
8
JaDA – the Java Deadlock Analyzer

Abel Garcia and Cosimo Laneve

Department of Computer Science and Engineering, University of Bologna –
INRIA FOCUS, Mura Anteo Zamboni 7, 40127, Bologna, Italy

Abstract

JaDA is a static deadlock analyzer that targets Java bytecode. The core of
JaDA is a behavioral type system especially designed to record dependencies
between concurrent code. These behavioral types are thereafter analyzed by
means of a fixpoint algorithm that reports potential deadlocks in the original
Java code. We give a practical presentation of JaDA, highlighting the main
connections between the tool and the theory behind it and presenting some of
the features for customising the analysis. We finally assess JaDA against the
current state-of-the-art tools, including a commercial grade one.

8.1 Introduction

In concurrent languages, a deadlock is a circular dependency between a set of
threads, each one waiting for an event produced by another thread in the set.
In the Java programming language, deadlocks are usually resource-related,
namely they are caused by operations ensuring different threads the exclusive
access to a set of resources. (Java has also so-called communication-related
deadlocks, which are common in network based systems. These deadlocks,
which are thoroughly studied in [1,2], are out of the scope of this work.) Java
features threads by means of an ad-hoc class called Thread; this class has two
methods Thread.start() and Thread.join() for spawning and joining
threads. The consistency between threads that share objects is enforced by
synchronized blocks, a linguistic construct that may be defined either for

169

170 The JaDA Tool

Figure 8.1 Cases of circular dependencies that may lead to deadlocks. (Lock acquisitions
are represented with squares, the corresponding release is marked with a circle).

simple code blocks or for method bodies [3, Chapter 17]1. It turns out that the
dependencies defined by synchronized blocks may be circular. These prob-
lems are difficult to detect or anticipate, since they may not occur during every
execution. Figure 8.1 shows (a timeline representation of) some examples of
deadlocked programs. At the time of writing this chapter, the Oracle Bug
Database2 reports more than 40 unresolved bugs due to deadlocks, while the
Apache Issue Tracker3 reports around 400 unresolved deadlock bugs. Clearly,
a deadlock may have catastrophic effects for the overall functionality of a
software system.

In this chapter, we present an end-to-end automatic analyzer for detecting
potential deadlock bugs of Java programs at compilation time – JaDA, the
Java Deadlock Analyzer tool. JaDA addresses the compilation target of every
Java application – the Java Virtual Machine Language, JVML, also called
Java bytecode – and extracts abstract models out of it by means of an
inference system. These abstract models are successively analyzed.

The decision of addressing JVML instead of Java was motivated by two
reasons: Java is too complex and it has no reference semantics. On the
contrary, JVML is simple – it has 198 instructions that can be sorted into 7

1There are also other mechanisms that remain out of the scope of this work, such
as, the volatile variables and the higher-level synchronization API defined on package
java.util.concurrent.

2http://bugs.java.com/
3https://issues.apache.org/jira

8.2 Example 171

different groups of similar instructions – and has a reference semantics that
is defined by the behavior of the Java Virtual Machine (JVM) [3, Chapter 6].
Analyzing JVML has also other relevant advantages: addressing programming
languages that are compiled to the same bytecode, such as Scala [4],
and the possibility to analyze proprietary software whose sources are not
available.

The inference system of JaDA consists of a number of rules that analyze
the effects of the instructions on the synchronization process. The types
inferred from the bytecode, called lams [1, 2, 5, 6], are functional programs
that define dependencies between threads. Then JaDA uses a variation of
the algorithm defined in [1, 2] for detecting circularities in lams, and reports
potential threats as output of the analysis. The tool also exhibits the exe-
cutions causing deadlocks, by linking the dependencies with the chunk of
source code that originated them, thus easing the analysis of false positives.

The current release of JaDA covers most of the JVML, including threads
and synchronizations, constructors, arrays, exceptions, static members, inter-
faces, inheritance, recursive data types. Few synchronization-related features
are not covered by the current release, such as wait-notify-notifyAll
operations, dynamic class loading and reflection.

The rest of the chapter is organized as follows. Section 8.2 presents a
motivating example of a recursive Java program that creates a (statically)
unbounded number of threads. This is one of the main achievements so far
and the theory overviewed in Section 8.3 will be explained by means of it.
Section 8.4 describes the tool in some detail, highlighting implementation
issues. Section 8.5 analyses the current limitations of JaDA and Section 8.6
reports an assessment of JaDA with respect to state-of-the-art tools for Java
deadlock analysis. Finally we conclude in Section 8.7.

8.2 Example

Figure 8.2 reports the Java class Network and part of its JVML. The main

method creates a network of n threads by invoking buildNetwork – say
t1, ¨ ¨ ¨ , tn – that are all potentially running in parallel with the caller – say
t0. Every two adjacent threads share an object, which is also created by
buildNetwork.

The buildNetwork method will produce a deadlock depending on its
actual arguments: it is deadlock-free when it is invoked with two differ-
ent objects, otherwise it may deadlock (if also n ą 0). Therefore, in the

172 The JaDA Tool

class Network{

public void main(int n){

Object x = new Object();

Object y = new Object();

// deadlock

buildNetwork(n, x, x);

// no deadlock

//buildNetwork(n, x, y);

}

public void buildNetwork(int n,

Object x, Object y){

if (n==0) {

takeLocks(x,y) ;

} else {

final Object z = new Object() ;

//anonymous Thread child class

Thread thr = new Thread(){

public void run(){

takeLocks(x,z) ;

}} ;

thr.start();

this.buildNetwork(n-1,z,y) ;

}

}

public void takeLocks(Object x,

Object y){

synchronized (x) {

synchronized (y) { }

}

}

}

public void buildNetwork(int n, Object x, Object y)

0 iload_1 //n

1 ifne 13

4 aload_0 //this

5 aload_2 //x

6 aload_3 //y

7 invokevirtual 24 //takeLocks(x, y):void

10 goto 50

13 new 3

16 dup

17 invokespecial 8 //Object()

20 astore 4 //z

22 new 26

25 dup

26 aload_0 //this

27 aload_2 //x

28 aload 4 //z

30 invokespecial 28 //Network$1(this, x, z)

33 astore 5 //thr

35 aload 5 //thr

37 invokevirtual 31 //start():void

40 aload_0 //this

41 iload_1 //n

42 iconst_1

43 isub

44 aload 4 //z

46 aload_3 //y

47 invokevirtual 36 //buildNetwork(n-1, z, y):void

50 return

public void takeLocks(Object x, Object y)

0 aload_1; //x

1 dup;

2 astore_3;

3 monitorenter; //acquires x

4 aload_2; //y

5 dup;

6 monitorenter; //acquires y

7 monitorexit; //releases y

8 aload_3;

9 monitorexit; //releases x

16 return;

Figure 8.2 Java Network program and corresponding bytecode of methods buildNetwork
and takeLocks. Comments in the bytecode give information of the objects used and/or
methods invoked in each instruction.

case of Figure 8.2, the program is deadlocked, while it is deadlock free
if we comment the instruction buildNetwork(n,x,x) and uncomment
buildNetwork(n,x,y).

The problematic issue of Network is that the number of threads is not
known statically – n is an argument of main. This is displayed in the bytecode
of buildNetwork in Figure 8.2 by the instructions at addresses 30 and 37 that

8.3 Overview of JaDA’s Theory 173

respectively created a new thread and start it, and by the recursive invocation
at instruction 47.

8.3 Overview of JaDA’s Theory

JaDA’s theory relies on two main techniques: (i) an inference type system
for extracting abstract models out of JVML instructions, and (ii) a fixpoint
algorithm for analyzing the models. We overview the two techniques in the
following subsections; in the last subsection we discuss the JaDA behavioral
types for the buildNetwork example.

8.3.1 The Abstract Behavior of the Network Class

Figure 8.3 details the output of JaDA for the Network class in Figure 8.2. The
types have been simplified for readability: the actual JaDA types are more
complex and verbose. Some comments (in gray) explain the side effects of
invocations, other comments (in yellow) correspond to the lines that are com-
mented in Figure 8.2. The behavior of main begins by calling the constructor
of the class Object. Notice that, after such invocation, the structure of x and
y is known. Then the type reports the invocation to buildNetwork.

The behavior of takeLocks is the parallel composition of two depen-
dencies corresponding to the acquisition of the locks of x and y. Every
dependency is formed by the last held lock and the current element. Notice
that every method receives an extra argument corresponding to the last
acquired lock at the moment of the invocation, in this case that argument
is u.

The behavior of buildNetwork has five states: (i) the invocation to
takeLocks, (ii) the creation and initialization of the object z, (iii) the creation
and initialization of the thread thr, (iv) the spawn of thr, (v) and the
recursive invocation (in parallel with the spawn of thr). The buildNetwork
method also reports one spawned thread as side effect. This may appear
contradictory (because buildNetwork spawns n threads). However, in this
case JaDA is able to detect that thr is the only thread (from those created) that
may be relevant (for the deadlock analysis) in an outer scope. This deduction
is done by considering the objects in the record structure of thr.

The constructors of Object and Thread have an empty behavior. On
the contrary, the constructor of the class Network$1 is more complex
(Network$1 is the name the JVM automatically gives to the anonymous

174 The JaDA Tool

m
a
i
n
(
t
h
i
s

|
t
,
u
)
:
T
{t
h
r
}

=

O
b
j
e
c
t
.
i
n
i
t
(
x

|
t
,
u
)

+
O
b
j
e
c
t
.
i
n
i
t
(
y

|
t
,
u
)

+
/
/
s
t
r
u
c
t
u
r
e

o
f

x
:
x
[
]

a
n
d

y
:
y
[
]

/
/
d
e
a
d
l
o
c
k

b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
x
,
x

|
t
,
u
)

/
/
n
o
-
d
e
a
d
l
o
c
k

/
/
b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
x
,
y

|
t
,
u
)

/
/
c
r
e
a
t
e
s

u
n
s
y
n
c

t
h
r
e
a
d
:

t
h
r

t
a
k
e
L
o
c
k
s
(
t
h
i
s
,
x
,
y

|
t
,
u
)

=
t
:
(
u
,
x
)

&
t
:
(
x
,
y
)

b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
x
,
y

|
t
,
u
)

:
T
{t
h
r
}=

t
a
k
e
L
o
c
k
s
(
t
h
i
s
,
x
,
y

|
t
,
u
)

+

O
b
j
e
c
t
.
i
n
i
t
(
z

|
t
,
u
)

+
/
/
z
:
z
[
]

N
e
t
w
o
r
k
$
1
.
i
n
i
t
(
t
h
r
,

t
h
i
s
,

x
,

z
|

t
,

z
)
+

/
/
t
h
r
:
t
h
r
[
t
h
i
s
$
0
:
t
h
i
s
[
]
,

v
a
l
$
x
:
x
[
]
,

v
a
l
$
z
:

z
[
]
]

N
e
t
w
o
r
k
$
1
.
r
u
n
(
t
h
r

|
t
h
r
,
u
1
)

+

N
e
t
w
o
r
k
$
1
.
r
u
n
(
t
h
r

|
t
h
r
,
u
1
)

&
b
u
i
l
d
N
e
t
w
o
r
k
(
t
h
i
s
,
_
,
z
,
y

|
t
,
u
)

O
b
j
e
c
t
.
i
n
i
t
(
t
h
i
s

|
t
,

u
)
:
t
h
i
s
[
]

=
0

/
/
n
o

s
i
d
e

e
f
f
e
c
t
s

T
h
r
e
a
d
.
i
n
i
t
(
t
h
i
s

|
t
,

u
)
:
t
h
i
s
[
]

=
0

/
/
n
o

s
i
d
e

e
f
f
e
c
t
s

N
e
t
w
o
r
k
$
1
.
i
n
i
t
(
t
h
i
s
,

x
1
,

x
2
,

x
3
|

t
,

u
)
:
t
h
i
s
[
t
h
i
s
$
0
:
x
1
,

v
a
l
$
x
:
x
2
,

v
a
l
$
z
:
x
3
]

=

T
h
r
e
a
d
.
i
n
i
t
(
t
h
i
s

|
t
,

u
)

N
e
t
w
o
r
k
$
1
.
r
u
n
(
t
h
i
s
[
t
h
i
s
$
0
:
x
1
,
v
a
l
$
x
:
x
2
,
v
a
l
$
z
:
x
3
]
|
t
,
u
)

=
t
a
k
e
L
o
c
k
s
(
x
1
,
x
2
,
x
3
|
t
,
u
)

F
ig

ur
e

8.
3

B
u
i
l
d
N
e
t
w
o
r
k

’s
la

m
s.

8.3 Overview of JaDA’s Theory 175

Thread child class4 instantiated inside the method buildNetwork of the
class Network). Being defined as an inner class, Network$1 has access to the
local variables in the scope in which it has been created, namely the variables
x, z and the this reference to the container instance. The JVM addresses
this by passing these variables to the constructor of the class and assigning
them to internal fields, in this case named valx, valz and this$0. Notice
that the behavior of the constructor keeps track of two important things:
the invocation to the constructor of the parent class Thread.init and the
changes in the carrier object which goes from this to this[this$0:x1,

val$x:x2, val$z:x3] where xi are the formal arguments.
Finally, the behavior of the run method from the class Network$1 con-

tains only the invocation to the takeLocks method. Notice that run method
assumes a certain structure from the carrier object.

8.3.2 Behavioral Type Inference

The typing process is done bottom-up, in a compositional way. That is, a
type is derived for every JVML instruction; the type of each method is the
composition of the types of the instructions it contains. Similarly, the type
of a program is the set of type of the methods therein. JaDA types are not
standard types, such as integers, booleans, etc. They are models of the abstract
behavior of a program, called behavioral types, that hold information about
concurrency and synchronizations of every execution path.

In particular, the types of instructions retain two key pieces of information
in JaDA:

• the dependencies, written t:(a,b), to be read as “thread t acquires the
lock of object b while it is holding the lock of a”, and

• the method invocations, written C.m(args| t, a), which means that
the method m of class C is invoked with arguments args (that include the
carrier object) in the thread t and while holding the lock of a.

In order to verify the consistency of parallel threads, behavioral types also
take into account the (reading and writing) effects on objects. The types of
the instructions can be composed either sequentially with the ` operation, or
in parallel with the � operation.

In JaDA, the behaviors of methods are the sequential composition of
instructions’ types in method’s body plus the sum of their effects. The effects

4https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html

176 The JaDA Tool

also include both threads spawns and thread joins in the method body. It
is worth to remark that thread creations and synchronizations in JVML are
defined by method invocations of the class Thread; therefore they are typed
as method invocations with an ad-hoc management of spawns and joins.

The flow of the inference of behavioral types is described by the chart
in Figure 8.4. The algorithm starts with an (empty) Behavioral Class Table
(BCT), a structure where a behavioral description is associated to every
method, and a sorted set of pending methods which initially contains all the
methods of the program. The algorithm takes the first element of the set and
types it (see below). The resulting effects are compared to the previous state
of the BCT: if a change is found, the method is updated and every caller (every
method depending on the current one) is added to the pending methods list.
The algorithm terminates when the BCT reaches an stable state.

A similar technique is used to type the body of each method. The process
is described in the chart shown in Figure 8.5. In this case, the inference
process inside a method starts with a queue of pending instructions, which
initially contains the first instruction. Each instruction is typed and the
instruction state is updated (we have defined a set of typing rules in [7]). If the
instruction type has been updated then the subsequent instruction(s) need to
be typed (again). Notice that there may be several subsequent instructions, for
example when the current instruction is a conditional. The state of an instruc-
tion contains an abstraction of the operand stack, the local variables, the local
heap, the threads created upto that instruction and the chain of acquired locks

Figure 8.4 Type inference of methods’ behaviors in JaDA.

8.3 Overview of JaDA’s Theory 177

Figure 8.5 Type inference of method’s bodies in JaDA.

(this information allows us to define the lam [2] of an instruction). Once no
state is updated anymore, the type of the corresponding method is computed
accordingly.

8.3.3 Analysis of Behavioral Types

The analysis of the inferred types is also performed iteratively. The overall
approach is described by the chart in Figure 8.6. The initial step computes
the abstract state of every method. This state is a sequence of parallel
compositions of dependency pairs – function invocations in lams are deleted.
The algorithm proceeds instruction by instruction, by expanding and cleaning
its current state. The expansion process unfolds every invocation, the cleaning
process removes pairs containing a fresh name (names not belonging to the
method arguments or effects). Removing such pairs is crucial for termination
because it allows us to keep the set of dependencies finite. In particular, the
cleaning is performed by computing the transitive closure of the dependency
pairs (this way we recover dependencies that are not direct and involve fresh
names) and keeping only those whose elements are not fresh. In case we find
a circular dependency formed only by fresh names then a special dependency
pair is inserted (and this will ensure the presence of a deadlock). The full
details of this algorithm are described in [1, 2].

Once all abstract states have been computed, the algorithm returns the
circularities present in the main method.

178 The JaDA Tool

Figure 8.6 JaDA Analysis of behavioral types.

As an example, we apply the algorithm of Figure 8.6 to the Network

behaviour in Figure 8.3. For simplicity we have excluded the methods with
empty behaviour as well as their invocations.

Initially, an empty state is associated to every method. Using this model,
we perform the first iteration and we get (we denote a set with [e1, e2,

¨ ¨ ¨] where elements ei are dependencies t:(x,y); sets of sets are denoted
by [[e1, e2, ¨ ¨ ¨], ¨ ¨ ¨]):

main(this | t,u) thr = [

[] // no states resulting from buildNetwork(this,_,x,y | t,u)

] = [] // expanding and cleaning result empty

takeLocks(this,x,y | t,u) = [

[t:(u,x) & t:(x,y)]

] = [

[t:(u,x) & t:(x,y) & t:(u,y)] // t:(u,y) is added by transitivity

]

buildNetwork(this,_,x,y | t,u) thr = [

[t:(u,x) & t:(x,y) & t:(u,y)], // invocation of takeLocks

[], // invocation of Network$1.run

[], // invocation of Network$1.run and buildNetwork

8.3 Overview of JaDA’s Theory 179

] = [

[t:(u,x) & t:(x,y) & t:(u,y)]

]

Network$1.run(this[this$0:x1, val$x:x2, val$z:x3] | t, u) = [

[t:(u,x2) & t:(x2,x3) & t:(u,x3)] // invocation of takeLocks

] = [

[t:(u,x2) & t:(x2,x3) & t:(u,x3)]

]

Since the states of methods is changed (all except main) we perform a second
iteration, which gives:

main(this | t,u) thr = [

[t:(u,x) & t:(x,x) & t:(u,x)] // state of buildNetwork(this,_,x,y | t,u)

] =

[

[] // the cleaning process removes dependencies that contain fresh names

// the dependency t:(x,x) is removed because it is a reentrant lock

]

takeLocks(this,x,y | t,u) = [

[t:(u,x) & t:(x,y)]

] = [

[t:(u,x) & t:(x,y) & t:(x,y)] // this is the fixpoint for takeLocks

]

buildNetwork(this,_,x,y | t,u) thr = [

[t:(u,x) & t:(x,y) & t:(u,y)], // invocation of takeLocks

[thr:(u,x) & thr:(x,z) & thr:(u,z)], // invocation of Network$1.run

[[thr:(u,x) & thr:(x,z) & thr:(u,z)] & [t:(u,z) & t:(z,y) & t:(u,y)]]

// invocation of Network$1.run and buildNetwork

] = [

[t:(u,x) & t:(x,y) & t:(u,y)], // this state has not changed

[t1:(u,x)],

[thr:(u,x) & t_thr:(x,y) & t:(u,y)] // t_thr:(x,y) is new: it is a

// dependency between x and y involving the threads t and thr

]

Network$1.run(this[this$0:x1, val$x:x2, val$z:x3] | t, u) = [

[t:(u,x2) & t:(x2,x3) & t:(u,x3)] // invocation of takeLocks(x1,x2,x3 | t,u)

] = [

[t:(u,x2) & t:(x2,x3) & t:(u,x3)] // this is the fixpoint for Network$1.run

]

Since buildNetwork is changed, we need a third iteration. The computation
of the dependencies of main gives

main(this | t,u) thr = [// states resulting from buildNetwork(this,_,x,x | t,u)

[t:(u,x) & t:(x,x) & t:(u,x)],

[thr:(u,x)],

180 The JaDA Tool

[thr:(u,x) & t_thr:(x,x) & t:(u,y)]

] =

[

[t_thr:($,$)]

]

In particular, in the states of main, after the transitive closure, contain
t thr:(x,x), which is a circular dependency involving two threads. Instead
of writing the dependency in that way (using a fresh name x), we write it
as t thr:($,$), where x is replaced by a special name $. It is worth to
notice that t thr:($,$) gives two informations: (i) the deadlock is created
by threads t and thr, (ii) the object name is $, which indicates that the
deadlock is produced regardless of the arguments of the invocation. Since
t thr:($,$) denotes a circularity, the algorithm might stop. Actually, we
decided not to stop JaDA at this point, we let it continue in order to collect
every circularity.

JaDA output for the Network program is reported in Figure 8.7. In this
case, JaDA has been set to analyze only the Network class (see analysis-
extent in Section 8.4.4). Therefore, it warns about non-analyzed dependen-
cies: the constructors from classes Thread and Object (whose types are
considered empty – the actual type of these methods is nevertheless empty).
JaDA reports 1 deadlock after the analysis, and outputs its trace. In this

Figure 8.7 JaDA analysis output for the Network program.

8.4 The JaDA Tool 181

case there are two threads involved in the deadlock: those with id 204 (the
one running main) and 229. The deadlock is caused by two monitorenter

instructions on objects 346 and 211, taken in different order by the two
threads. The tool outputs the computational traces ending with the two
monitorenter instructions; the numbers in the traces represent the lines in
the source5.

8.4 The JaDA Tool

In this section we describe the main features of the JaDA tool, as well as,
some key implementation details.

8.4.1 Prerequisites

JaDA has been designed to run on bytecode generated by the Java com-
piler6 and it assumes that the bytecode has been already checked by the
Java Bytecode Verifier (therefore it does not contain either syntactic or
semantic errors). JaDA also requires that every dependency is matched by
a corresponding bytecode. Although the bytecode is not executed, JaDA

computes every necessary information to solve key issues for the analysis,
such as the informations about inheritance. The loading of the existing types
is done dynamically in a sand-boxed class loader7 to avoid security risks.
The full set of dependencies can be specified in JaDA through a classpath-like
configuration (see property class-path in Section 8.4.4). Finally, JaDA also
assumes that the code targeted by the analysis fits with the current limitations
of the tool (see Section 8.5).

8.4.2 The Architecture

The JaDA analysis starts by parsing of the bytecode of a program and
its dependencies. This is a cumbersome task because of the length and
verbosity of the JVML syntax. JaDA relies on the ASM framework [8] for
the bytecode extraction and manipulation. (Other third party tools have

5The line numbers in the output may not accurately match the example in Figure 8.2,
because the latter has been slightly reduced for presentation purposes.

6We have tested JaDA against the 1.6, 1.7 and 1.8 versions of the Java compiler, and against
the 1.8 version of the Eclipse Java Compiler (ECJ).

7https://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html

182 The JaDA Tool

been also designed for manipulating and analyzing the bytecode: the page
https://java-source.net/open-source/bytecode-libraries con-
tains a list of existing tools for this purpose. ASM provides a wide set of
tools for interacting with the bytecode, including code generation and code
analysis. It is also light-weight, open source, very well-documented and up
todate with the latests versions of Java.

Figure 8.8 shows part of the JaDA architecture. In the figure, nodes
are classes while arrows denote inheritance relationships. In the center of
the image, there are the classes of the ASM framework; the other classes
implement the technique so far described.

Values. A basic element of the architecture are the Value objects. JaDA uses
two types of values: RecordTree store the methods’ signature in the BCT,
while RecordPtr store the state of local variables and the operand stack.
Updating the Value elements amounts to upgrade every other element of the
JaDA architecture. In the following paragraphs we discuss their functionality.

Frames. The JDAFrame class extends the ASM Frame by defining two impor-
tant methods: execute and merge. The method execute implements the
typing rules used by JaDA. It relies on an abstract interpreter that executes
symbolically the current instruction with the given stack and local variables
state. The method merge is invoked when the analysis process reiterates
over an already typed frame. This method implements the logics of the has
changed condition in the type inference of method bodies, see Section 8.3.2.

Figure 8.8 JaDA architecture.

8.4 The JaDA Tool 183

for(int i = 0; i < 10; i++){

synchronized (a) {

synchronized (b) {

}

}

}

20 ...

21 aload_1; //a

22 dup;

23 astore 4;

25 monitorenter;

26 aload_2; //b

27 dup;

28 monitorenter;

29 monitorexit;

30 aload 4;

32 monitorexit;

40 iinc 3 1; //i++

43 iload_3; //i

44 bipush 10;

46 if_icmplt -25; //LOOP condition

48 ...;

Figure 8.9 Java while loop with nested synchronizations and the corresponding bytecode.

The decision on whether the subsequent frames must be checked again is
taken upon the result of this method. To illustrate this consider the example
from Figure 8.9.

When the typing process arrives each instruction for the first time its
current Frame changes from the empty frame to the frame containing infor-
mation about the instruction. Namely this first frame will contain the local
variable status, the invocations and the existing locks and threads at each
instruction. This changes enforces every frame to calculate its continuation at
least one time. The following sequence shows the frames calculation for this
chunk of code (only the relevant instructions are included):
...

Fr.21:{CurrentThread: main, Locks:{}}

...

Fr.25:{CurrentThread: main, Locks:{a}}

...

Fr.28:{CurrentThread: main, Locks:{a,b}}

Fr.29:{CurrentThread: main, Locks:{a}}

Fr.32:{CurrentThread: main, Locks:{}}

...

Fr.46:{CurrentThread: main, Locks:{}}

Fr.21:{CurrentThread: main, Locks:{}}

Fr.48:{CurrentThread: main, Locks:{}}

...

Notice that after calculating the frame 46, there are two possible contin-
uations: 21 and 48. The second time Fr.21 is calculated it produces the same
known result, therefore its continuation (Fr.22) is not calculated again. The
calculation process continues then sequentially with Fr.48.

184 The JaDA Tool

Interpreter. The JVM is a stack machine, every operation pops a certain
number of elements off the stack and pushes on its result. The JDAInt-
erpreter class extends the ASM Interpreter in order to comply with the
values representations in JaDA. In particular, JDAInterpreter implements
an important feature of our tool, namely the output of the traces potentially
causing deadlocks. In fact, it returns the variable names of the objects
involved, the stack trace chain and the related line numbers in the original
Java code 8.

Analyzer. The ASM default analyzer supports very basic data-flow analysis
limited to the scope of a single method. Similarly, JaDA analysis of a
method does not go beyond its scope. However JDAAnalyzer extracts the
necessary information – the type – that supports the compositional analysis.
This part is implemented by the algorithm described in Figure 8.5, which
is the building block of our tool. Consequently, JDAAnalyzer analyses the
whole program by computing the final state of the BCT according to the
algorithm in Figure 8.4. The final step of JDAAnalyzer is the computation
of the models of the methods in the BCT as described in the algorithm in
Figure 8.6.

8.4.3 The Current JVML Coverage

The theory of JaDA has been studied in [7] where we have defined the typing
rules for a number of complex features of JVML, in particular, threads, syn-
chronizations, static constructors, recursive data structures, inheritance and
polymorphism, reflection and native methods. For a subset of this language –
those featuring threads and synchronizations – we also delivered a correctness
proof [9]. In this section we briefly overview our solutions for the main
features of JVML that are covered in the current release of JaDA.

Static constructors. Static constructors are problematic because they are not
explicitly invoked by the JVM. In fact, those are invoked on-the-fly by the JVM
when the first (static) access to the containing class is performed. That is, the
code of a static constructor can potentially precede any operation involving
a static member of its class. In order to deal with this issue in a sound way,
we model every static operation as a non-deterministic choice between the

8This is possible only when the bytecode has been compiled including debugging
information.

8.4 The JaDA Tool 185

type of the operation per-se and the typing of the static constructor of the
class followed by the original operation. As one can imagine this makes the
analysis computationally complex because the number of possible behaviors
exponentially increases. The alternative (and the default choice) in JaDA is to
assume that static constructors are all executed before the main method (see
the static-constructor option in Section 8.4.4). This is a safe choice
provided that concurrent operations do not occur within static constructors
(which is often the case).

Recursive data structures. As discussed in Section 8.3.2, the analysis of
JaDA relies on several iterative processes. The termination of these iterations
strongly relies on the constraint that the number of object names is always
finite. To ensure this finiteness constraint, the recursive objects are abstracted
during the inference process. In particular, the inference replaces the field
values whose class is already present in the object structure by a generic
representative value. These representative values are treated in an ad-hoc way
during the analysis of circular dependencies. Namely, they are considered
equal to any other object of the same class (that is their identity is not
guaranteed). Our assessments indicate that this over-approximation does not
jeopardise JaDA’s precision when the elements of the recursive structure are
pairwise different and threads act in a uniform way on them. On the contrary,
the tool may return a number of false positives that is proportional to the
dimension of the structure.

Arrays. Since JaDA does not process numerical expressions, it considers
array[2] equal to array[3]. Therefore, JaDA manages arrays in a similar
way it does for recursive data types. Every element in the array is represented
by a unique object and, as for recursive data structures, this may be the cause
of over-approximations. For example, JaDA returns a false positive when two
different threads in parallel perform a lock operation on different objects of
the array.

Inheritance and polymorphism. Inheritance and, in particular, polymor-
phism are sources of non-determinism. In fact, since it is not possible to
resolve the runtime type of an object at static time, we cannot determine
in a precise way the instance method being invoked over it. To deal with
this issue in a sound way, JaDA substitutes every invocation with the non-
deterministic choice among the method implementations in the type hierarchy

186 The JaDA Tool

of the carrier. Enhancing this process to increase the precision of the analysis
is currently an ongoing work. In the current release, whenever it is possible
to derive the runtime type, we drop the wrong invocations.

Reflection, native methods, alternative concurrency models. In Java,
like in many modern programming languages, there is some support for meta-
programming, namely the capacity of a program to modify itself during its
execution. Java also admits (native) methods and concurrency models that
have no bytecode implementation. These methods are treated in an ad-hoc
manner by the JVM. In all these cases, since there is not an explicit bytecode
implementation, there is no evidence of what will happen at static time.
Because of this reason, JaDA by default assumes a void behavior in these
situations. Although, users can manually provide the behavior descriptions
for methods involving such operations (see custom-types option in Sec-
tion 8.4.4). This is particularly useful in the case of native methods (which
are implemented in C), where users provide a more accurate behavior by
analyzing its actual implementation.

8.4.4 Tool Configuration

In order to provide some flexibility, JaDA supports a set of settings to
customize the analysis.

<target>: this setting specifies the target file or folder to analyze. It is
mandatory. The type of files admitted are: Javaclass files (“.class”),
Java jar files (“.jar”) and compressed zip files (“.zip”). In the case of
folders, the content of the folder is analyzed recursively.

verbose[=<value>]: the value ranges from 1 to 5, the default and more
verbose value is 5.

class-path <classpath>: Standard Java classpath description. If the
target contains dependencies other than those in the standard library,
they must be specified via this option.

target-method <methodName>: fully qualified target method (should be
a void method without arguments). It compels JaDA to analyse the
specified method. If this option is not set, the analysis chooses the first
main method found.

8.5 Current Limitations 187

analysis-extent[=<value>]: Indicates the extent of the analysis. Possi-
ble values are full: analyzes every dependency including the system
and classpath-included libraries; classpath: analyzes every library in
the classpath (this is the default value); custom: analyzes the classes
specified through the property additional-targets; and self: does
not analyze any class but the specified target.

additional-targets <classes>: if analysis-extent is set to custom
this property must contain a comma separated list of the fully qualified
names of a subset of classes in the classpath to include in the analysis.
Such a feature is useful for avoiding typing known libraries.

custom-types <file>: a setting file to specify predefined behavioral
types.

static-constructors[=<value>]: indicates when the static constructors
should be processed, the possibilities are before-all and
non-deterministically. The default option is before-all.

8.4.5 Deliverables

JaDA is available in three forms: a demo website [10], a command line tool
(see Figure 8.7) and an Eclipse plug-in. All of them share the same core: a
prototype implementation of the technique discussed in [7]. At the moment of
writing this chapter, the demo website only allows to analyze single-file pro-
grams and to use a subset of the options previously described. The command
line tool and the Eclipse plug-in are available through direct requests. The
Eclipse plug-in output also displays the execution graph causing the deadlock
with links to the source code that originates it (see Figure 8.10).

8.5 Current Limitations

The current version of JaDA does not cover a coordination mechanism
between thread that is quite usual in Java: the wait-notify-notifyAll
operations. There are also other less critical limitations, such as the analysis
of native code and reflection operations. However, these features can be
covered by manually specifying the behavior of the corresponding methods
(see property custom-types in Section 8.4.4).

The methods wait-notify-notifyAll are public and final of the class
Object; therefore they are inherited by all classes and cannot be modified.

188 The JaDA Tool

Figure 8.10 JaDA Eclipse plug-in screenshot.

The invocations to wait, notify and notifyAll succeed for threads that
already hold the lock of the object a on the stack. In this case, the wait

instruction moves its own thread to the wait set of a and the object is
relinquished by performing as many unlock operations as the integer stored
in the lock field of a. The instructions notify and notifyAll respectively
wake up one thread and all the threads in the wait set of a. The woken-up
threads are re-enabled for thread scheduling, which means competing for
acquiring the lock of a again. The winner will lock a as many times it did
on a before the wait-operation.

Below we briefly describe the solution we are currently investigating for
extending JaDA to cover wait-notify-notifyAll.

We use two new type of dependency pairs: t1 : pa, anq, which means “the
thread t1 sends a notification on a while holding its lock, and t2 : pa, awq,
which means “the thread t2 awaits a notification on a while holding its
lock”. These two pairs are respectively produced by notify and wait

methods. The problem is that, even if the abstract model retains a term
t1 : pa, anq�t2 : pa, awq expressing that the wait and notify occur in
parallel threads (notification-wait matching couple), we cannot conclude that
the program is deadlock-free. This because the above term does not convey
any information about what operation has been performed before. In fact, a
wrong ordering might cause the thread t2 to wait indefinitely. To overcome

8.6 Related Tools and Assessment 189

this problem, we extend JaDA with an additional analysis that detects the
wait pairs that can potentially remain unsatisfied. This solution is extensively
discussed in [7].

8.6 Related Tools and Assessment

JaDA has been assessed with respect to a number of state-of-the-art tools. In
particular, in Table 8.1, the tools have been classified according to the type
of analysis they perform (see [7] for a discussion about analysis techniques
for deadlock detection). We have chosen Chord for static analysis [11],
Sherlock for dynamic analysis [12], and GoodLock for hybrid analysis [13].
We have also considered a commercial tool, ThreadSafe 9 [14].

We have analyzed a number of programs that exhibit a variety of sharing
patterns. The source of all benchmarks in Table 8.1 is available either at [11,
12] or in the JaDA-deadlocks repository10.

Since the current release of JaDA does not completely cover JVM, in
order to gain preliminary experience, we modified the Java libraries and
the multithreaded server programs of RayTracer, MolDyn and MonteCarlo
(labelled with “(*)” in the Table 8.1) and implemented them in our system.

Table 8.1 Comparison with different deadlock detection tools. The inner cells show the
number of deadlocks detected by each tool. The output labelled “(*)” are related to modified
versions of the original programs: see the text

Static Hybrid Dynamic Commercial
Benchmarks JaDA Chord GoodLock Sherlock ThreadSafe

Sor 1 1 7 1 4
RayTracer (*) 0 0 8 2 0
MolDyn (*) 0 0 6 1 0
MonteCarlo (*) 0 0 23 2 0
BuildNetwork 3 0 0
Philosophers2 1 0 1
PhilosophersN 3 0 0
StaticFields 1 1 1
ThreadArrays 1 1 1
ThreadArraysWJoins 1 1 0
ScalaSimpleDeadlock 1
ScalaPhilosophersN 3

9http://www.contemplateltd.com/threadsafe
10https://github.com/abelunibo/Java-Deadlocks

190 The JaDA Tool

This required little programming overhead; in particular, we removed volatile
variables, avoided the use of Runnable interfaces for creating threads, and
reduced the invocations of native methods involved in I/O operations. Out of
the four chosen tools, we were able to install and effectively test only two
of them: Chord and ThreadSafe; the results corresponding to GoodLock

and Sherlock come from [12] because we were not able to get the sources
of the tools and run our new programs (*). We also had problems in testing
Chord with some of the examples in the benchmarks, perhaps due to some
misconfigurations, that we were not able to solve because Chord has been
discontinued.

The first block of programs belongs to a well-known group used as bench-
marks for several Java analysis tools. In its current state JaDA only detects
1 deadlock in all of the four analyzed programs from this group. It gives
responses that are similar to ThreadSafe and Chord (ThreadSafe appears
a bit more imprecise on Sor). The programs in the second block corresponds
to examples designed to test our tool against complex deadlock scenarios like
the Network program. We notice that both Chord and ThreadSafe fail to
detect those kinds of deadlocks. The third group reports the analysis of two
examples of Scala programs [4]. These programs have been compiled with
the Scala compiler 2.11 whose target is Java bytecode. We remark that, to
the best of our knowledge, at the moment of writing this chapter, there is no
static deadlock analysis tools for such language (for this reason the entries
corresponding to the other tools are empty).

We think that the results in Table 8.1 are encouraging and we hope
to deliver more convincing ones as soon as JaDA overcomes its current
limitations.

8.7 Conclusions

JaDA is a static deadlock analysis tool that targets JVML. Therefore it supports
the analysis of every compiled Java program, as well as, every programs
written in languages that are also compiled in JVML, like Scala. The tech-
nique underlying JaDA uses a behavioral type system that abstract the main
features of the programs with respect to the concurrent operations.

JaDA is designed to run in an automatic fashion, meaning that the
inference of the program type and the subsequent analysis could be done
unassisted. Nevertheless, user intervention is possible and may enhance the
precision of the analysis, for example in presence of native methods.

References 191

Even though the tool is still under development, we have been able to
asses it by analyzing a set of Java and Scala programs. This contribution
also reports a comparison between JaDA’s results and those of existing dead-
lock analysis tools, amongst which is a commercial grade one. The results
obtained so far are very promising and we expect to gain more precision as
the development continues.

References

[1] N. Kobayashi and C. Laneve, “Deadlock analysis of unbounded process
networks,” Information and Computation, vol. 252, pp. 48–70, 2017.

[2] E. Giachino, N. Kobayashi, and C. Laneve, “Deadlock analysis of
unbounded process networks,” in Proceedings of 25th International
Conference on Concurrency Theory CONCUR 2014, vol. 8704 of
Lecture Notes in Computer Science, pp. 63–77, Springer, 2014.

[3] J. Gosling, W. N. Joy, and G. L. S. Jr., The Java Language Specification.
Addison-Wesley, 1996.

[4] M. Odersky and al., “An Overview of the Scala Programming Lan-
guage,” Tech. Rep. IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[5] E. Giachino and C. Laneve, “Deadlock detection in linear recursive
programs,” in 14th Int. School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2014, vol. 8483
of Lecture Notes in Computer Science, pp. 26–64, Springer, 2014.

[6] E. Giachino, C. Laneve, and M. Lienhardt, “A framework for deadlock
detection in core ABS,” Software and Systems Modeling, vol. 15, no. 4,
pp. 1013–1048, 2016.

[7] A. Garcia and C. Laneve, “Deadlock detection of Java Bytecode.” A pre-
liminary version is available at http://jada.cs.unibo.it/data/
Doc/jada-draft-lncs.pdf, 2016.

[8] E. Bruneton, “Asm 4.0 a java bytecode engineering library.” http:

//download.forge.objectweb.org/asm/asm4-guide.pdf. Last
accessed: 2016-12-03.

[9] A. Garcia, “Static analysis of concurrent programs based on behavioral
type systems.” Available at http://jada.cs.unibo.it/data/Doc/
Abel-Garcia-PhD-Thesis-draft.pdf, 2017.

[10] A. Garcia and C. Laneve, “JaDA – the Java Deadlock Analyzer.”
Available at http://jada.cs.unibo.it, 2016.

192 The JaDA Tool

[11] M. Naik, C. Park, K. Sen, and D. Gay, “Effective static deadlock
detection,” in 31st International Conference on Software Engineering
(ICSE 2009), pp. 386–396, ACM, 2009.

[12] M. Eslamimehr and J. Palsberg, “Sherlock: scalable deadlock detection
for concurrent programs,” in Proceedings of the 22nd International Sym-
posium on Foundations of Software Engineering (FSE-22), pp. 353–365,
ACM, 2014.

[13] S. Bensalem and K. Havelund, “Dynamic deadlock analysis of multi-
threaded programs,” in in Hardware and Software Verification and
Testing, vol. 3875 of Lecture Notes in Computer Science, pp. 208–223,
Springer, 2005.

[14] R. Atkey and D. Sannella, “Threadsafe: Static analysis for java concur-
rency,” ECEASST, vol. 72, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

