 28].

The Workbench made its first appearance in a research paper in 2014 [12],
and its first appearance in industry collaborations in 2015 [9]. Subsequently,
the Workbench has provided implementation and examples for most major
developments of the formalism [2, 6, 12—-14, 16].

The DCR Workbench is implemented in F# [39], using the WebSharper
library [5] to derive server- and client-side components from the same F#
code base. The choice of implementation language and platform is no acci-
dent: On the one hand, F# is very well-suited to manipulating formal models;
on the other, the web-based platform makes the Workbench immediately
available to interested researchers: all it takes is a browser.

5.1.2 The DCR Workbench
The DCR Workbench is available at

http://dcr.tools/2017chapter

This URL leads to a special page supporting this chapter with the collection
of examples used on the following pages. We encourage the reader to visit
this page and actively try out the examples presented in the remainder of this
chapter as he progresses through the it.

Overview In Section 5.2, we introduce a running example, and in Sec-
tion 5.3, we recall DCR graphs. In Section 5.4 we introduce basic modelling,
simulation and analysis of DCR graphs in the Workbench. In Section 5.5
we construct models by refinement; in Section 5.6 we discuss timed models;
in Section 5.7 we talk about subprocesses; and in Section 5.8 data. In
Section 5.9, we mention briefly other tools in the Workbench, before
concluding in Section 5.10.

102 The DCR Workbench: Declarative Choreographies for Collaborative Processes

5.2 Running Example

As a running example we consider a stylised mortgage loan application pro-
cess distilled from real-life cases [9, 13]. Mortgage application processes are
in practice extremely varied, depending on the type of mortgage, the neigh-
bourhood, the applicant, and the credit institution in question. The purpose of
the process is to arrive at a point where the activity Assess loan application
can be carried out. This requires in turn:

1. collecting appropriate documentation,
2. collecting a budget from the applicant, and
3. appraising the property.

In practice, applicants’ budgets tend to be underspecified, so an intern will
screen the budget and request a new one if the submitted one happens to be
so. The case worker should not spend time assessing the application if the
documentation has not been collected or the budget is underspecified. The
caseworker decides if the appraisal can be entirely statistical, i.e., carried out
without physical inspection, or if it requires an on-site appraisal. For reasons
of cost efficiency, only one appraisal should be carried out.

5.3 Dynamic Condition-Response Graphs

In this section, we recall DCR graphs [6,9,14,15,18,29,37]. We begin by an
informal walkthrough, followed by a formal development in Section 5.3.4.
DCR graphs constitute a declarative modelling notation describing at the
same time a process and its run-time state. The core notation comprises
labelled events, event states, and five possible relations between events. The
relations govern: (a) how executability of one event depend on the state of
another, and (b) how execution of one event updates the states of another.

5.3.1 Event States

The event state consists of three booleans: The executed, included, and
pending states of the event.

o The executed state simply registers whether the event has been previ-
ously executed (an event may execute more than once). It is updated to
true whenever the event executes. It is never updated to false.

e The included state indicates whether the event is included, i.e. relevant
for the process. Being included is a prerequisite for an event to execute.

5.3 Dynamic Condition-Response Graphs 103

e The pending state indicates whether the event is required to eventually
execute (or become not included).

We give events and initial states for the running example in Figure 5.1.
Except Request new budget, which becomes relevant only when a budget
has been submitted, all events are included. The Assess loan application
and Submit budget events are pending: they are required to complete the
process.

5.3.2 Relations

Each pair of events may be related by one of five different relations. Relations
regulate (a) which events may execute in a given graph (condition, milestone)
and (b) the effect of executing an event (inclusion, exclusion, response).

We give a full DCR model of the running example' in Figure 5.2.

Conditions. A condition e —e f causes the target activity f to be not executable
whenever the source activity e is included (its “included” state is true) and has
not been previously executed (its “executed” state is false). E.g., in Figure 5.2,
we must execute Collect documents before Assess loan application can be
executed.

Milestones. A milestone e —< f causes the target activity f to be not executable
whenever the source activity e is included and pending (its “included” and
“pending” states are true). In Figure 5.2, whenever Submit budget is pending,
Assess loan application is prevented from executing.

Event Role Initial state
Collect documents Caseworker

Budget screening approve Intern

Request new budget Intern Excluded
Submit budget Customer Pending
On-site appraisal Mobile consultant

Statistical appraisal Caseworker

Assess loan application Caseworker Pending

Figure 5.1 Events and initial states (marking) for the mortgage application process. Where
nothing else is indicated, the initial state of an event is not executed, included, and not pending.

I'This graph is in fact the output of the DCR Workbench visualiser; we describe in
Section 5.4.2 exactly how the visualiser represents event state.

104 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Intern

Budget screening approve

J/
1

Customer Caseworker

Mobile consultant

On-site appraisal

%
"/“\

Caseworker . Caseworker

Submit budget ! Collect documents

Statistical appraisal ' Assess loan application !

Appraisal *

(Not accepting)

Figure 5.2 DCR graph modelling the mortgage application process.

Responses. A response e e— f causes the target activity f to be pending
(its “pending” state is true) whenever the source activity e is executed.
In Figure 5.2, when an applicant executes Submit budget, we require a
subsequent screening: there is a response from Submit budget to Budget
screening approve.

Inclusions and exclusions. An inclusion e —+ f resp. an exclusion e =% f
causes the “included” state of the target activity f to be true resp. false when
the source activity e is executed. In Figure 5.2, the activity Submit budget
includes the activity Request new budget.

5.3.3 Executing Events

Enabled events are the ones which have their “included” state true, and which
do not have their execution prohibited by a condition or milestone as indicated
above. Conditions or milestones from excluded events do not disable their tar-
get events. E.g., in Figure 5.2, both On-site appraisal and Statistical appraisal
are conditions for Assess loan application, but once one executes, the other is
excluded and thus no longer required for Assess loan application to execute.

5.3 Dynamic Condition-Response Graphs 105

Executing an enabled event in a DCR graph updates event states as
indicated by inclusion, exclusion, and response relations. Conceptually, we
can think of the execution as producing a new DCR graph with the same
relations but with updated event states.

The denotation of a DCR model is the set of (finite and infinite) sequences
of event labels, corresponding to a sequence of such event executions, where
at each step, every pending event is eventually executed or excluded at some
later step. We refer to such sequences as accepting traces. It follows that for
finite accepting traces, in the final state, no event is pending and included.

We consider potential traces for Figure 5.2.

e 5o = (Collect documents, Assess loan application). This sequence intu-
itively corresponds to assessing the loan application without getting a
budget and appraising the property. After Collect documents, the event
Assess loan application is not enabled, so sg is not a trace.

e 51 = (Collect documents, Submit budget). This sequence is a trace, but
not an accepting one, since Assess loan application is pending and
included in the final state. It follows that s; sequence is not part of the
denotation of Figure 5.2.

e 5, = (Collect documents, Submit budget, Budget screening approve,
Statistical appraisal, Assess loan application) is an accepting trace.

Notice that between the notions of enabledness and accepting trace, DCR
graphs express both permissions and obligations. We return to expressiveness
of DCR graphs in Section 5.7 below.

5.3.4 Formal Development

Definition 1 (DCR Graph [18]). A DCR graph, ranged over by G, is a tuple
(E,R,M,?) where

e E is a finite set of (labelled) events, the nodes of the graph.

e Ris the edges of the graph. Edges are partitioned into five kinds, named
and drawn as follows: The conditions (—e), responses (e—), milestones
(—o0), inclusions (—+), and exclusions (—%).

e M is the marking of the graph. This is a triple (Ex,Re,In) of sets of
events, respectively the previously executed (Ex), the currently pending
(Re), and the currently included (In) events.

e / is a labelling function assigning to each e € E a label comprising an
activity name and a set of roles.

106 The DCR Workbench: Declarative Choreographies for Collaborative Processes

When G is a DCR graph, we write, e.g., E(G) for the set of events of G,
Ex(G) for the executed events in the marking of G, etc.

Notation. Let R C X x Y be arelation. Fory € Y we take Ry={x€ X | (x,y) €
R}; dually for x € X we take xR = {y € Y | (x,y) € R}. We use this notation
for relations, e.g.,, (—® €) is the set of events that are conditions for e.

Definition 2 (Enabled events). Let G = (E,R,M,¢) be a DCR graph, with
marking M = (Ex, Re, In). An event e € E is enabled, written e € enabled(G),
iff (a) e € In, (b) InN(—ee) C Ex, and (c) InN(—oe) C E\Re.

That is, enabled events (a) are included, (b) have their included conditions
executed, and (c) have no included milestone with an unfulfilled responses.

Definition 3 (Execution). Let G = (E,R, M, ¢) be a DCR graph with marking
M = (Ex,Re,In). Suppose e € enabled(G). We may execute e obtaining the
DCR graph G’ = (E,R,M’, ¢) with M’ = (Ex',Re’,In") defined as follows.

1. ExX' = ExUe
2. Re’ = (Re\e) U (eo—)
3. In"=(In\ (e—=%))U (e—+)

That is, to execute an event e one must: (1) add e to the set Ex of executed
events; (2) update the currently required responses Re by first removing e,
then adding any responses required by ¢; and (3) remove from In those events
excluded by e, then adding those included by e.

Technically, the operational semantics of a DCR graph is the labelled
transition system where states are graphs and transitions are executions.

Definition 4 (Transitions). Let G be a DCR graph. If e € enabled(G) and
executing e in G yields H, we say that G has transition on e to H and write
G —. H. A run of G is a (finite or infinite) sequence of DCR graphs G; and
events e; such that: G = Gy —., G| —, A trace of G is a sequence of
labels of events e; associated with a run of G. We write runs(G) and traces(G)
for the set of runs and traces of G, respectively.

The denotation of a DCR graph is the set of accepting finite and infinite
traces allowed by its operational semantics.

Definition 5 (Acceptance). A run Gy —,, G| —>, ... is accepting iff for
all n with e € In(G,) N Re(G,) there exists m > n s.t. either e,, = ¢, or e ¢
In(G). A trace is accepting iff it has an underlying run which is.

5.4 Modelling with the Workbench 107

Acceptance tells us which workflows a DCR graph accepts, its language.

Definition 6 (Language). The language of a DCR graph G is the set of its
accepting traces. We write lang(G) for the language of G.

We conclude this Section by noting that by Definitions 2 and 3, because
the set of events is finite, both the set of enabled events and the result of
executing an event are computable in polynomial time.

5.4 Modelling with the Workbench

A typical configuration of the Workbench can be seen in Figure 5.3. The
Workbench is divided into panels. In the configuration in Figure 5.3, we see
the Visualiser, Parser and Activity Log panels.

The Workbench maintains at all times a current DCR graph and a current
trace. Each panel allow the user to interact with this current graph and current
trace. A few panels also maintain a DCR graph of their own.

Panels are dynamic: The user is free to remove panels by clicking “close”
in the lower-left corner of a panel; or to add panels by selecting a new panel
in the “Add a new panel” section of the Workbench panel. At the time of
writing, the Workbench implements 22 different panels.

When working with the Workbench, it is customary to have several panels
open; e.g., a visualiser and one or more analysis panels. The Workbench
panel contains a selection of seven pre-made such panel configurations called
“presets”. These presets are accessible through the left-hand “Load a preset”
section of the Workbench panel.

Finally, the Workbench can function as a process engine, making some
of its functionality available programmatically as a REST interface; see the
right-hand “REST API” section.

5.4.1 Inputting a Model: The Parser Panel

The parser panel allows input of DCR graphs as plain text. The parser accepts
programs written according to the grammar of Figure 5.4.

As an example program, consider the abridged variant of our running
example given in Figure 5.6; the corresponding input program is listed in
Figure 5.5. The Workbench accepts such source programs as input, pro-
ducing visualisations automatically. (Visualisations in this chapter was so
produced.)

108 The DCR Workbench: Declarative Choreographies for Collaborative Processes

® © ® | [y DCR Workbench

e

Soren

C @ dcr.itu.dk/Workbench/Default/178638.. Q% f? @ B ® « O [¢

Visualiser

Vobie consufant

onsite apprasal Statstica appralsal ¥

Appraisal
4
e Customer | Casevarker]
E S et ¢ ’?“..lmm,wmw
e —
[cummoer T
(Not accepting)
Graph Diagram Zoom
Current v DCR v *
close
Parser
Library
0. Welcome! v
Source code
ional timis ! [cwomer] [e I
Additional timing constraints for the mortgage process 5
‘ Submibudge H [— |
"Submit budget" [role = "Customer"]
*-[5}> "Budget screening approve” [role = "Intern"] (| [=]
s
Statstical appraisal® ralm FCiseoroie | sl spraie M Aasess o sppicton
~[3]>* "Asscss loan application” [role = "Caseworker"] Thccepting)

close
]
Activity log
Activity Role(s) Time
Collect documents Caseworker Tue, 03 Jan 2017 19:57:29 GMT
Submit budget Customer Tue, 03 Jan 2017 19:57:36 GMT
Statistical appraisal Caseworker Tue, 03 Jan 2017 19:57:40 GMT
close
Load a preset layout Add a new panel REST API
Lo Perel Query and manipulate the current graph
Default v Visualiser v ers e rrentarep

LOAD PRESET

ADD PANEL

programmatically:

DCR Workbench, ITU Process Modelling Group, 2015.

Figure 5.3 The DCR Workbench (http://dcr.tools).

5.4 Modelling with the Workbench 109

(relation)

(relation) WHEN (condition)
(event)

GROUP { (expressions) }

(expressions) ::= {expressions
expressions

(
[
| (expressions
|«
[

22

expressions
empy)

(relation) = (event) {arrow) (event)
| (event) (arrow) (relation)

{arrow) NS ==k | == | =>4 | =Y | k>
| =L (num) 1->* (Timed condition)
| *=[(num) 1-> (Timed response)

(event) = % (event)
|/ {event)

|t [(num)] (event)
| i [(num)] (event)
| ({event)+)

| (identifier) [(meta)] [(sub)]

(meta) = [[(identifier)] [(string) = (string) 1*]
(sub) u= [7] { (expressions) }
(condition) = (*..%*)

Figure 5.4 EBNF definition of the language recognised by the Parser panel.

("Collect documents" [role = Caseworker] 3
"Submit budget" [role = Customer]) 4
—=>% 5
I"Assess loan application" [role = Caseworker] 6

Figure 5.5 Source code for the core process.

The concrete syntax specifies events and relations such as “condition from
A to B” with expressions such as “A -->* B”. An event state is specified by
prefixing an event with modifiers such as ! or %. We see this on line 6 in
Figure 5.5. If the event occurs more than once in the program, it is sufficient
to prefix the modifier only once. We specify roles by adding a role tag to the
event. We see this on line 3 in Figure 5.5. More than one role may be added;
in general, the same tag may be added multiple times.

It is occasionally convenient to relate more than one event at the same
time. In the present case, Assess loan application needs conditions on both

110 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Caseworker Customer
Collect documents Submit budget
Caseworker

Assess loan application !

(Not accepting)

Figure 5.6 Visualisation of core process of Figure 5.5.

Collect documents and Submit budget. We specify these conditions concisely
by enclosing the latter two in parenthesis, as seen on line 3—4.

As the user types in the parser, a preview of the graph being input is
presented on the right. The input graph substitutes the current graph and resets
the current trace when the user clicks “Load”.

The parser also understands the XML format output by Exformatics A/S
commercial http://dcrgraphs.net tool [15,38].

5.4.2 Visualisation and Simulation: The Visualiser
and Activity Log Panels

The Visualiser, top-most in Figure 5.3, displays a visualisation of the current
DCR graph. In Figure 5.3, the chosen visualisation is simply the graph layout;
alternatively, the underlying transition system may be shown (see below).

The visualisation of the core application process (Figure 5.5) is repro-
duced in Figure 5.6. The visualiser represent events as boxes, labelled by the
activity of the event (centre) and the role or participant executing that activity
(top). E.g., the top-left box represents an activity Collect documents which is
carried out by a Caseworker.

Activities are coloured according to their state: grey background is not
currently executable (Assess loan application in Figure 5.6), red label! with
an exclamation mark is pending (ditto); “greyed out” boxes are excluded
events (Request new budget in the original Figure 5.2); and finally, executed
events have a tick mark after their action label, (Submit budget in Figure 5.3).

5.5 Refinement 111

Simulation The visualiser allows executing events by clicking. E.g., to
execute Submit budget, simply click it. This will extend the current trace
with that execution, and replace the current graph with the one obtained by
applying the updates to event state resulting from the execution of
Submit budget (in this case, setting “executed” of that event true). Use the
browser’s back buttons to revert to a previous state.

The Activity Log panel, third from the top in Figure 5.3, displays the
current trace, analogous to the way the visualiser displays the current graph.

State-space enumeration As mentioned in Definition 4, a DCR graph
gives rise to a labelled transition system (LTS), where states are markings and
transitions are labelled event executions. The visualiser can be configured to
render a visualisation of the state space of the DCR graph rather than the
DCR graph itself, through the drop-down button on the left of the panel. The
visualiser highlights the current run in that LTS. The visualisation of the full
LTS of the full mortgage application process of Figure 5.2.

The visualiser was originally reported in [12], with the transition system
generator following in [9].

5.5 Refinement

We proceed to construct step-wise the full mortgage process application by
refinement [6,14]. We begin with the core process of Figures 5.5 and 5.6. We
first add the process fragments for budget submission and screening given in
Figures 5.8 and 5.9.

The Workbench supports step-wise refinement: by using in the parser
the “Merge” button rather than the “Load” button. Whereas “Load” replaces
the current graph and sets the current trace to empty, the “Merge” button
preserves both, replacing the global current graph with (graph) union G & H
of the current graph G and the parser’s current local graph H.

To refine the core process by the budget fragment, we make sure that
the core process is the current graph, then enter the fragment (Figure 5.9)
in the parser, and click “Merge”. The result is the graph in Figure 5.10. As
can be seen, the resulting process is close to the full running example in
Figure 5.2, except the process fragment for appraising the property is missing.

112 The DCR Workbench: Declarative Choreographies for Collaborative Processes

‘Submit budget

Submit budget +

Calleet documents. col

‘Statistical appraisal +
Submit budget +!

‘Submit budget

st
Budge Budg

L Submit budget

Request new budget

Statistical appraisal

Sumlﬁ‘al_a%mm\
Ast

Figure 5.7 Transition system of the full mortgage application process (top), with the red box
expanded for readability (bottom).

Repeating the Merge procedure with the process fragment in Figure 5.11
adds the missing bits and leaves us with exactly Figure 5.2—this is how the
examples for the present chapter has been constructed.

5.5 Refinement 113

!"Submit budget"
-->*x "Budget screening approve" [role = Intern]
—-->* "Assess loan application" [role = Caseworker]

"Submit budget"
--<> "Assess loan application"

"Submit budget" 10
-->+ %"Request new budget" [role = "Intern"] 1
*-=> "Submit budget" [role = "Customer"] 12
*--> "Budget screening approve" 13
-->% "Request new budget" 14

Figure 5.8 Budget process fragment.

Intern

Budget screening approve

%/

Customer

Submit budget !

/

Caseworker

Assess loan application

(Not accepting)

Figure 5.9 Visualisation of the budget process fragment of Figure 5.8.

Not every such merge preserves the language of the original graph. Exclu-
sions may void conditions, giving the merged graph behaviour not present in
the original graph, even when restricting attention to only the events of that
graph. As a very simple example, consider the two graphs G =a —e b and
H =c —% a. The union G & H = a —e b,c —% a has the trace (c, b); even
if we dismiss the new event ¢, G could not by itself exhibit the trace (b).

114 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Intern

Budget screening approve

%/

Customer Caseworker

Submit budget ! Collect documents

Caseworker

Assess loan application !

(Not accepting)

Figure 5.10 Visualisation of the core process (Figures 5.5 and 5.6) refined by the budget
fragment (Figures 5.8 and 5.9).

Group "Appraisal" {

3
"On-site appraisal" [role = "Mobile consultant"] 4
"Statistical appraisal" [role = "Caseworker"] 5

} 6

7

"Statistical appraisal" -->J, "On-site appraisal" 8

"On-site appraisal" -->), "Statistical appraisal" 9

10
"Appraisal" 11
-->x "Assess loan application" [role = "Caseworker"] 12

Figure 5.11 Appraisal process fragment.

This situation was investigated in detail in previous work [6, 14], where a
sufficient condition for a refinement to be language preserving in the above
sense was established in a much richer setting. For the present notion of DCR

5.6 Time 115

graphs, it is sufficient to require that the refining graph does not exclude or
include any events of the original graph.

Notation. Given a sequence s and an alphabet X, write s |y for the largest
sub-sequence 5" of s s.t. s} € Z; e.g, if s = AABC then s |4 c= AAC.

Definition 7. Given DCR graphs G and H, we say that H is a refinement of
G iff Iang(H) LI(E(G))Q Iang(G)

That is, the language of H restricted to the labels used by events in G
must be a subset of the language of G. We can now state the following
Proposition [6, Theorem 43]:

Proposition 1. Let G and G’ be DCR processes such that for every e € E(G),
there is no relation x —% e or x —+ e in G'. Then the graph union G & G' is
a refinement of G.

If the Workbench has current graph G and the parser has graph G’ nor sat-
isfying (a published [6, 14] generalisation of) the conditions of Proposition 1,
the Parser issues a warning and requires confirmation before merging.

DCR refinement was originally suggested in [17,24] and worked out com-
prehensively in [6, 14]. The Workbench implements this latter mechanism.

5.6 Time

The Workbench supports the extension of DCR graphs with time [2, 23].
Time is modelled discretely by a special action tick modelling the passage of

. k
time; conditions are augmented with an optional delay, e —>e f, and responses

with an optional deadline e okt Intuitively, the delay in the timed condition
requires that at least & ticks have passed after the last execution of e before f
may execute; dually, the deadline in the timed response requires that at most
k ticks pass after the last execution of e before f must execute.

The former requirement makes it possible to have timelocks, i.e., situ-
ations where, say, f must execute, but is not allowed to. As a very simple

example, consider the DCR graph G = e NN f,e o2 f. In this graph, once
e executes, at least 3 ticks must pass before f can execute because of
the condition delay, but at most 2 ticks may pass before f must execute
because of the response deadline. After the sequence (e, tick, tick), the graph
is said to be time-locked: Time cannot advance without a constraint being
violated.

116 The DCR Workbench: Declarative Choreographies for Collaborative Processes

For our running example, suppose that (a) the initial screening of the
customer’s budget must be completed within 5 days, and (b) that the final
assessment of the loan application must wait a 3-day “grace period” after
a statistical appraisal (in order to prevent caseworkers from doing overly
optimistic statistical appraisals). We model these constraints as a timed DCR
graph directly using a timed response and condition in Figures 5.12 and 5.13.

Timed DCR graphs are still in finite state [23], but deciding time-
lock freedom naively by exploring in the state space is infeasible. Recent
research [2] established a sufficient condition for a graph to be time-lock—
free and gave a generic “enforcement mechanism” for time-lock—free graphs,
that is, a device which monitors the progression of time and a DCR graph and
proactively causes events to execute to avoid missing deadlines.

The Workbench implements time as defined in [23], and time-lock—analysis
and enforcement as defined in [2].

"Submit budget" [role = "Customer"] 3
*—-[6]-> "Budget screening approve" [role = "Intern"] 4
5

"Statistical appraisal" [role = "Caseworker"] 6
-[3]->* "Assess loan application" [role = "Caseworker"] 7

Figure 5.12 Additional timing constraints for the mortgage application process in Figure 5.2.

Caseworker Customer
Statistical appraisal Submit budget
Caseworker Intern
Assess loan application Budget screening approve
(Accepting)

Figure 5.13 Visualisation of additional timing constraints for the mortgage application
process in Figure 5.2.

5.7 Subprocesses 117

5.7 Subprocesses

It may happen that a customer during the application process applies for
pre-approval of an expected increase in property value due to, e.g., on-
going kitchen remodellings. In this case, the caseworker must assess the
limit extension before deciding on the mortgage application itself. At the
caseworker’s discretion, an intern may or may not collect bank statements
from the customer for the limit extension assessment; however, collecting
that statement requires the customer’s explicit consent.

Such limit extensions in practice may happen several times during a
mortgage application due to, e.g., expanded scope of a kitchen remodelling
project. Thus, the limit extension fragment is a subprocess: A process that
may be added to the main process when necessary, and possibly repeatedly.

Note that since subprocesses may be added repeatedly, each such addition
must duplicate the events of the subprocess. This situation is akin to bound
names under replication being duplicated in in the m-calculus [35]. The
subprocess may contain both events local to the subprocess, bound events,
and references to events of the containing graph. The former are indicated
syntactically with a / prefix as seen in lines 6-8.

The Workbench supports subprocesses; we add the above limit extension
process in Figures 5.14 and 5.15. Note that in visualisation, the subprocess is
not visible until it has been expanded once.

The visualisation shows the triggering event Apply for limit extension—
singled out as spawning a subprocess by the H following contemporary busi-
ness process notations, e.g., BPMN [32]. The bound events in a subprocess
are shown with round corners and inside a dashed box?.

"Assess loan application" 3
4

"Apply for limit extension" [role = Customer] 5
{ /"Assess limit extension" [role = Caseworker] 6
/"Collect consent" [role = Intern] 7

-->* /"Collect bank statement" [role = Intern] 8
"Submit budget" [role = Customer] 9

--<> I"Assess limit extension" [role = Caseworker] 10

-->* "Assess loan application" [role = Caseworker] 1

} 12
*--> "Submit budget" 13

Figure 5.14 Additional subprocess constraints (credit limit extension) for the full mortgage
application process of Figure 5.2.

2If a subprocess adds new global events—as opposed to bound ones—these would appear
with square corners inside the box.

118 The DCR Workbench: Declarative Choreographies for Collaborative Processes

Customer

Apply for limit extension v'&@

I

Customer

Submit budget !

R =
I \Z

(Intern \ [Caseworker

Collect consent LAssess limit extension !J ,

Assess loan application

Intern Caseworker

Collect bank statement

R
|

(Not accepting)

Figure 5.15 Visualisation of additional subprocess constraints (credit limit exten-
sion) for the full mortgage application process of Figure 5.2; after one execution of
Apply for limit extension.

Subprocess semantics is based on graph union; if G = ...,e{H} contains
a subprocess-spawning event e, then executing e will form the graph G® H,
then apply the effects of e. Note the importance of bound names here:
If events in H were not bound, then repeated instantiation of the subpro-
cess would not change the graph, i.e., GEH & H = G ® H. This equation
emphatically does not hold under the current semantics, where events in
H may be bound, and thus replicated. In the running example, executing
Apply for limit extension twice would result in all rounded-box event to be
replicated twice—we invite the reader to try this out in the Workbench.

Adding subprocesses and bound events significantly increase the expres-
sive power of DCR graphs [6, Theorem 9]:

Theorem 1. DCR graphs express the union of regular and -regular
languages. Graphs with subprocesses and bound events are Turing complete.

5.8 Data 119

In particular, while event-reachability and refinement is decidable for
plain and timed DCR graphs, they are undecidable for DCR graphs with
subprocesses and bound events.

DCR graphs was extended with a notion of subprocesses and bound events
in [12], followed by an investigation of expressive power in [6, 14]. The
Workbench implements subprocesses in the sense of [12].

5.8 Data

The Workbench augments DCR graphs with a notion of “input events”
and relations conditional on data. Suppose for our running example that
if the amount applied for in a credit limit extension exceeds EUR 10.000,
then having a bank statement becomes a condition for evaluating the loan
application.

Technically, this is accomplished by: (a) adding the option of inputting
a value when a subprocess is spawned; and (b) adding data-guards on select
relations. When the subprocess is instantiated, condition on the input value
dictates whether, e.g., the relation e —e f takes effect or not.

We extend the running example with such a conditional condition in
Figure 5.16. Note that since the “variable” associated with an event is simply
the name of the event, it becomes convenient to specify separately the name
and label of the event. This is done in line 3, where it is specified that the
event limit has label Apply for a limit extension and role Customer. (Without
an explicit specification, the Workbench identifies event and label.)

The visualiser does not show data-guarded relations, and the formal
semantics of DCR graphs with data have yet to be published.

limit["Apply for limit extension" role = Customer] ? 3
{ /"Assess limit extension" 4
/"Collect consent" -->* /"Collect bank statement" 5
"Submit budget" 6
--<> I"Assess limit extension" 7

-->*% "Assess loan application" 8
"Collect bank statement" 9
-->x "Assess loan application" 10
when "$limit > 10000" 11

} 12
*-=> "Submit budget" 13

Figure5.16 Alternative subprocess-with-data constraints (credit limit extension) for the full
mortgage application process of Figure 5.2.

120 The DCR Workbench: Declarative Choreographies for Collaborative Processes

An interesting application of data is that of specifying user-input “forms”
(think Web forms) via DCR graph, associating with each event in a graph an
input field in such a form. This idea was implemented in the Actions panel
and later realised [27] in collaboration with Exformatics A/S.

5.9 Other Panels

We mention here briefly a few panels of the Workbench not discussed so far.

1. An encoding from DCR to the GSM model [26] was defined in recent
research [16]; the Workbench implements this encoding an outputs
CMMN [4] XML.

2. Notions of concurrency and independence of DCR events, following
the standard notion of labelled asynchronous transition systems [3, 36],
was recently investigated [13]. The Workbench’ Concurrency panel
implements these notions, automatically identifying concurrent events.

3. Work on applications of DCR in practical settings suggested a need
for simplifying process models when presented to end users [9]. The
Workbench contains a number of such simplifying views, most notably
a “swimlane” view of the current trace in the panel of the same name,
and a mechanism for projecting a graph in various ways to sub-graphs
of interest.

5.10 Conclusion

We have given an introduction to DCR graphs, and an overview of the DCR
Workbench. Since the Workbench implements most major variations of DCR
graphs, this Chapter has also served as a survey of the state-of-the-art of DCR
graphs as modelling and analysis tool for continuously changing distributed
collaborative processes.

The Workbench has been instrumental for scientific research, providing
a test-bed for quick experiments with new ideas; for teaching, providing
students the opportunities for hands-on learning of abstract concepts; and
for collaborations with industry and knowledge transfer to industry. In all
these instances, providing a practical platform on which to demonstrate
sometimes difficult-to-communicate abstract concepts helps to cement the
reality and applicability of DCR as a modelling methodology. In particular,
the Workbench has paved the way for academic results [9, 12, 18,21,27] to
find their way to implementation in commercial tools [8,28].

References 121

We invite the reader to use the Workbench for research and teaching. It is
available at http://dcr.tools.

References

[1] Wil M. P. van der Aalst. Verification of Workflow Nets. In Proc. of the
18th Int. Conf. on Application and Theory of Petri Nets, ICATPN, pages
407-426, 1997.

[2] David A. Basin, Sgren Debois, and Thomas T. Hildebrandt. In the nick
of time: Proactive prevention of obligation violations. In IEEE 29th
Computer Security Foundations Symposium, CSF 2016, pages 120-134.
IEEE Computer Society, 2016.

[3] Marek Bednarczyk. Categories of asynchronous systems. PhD thesis,
U. Sussex, 1988.

[4] BizAgi and others. Case Management Model and Notation (CMMN),
vl, May 2014. OMG Document Number formal/2014-05-05, Object
Management Group.

[5] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. Composing
Reactive GUIs in F# Using WebSharper, pages 203-216. Springer,
2011.

[6] Se¢ren Debois, Thomas Hildebrandt, and Tijs Slaats. Replication, refine-
ment & reachability: Complexity in Dynamic Condition-Response
graphs. Acta Informatica, 2017. Accepted for publication.

[7] Sg¢ren Debois, Thomas T. Hildebrandt, Paw Hgsgaard Larsen, and Ken-
neth Ry Ulrik. Declarative process mining for DCR graphs. In SAC 17,
2017. Accepted for publication.

[8] Sgren Debois, Thomas T. Hildebrandt, Morten Marquard, and Tijs
Slaats. Bridging the valley of death: A success story on danish funding
schemes paving a path from technology readiness level 1 to 9. In
SER&IP 2015, pages 54-57. IEEE, 2015.

[9] Sgren Debois, Thomas T. Hildebrandt, Morten Marquard, and Tijs
Slaats. Hybrid process technologies in the financial sector. In BPM
2015, Industry track, volume 1439 of CEUR Workshop Proceedings,
pages 107-119. CEUR-WS.org, 2015.

[10] Sgren Debois, Thomas T. Hildebrandt, Morten Marquard, and Tijs
Slaats. The DCR graphs process portal. In BPM 2016, volume 1789
of CEUR Workshop Proceedings, pages 7-11. CEUR-WS.org, 2016.

122 The DCR Workbench: Declarative Choreographies for Collaborative Processes

[11] Sgren Debois, Thomas T. Hildebrandt, and Lene Sandberg. Experience
report: Constraint-based modelling and simulation of railway emer-
gency response plans. In ANT 2016 / SEIT-2016, volume 83 of Procedia
Computer Science, pages 1295-1300. Elsevier, 2016.

[12] Sgren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Hierarchical
declarative modelling with refinement and sub-processes. In BPM 2014,
volume 8659 of LNCS, pages 18-33. Springer, 2014.

[13] Sgren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Concurrency
and asynchrony in declarative workflows. In BPM 2015, volume 9253
of LNCS, pages 72-89. Springer, 2015.

[14] Sgren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Safety, liveness
and run-time refinement for modular process-aware information systems
with dynamic sub processes. In FM 2015, pages 143-160, 2015.

[15] Sgren Debois, Thomas T. Hildebrandt, Tijs Slaats, and Morten Mar-
quard. A case for declarative process modelling: Agile development
of a grant application system. In EDOC Workshops 14, pages 126—133.
IEEE Computer Society, 2014.

[16] Rik Eshuis, Sgren Debois, Tijs Slaats, and Thomas T. Hildebrandt.
Deriving consistent GSM schemas from DCR graphs. In ICSOC 2016,
volume 9936 of Lecture Notes in Computer Science, pages 467-482.
Springer, 2016.

[17] Thomas T. Hildebrandt, Morten Marquard, Raghava Rao Mukkamala,
and Tijs Slaats. Dynamic condition response graphs for trustworthy
adaptive case management. In OTM 2013 Workshops, volume 8186 of
LNCS, pages 166-171. Springer, 2013.

[18] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative
Event-Based Workflow as Distributed Dynamic Condition Response
Graphs. In PLACES 2010, volume 69 of EPTCS, pages 5973, 2010.

[19] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.
Declarative modelling and safe distribution of healthcare workflows. In
FHIES 2011, volume 7151 of LNCS, pages 39-56. Springer, 2011.

[20] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.
Designing a cross-organizational case management system using
dynamic condition response graphs. In EDOC 2011, pages 161-170.
IEEE Computer Society, 2011.

[21] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats.
Nested dynamic condition response graphs. In FSEN 2011, Revised
Selected Papers, volume 7141 of Lecture Notes in Computer Science,
pages 343-350. Springer, 2011.

References 123

[22] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Safe
distribution of declarative processes. In SEFM 2011, volume 7041 of
LNCS, pages 237-252. Springer, 2011.

[23] Thomas T. Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and
Francesco Zanitti. Contracts for cross-organizational workflows as
timed dynamic condition response graphs. J. Log. Algebr. Program.,
82(5-7):164-185, 2013.

[24] Thomas T. Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and
Francesco Zanitti. Modular context-sensitive and aspect-oriented pro-
cesses with dynamic condition response graphs. In FOAL 2013, pages
19-24. ACM, 2013.

[25] Thomas T. Hildebrandt and Francesco Zanitti. A process-oriented event-
based programming language. In DEBS 2012, pages 377-378. ACM,
2012.

[26] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. Heath III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculin.
Introducing the guard-stage-milestone approach for specifying business
entity lifecycles. In WS-FM 2010, LNCS. Springer, 2010.

[27] Morten Marquard, Sgren Debois, Tijs Slaats, and Thomas T. Hilde-
brandt. Forms are declarative processes! In BPM 2016 Industry Track
(to appear), 2016.

[28] Morten Marquard, Muhammad Shahzad, and Tijs Slaats. Web-based
modelling and collaborative simulation of declarative processes. In
BPM 2015, volume 9253 of LNCS, pages 209-225. Springer, 2015.

[29] Raghava Rao Mukkamala. A Formal Model For Declarative Workflows:
Dynamic Condition Response Graphs. PhD thesis, IT University of
Copenhagen, 2012.

[30] Raghava Rao Mukkamala and Thomas T. Hildebrandt. From dynamic
condition response structures to biichi automata. In TASE 2010, pages
187-190. IEEE, 2010

[31] Raghava Rao Mukkamala, Thomas T. Hildebrandt, and Tijs Slaats.
Towards trustworthy adaptive case management with dynamic condition
response graphs. In EDOC 2013, pages 127-136. IEEE Computer
Society, 2013.

[32] Object Management Group BPMN Technical Committee. Business Pro-
cess Model and Notation, version 2.0, 2013. http://www.omg.org/
spec/BPMN/2.0.2/PDF

124 The DCR Workbench: Declarative Choreographies for Collaborative Processes

[33] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst.
DECLARE: full support for loosely-structured processes. In EDOC
2007, pages 287-300, 2007.

[34] Sgren Debois and Tijs Slaats. The analysis of a real life declarative
process. In CIDM 2015. IEEE, 2015. Accepted for publication.

[35] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of
Mobile Processes. Cambridge university press, 2003.

[36] M. W. Shields. Concurrent machines. Computer Journal, 28(5):449—
465, 1985.

[37] Tijs Slaats. Flexible Process Notations for Cross-organizational Case
Management Systems. PhD thesis, IT University of Copenhagen,
January 2015.

[38] Tijs Slaats, Raghava Rao Mukkamala, Thomas T. Hildebrandt, and
Morten Marquard. Exformatics declarative case management workflows
as DCR graphs. In BPM ’13, volume 8094 of LNCS, pages 339-354.
Springer, 2013.

[39] Don Syme, Jack Hu, Luke Hoban, Tao Liu, Dmitry Lomov, James
Margetson, Brian McNamara, Joe Pamer, Penny Orwick, Daniel Quirk,
et al. The F# 4.0 language specification. Technical report, 2005.

[40] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a truly
declarative service flow language. In WS-FM 2006, volume 4184 of
LNCS, pages 1-23. Springer, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

