
phd

AARHUS
UNIVERSITY AU

PhD Dissertation

by Sune Wolff

Methodological Guidelines for
Modelling and Design of
Embedded Systems

Methodological Guidelines
for Modelling and

Design of Embedded Systems

Methodological Guidelines
for Modelling and

Design of Embedded Systems

PhD Thesis by

Sune Wolff

Aarhus University Department of Engineering, Denmark

ISBN 978-87-92982-03-3 (e-book)

Published, sold and distributed by:
River Publishers
P.O. Box 1657
Algade 42
9000 Aalborg
Denmark

Tel.: +45369953197
www.riverpublishers.com

Copyright for this work belongs to the author, River Publishers have the sole
right to distribute this work commercially.

All rights reserved c© 2013 Sune Wolff.

No part of this work may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without prior written permission from
the Publisher.

Abstract

The development of heterogeneous embedded systems is a demanding disci-
pline. Technical challenges arise from the need to develop complex, feature-
rich products that take the constraints of the physical world into account.
This thesis shows how a modelling approach to embedded systems devel-
opment can address some of these challenges. Methodological guidelines
supporting various levels of modelling fidelity are presented. These range
from: mono-disciplinary modelling, where the embedded controller as well
as its environment are modelled in a single formalism, to multi-disciplinary
modelling where separate formalisms are used to describe the controller and
environment. The use of the guidelines is demonstrated by means of several
industrial case studies from the electronic warfare domain. To support the
project management aspect of using a modelling approach to embedded sys-
tems development, the integration of formal modelling and agile methods is
described. The result is a collection of lightweight methodological guidelines
which can be integrated into industry strength development processes.

v

Resumé

Udviklingen af heterogene indlejrede systemer er en krœvende disciplin. Ud-
viklingen af komplekse, funktionalitets-rige produkter der skal tage højde
for fysiske begrœnsninger skaber mange tekniske udfordringer. Denne PhD
afhandling viser hvordan en modelleringstilgang til udviklingen af indlejrede
systemer kan løse nogle af disse udfordringer. Metodiske retningslinjer der
guider brugeren i konstruktionen af modeller med forskellige detaljegrader er
beskrevet. Disse retningslinjer spœnder fra: modellering hvor den indlejrede
controller samt dens fysiske omgivelser er modelleret i en enkelt formal-
isme, til tvœrfaglig modellering, hvor sœrskilte formalismer bruges til at
beskrive controlleren samt de fysiske omgivelser. Anvendelsen af retningslin-
jerne demonstreres ved hjœlp af flere industrielle cases indenfor domœnet:
elektronisk krigsførelse. Til at understøtte integrationen af denne modeller-
ingstilgang til udviklingen af indlejrede systemer, beskrives en kombination
af formel modellering og agil udvikling. Resultatet er en samling af metodol-
ogiske retningslinjer, som kan integreres i udviklingsprocesser der bruges i
industrien.

vii

Acknowledgements

I would like to thank my supervisor and mentor professor Peter Gorm Larsen
from the Department of Engineering, University of Aarhus. It was been a
pleasure and a great source of inspiration working with Peter. His profession-
alism, dedication and work-ethics never seizes to amaze me.

I thank Terma A/S for taking on this Industrial PhD in these financially
trying times, and for providing interesting and challenging case studies. I
would also like to thank my industrial supervisor Henning Staun Nielsen
for his help the last three years. Many of my “termite” colleagues deserve
thanks: Troels Lund Rasmussen, Mikael Kallesøe, Erling Østergård, Kristian
Hennings, my former section leader Jørgen Jakobsen as well as my present
sections leaders Preben Schmidt Nielsen and Martin Løkke Nielsen. Andrew
Thomas Gittins deserves special thanks for his great interest in my work and
for seeing business opportunities in the results.

I thank “The Danish Agency for Science, Technology and Innovation” for
providing parts of the funding for the Industrial PhD.

I would also like to express my gratitude to all of my co-authors: Peter
Gorm Larsen, Tammy Noergaard, John Fitzgerald, Ken Pierce, Marcel Ver-
hoef, and Patricia Derler. I have learned a lot from working with this talented
bunch of people, and they have helped improve my dissemination skills as
well as my general skills as a researcher.

I owe many thanks to Peter Gorm Larsen, Joey W. Coleman Stefan Haller-
stede and Marcel Verhoef for providing valuable feedback during the prepa-
ration of this PhD thesis. They have provided many detailed corrections,
suggestions and questions which have greatly improved the final version of
the thesis.

I would also like to thank the assessment committee: Professor Mark
Lawford, Department of Computing and Software, McMaster University;
Professor Anders P. Ravn, Department of Computer Science, Aalborg Univer-
sity; and Professor Henrik Myhre Jensen, Department of Engineering, Aarhus
University.

ix

x Acknowledgements

I would like to thank the entire consortium behind the DESTECS project
for many stimulating discussions, and for providing feedback on my work.
Special thanks go out to Controllab Products for providing frequent 20-sim
support.

For the many cups of coffee and fun lunch break with interesting talks,
I thank my fellow PhD students and colleagues: Kenneth Lausdahl, Augusto
Ribeiro, Joey W. Coleman, Claus Ballegård Nielsen, Anders Kaels Malmos,
Rasmus W. Lauritsen, Luis D. Couto and Martin Peter Christiansen. I want to
thank Mette Stig Hansen and Annie Thomsen from the administration of the
Department of Engineering for guiding me through the bureaucratic jungle a
life at the University can be.

I thank my parents, Hanne and Hans-Werner Wolff for raising me, and
for giving me a solid set of values to live by. I also thank my brother Ebbe
Wolff — the constant encouragement and support from my family has been
priceless.

Last, but certainly not least, I would like to express my deepest and most
sincere gratitude to my beautiful wife, Maria Schnack Wolff for her love,
patience and support. I thank her for reminding me that there is more to life
than work, and for giving me two strong sons: Adam and Carl — my pride
and joy in life. This thesis is dedicated to the three of them.

Contents

Abstract i

Abstract iii

Abstract v

Resumé vii

Acknowledgements ix

I Context 1

1 Introduction 3
1.1 Embedded Systems Introduction 3
1.2 Embedded Systems Design Challenges 4
1.3 Modelling of Embedded Systems 6
1.4 Scope of the Thesis . 8
1.5 Objectives of the Thesis . 10
1.6 Evaluation Criteria . 10
1.7 Thesis Structure . 11

2 Application Domain: Electronic Warfare 15
2.1 Introduction . 15
2.2 The Electromagnetic Spectrum 16
2.3 Threats . 18
2.4 Missile Guidance . 18
2.5 Electronic Support Measures 20
2.6 Electronic Countermeasures 21
2.7 Electronic Protective Measures 23
2.8 Movement and Rotation in 3D Space 24

xi

xii Contents

II Mono-Disciplinary Modelling 25

3 Formal Methods for Embedded Systems Development 27
3.1 Introduction . 27
3.2 Formal Methods in Industry 28
3.3 Formal Modelling in VDM 30
3.4 Incremental Formal Methods and Agile Development 35

4 Guidelines for Stepwise Development of VDM-RT Models 39
4.1 Introduction . 39
4.2 An Incremental Approach to Model Construction 40
4.3 System Boundary Definition 42
4.4 Sequential Design Modelling 44
4.5 Concurrent Design Modelling 47
4.6 Distributed Real-Time Design Modelling 48
4.7 Validation Technology . 50
4.8 Summary . 51

5 Formal Methods Meet Agile Development 53
5.1 Introduction . 53
5.2 The Agile Manifesto Meets Formal Methods 54
5.3 Agile Development — Scrum 60
5.4 Formal Methods in a Scrum Setting 62
5.5 Summary . 64

6 Mono-Disciplinary Case Study 67
6.1 Introduction . 67
6.2 Case Study Design . 68
6.3 Case Description: VDM Model of ECAP 72
6.4 Case Study Discussion . 79
6.5 Lessons Learned . 81
6.6 Summary . 83

III Multi-Disciplinary Modelling 85

7 Multi-Disciplinary Modelling 87
7.1 Introduction to Multi-Disciplinary Modelling 87
7.2 Multi-Disciplinary Modelling in DESTECS 88
7.3 Alternative Multi-Disciplinary Modelling Approaches 95

Contents xiii

8 Multi-Disciplinary Modelling Tool Comparison 101
8.1 Tool Comparison Introduction 101
8.2 Related Comparisons of Simulation Tools 101
8.3 Case Study Description . 102
8.4 Comparison Criteria . 107
8.5 Results of the Tool Comparison 109
8.6 Summary . 117

9 Collaborative Modelling Guidelines 119
9.1 Introduction . 119
9.2 Overview of the Systems Modelling Language SysML . . . 120
9.3 Collaborative Modelling Process Overview 121
9.4 Model Purpose and Requirements 122
9.5 System Decomposition . 123
9.6 System Modelling . 126
9.7 System Analysis . 130
9.8 Summary . 131

10 Evaluation of Multi-Disciplinary Modelling Guidelines 133
10.1 Introduction . 133
10.2 Case Study Description . 134
10.3 Model Purpose and Requirements 134
10.4 System Decomposition . 136
10.5 System Modelling . 142
10.6 System Analysis . 145
10.7 Case Study Results . 146
10.8 Additional Evaluation of the Guidelines 148

IV Evaluation, Discussion and Conclusion 153

11 Conclusion 155
11.1 Introduction . 155
11.2 Research Contribution . 155
11.3 Evaluation of the Guidelines 157
11.4 Future Work . 160
11.5 Outlook . 164

xiv Contents

V Appendices 165

A Glossary 167

B Overview of VDM Operators 173

C Related Projects 179

Bibliography 183

Part I

Context

1

1
Introduction

This chapter introduces the context for this thesis and defines its problem
domain, scope and objectives. The structure of the thesis is also described,
guiding the reader through the flow of the various chapters. The extent to
which the objectives of the thesis are satisfied is evaluated in Chapter 11.

1.1 Embedded Systems Introduction

Computers play an increasingly important role in the everyday life of most
people. We use them for work, to stay in touch with friends and family using
various social media, make online purchases, play games, check the weather
forecast, and the list goes on. Over the years computers have shrunk in size
ensuring that we have a vast amount of computing power in the palm of our
hand — current state-of-the-art smartphones and tablet computers have the
same computational power as professional workstations had a decade ago.

These general-purpose computers are only the tip of the iceberg though.
We are literally surrounded by small computers solving various tasks for us.
Consider a typical kitchen: the microwave, a digital egg timer, a blender,
the controller managing the automatic defroster in a refrigerator, and so on.
Similar systems are used on a much larger scale in our surroundings: the
engine management processor in a modern car; traffic lights along the roads;
satellites; aircraft guidance systems; air traffic control systems; nuclear power
plants and so on. These systems are found all around us, and only few realize
their contribution in making our life comfortable and safe.

These single-purpose computing systems are called embedded systems.
They are computing systems characterised by being integral to and wholly
encapsulated by the systems they control. Consider the following example
from the avionics and automobile industries:

• In 2010 it was estimated that 30% of an airplane cost was from embed-
ded systems.

3

4 1 Introduction

• The use of embedded systems in an airplane range from engine controls
over entertainment devices to navigation equipment.

• Aviation depends on embedded systems to process tickets, check-in lug-
gage and manage logistics, and many other more critical functions.

• A multitude of advanced car applications exist: in-car cameras to judge
the presence, weight, and position of occupants for best airbag deploy-
ment; rear-view mirrors with image-recognition capabilities that sense
impending rear-end collisions; and cruise control systems.

• In 2010, 35% of the expenses of a new car was from embedded systems.
• State-of-the-art automobiles use concealed radar and laser sensors to

analyze road conditions.
• Anti-lock Braking Systems (ABS) are one of the many safety systems

in a car that uses embedded systems.

As can be seen, embedded systems can fit into various categories ranging
from non-critical systems that still need to work reliably (on-board entertain-
ment or car radio) to critical systems ensuring the safety of people.

Safety is one aspect were we depend on these computerized embedded
systems. In the list above, airbag deployment and ABS systems of modern
cars are good examples of this. Failures of such safety aspects can cause
effects ranging from undesired to catastrophic.

Most users have accepted the need of rebooting their Personal Com-
puter (PC) or manually having to update drivers — this is not the case for
embedded systems. Consider a cash machine: if users were forced to reboot
such a system halfway through a money transaction, the user would quickly
loose faith in the system and stop using it. Hence, embedded systems need to
consider reliability above almost everything else.

A special type of embedded systems are called Cyber-Physical Systems
(CPSs). A CPS is a networked embedded system that integrate multiple soft-
ware-rich controllers with sensors and actuators in multiple physical plants.
The modelling of CPSs provides interesting challenges (see future work in
Section 11.4) but is outside the scope of this thesis.

1.2 Embedded Systems Design Challenges

Viewed from both technical and commercial perspectives, the development
of embedded systems –consisting of software, electronics and mechanical
components that operate in a physical world– is a demanding discipline [89,
90]. Technical challenges arise from the need to develop complex, feature-

1.2 Embedded Systems Design Challenges 5

rich products that take the constraints of the physical world into account. The
task is made even more challenging due to the fact that these types of systems
often are developed out of phase: initially the mechanical parts are designed,
then the electronics and finally software is designed. Problems discovered
late in the development process can only be corrected in the software without
causing huge delays to the complete project. This is due to the longer iterative
cycles in electronics and mechanical development. These late changes often
increase the complexity of the software and the risk of introducing new errors.
Hence, an otherwise well-designed software solution could be compromised.
In order to avoid situations like this, early analysis and feedback at a systems
level is necessary.

1.2.1 Challenges Identified by Industry

At the core of the challenges real-world development teams building embed-
ded systems face are the trade-offs between quality, schedule, features and
price. To ship a high quality product on time requires that all team members
have at least a systems-level understanding of the system.

For instance, hardware engineers need to have a basic understanding of
the software layers and requirements. This includes device drivers, operat-
ing systems, middleware, and the application software components. This is
because target system hardware requirements depend on the underlying re-
quirements of the software, and must ensure that the required input and output
are available, the target hardware has sufficient memory of the right type, and
the processor is powerful enough.

On the flip-side, programmers with a pure software background that are
accustomed to developing on PCs or larger computer systems are often intim-
idated by the embedded hardware and tools. As a result of this, many teams
end up using PCs themselves as both target and host in the place of available
target hardware to do development and testing. In this case programmers do
not recognize the importance of using some type of reference hardware and/or
simulation platform that reflects the target.

The Aberdeen Group have made a survey of the main challenges faced
when developing embedded systems [38]. Approximately 160 companies
participated in the survey, and the main results can be seen in Table 1.1.

This thesis is based on an Industrial PhD which was conducted in collabo-
ration between Aarhus University and an industrial partner Terma A/S. Terma
is amongst the world leading developers of self-protection systems for mili-
tary airforce and navy. Terma have defined the case studies presented in Chap-

6 1 Introduction

Challenges Response
1 Difficulty finding and hiring experienced systems engineers and/or

lack of cross-functional knowledge
50%

2 Early identification of system level problems 45%
3 Ensuring all design requirements are met in the final system 40%
4 Difficulty predicting / modelling system product behaviour until

physical prototypes exist
32%

5 Difficulty implementing an integrated product development solution
for all disciplines involved in embedded systems development

28%

6 Inability to understand the impact design changes have across disci-
plines

18%

Table 1.1 Top six challenges of embedded software development.

ters 6 and 10. The industrial challenges in developing complex embedded
systems will also be seen from the point of view of Terma.

1.3 Modelling of Embedded Systems

Modelling is a technique that is often used during the development of em-
bedded systems to address some of the challenges identified in the Aberdeen
survey. A more or less abstract representation of the system is created called
the model and is analysed through several test runs called simulations. It is
important that the model includes an appropriate level of detail of the system
properties. The following definitions are used throughout the thesis:

Abstraction: The removal of detail that is not necessary for that level of
decision making.

Accuracy: Removal of detail is a reduction of accuracy in that particular
domain.

Fidelity: A measure of accuracy of the model when compared to the real
world realisation.

Competent model: We regard a model as being competent for a given ana-
lysis if it is of a sufficient level of fidelity to permit that analysis.

Normally, the engineers involved in the development of an embedded
system make use of domain-specific tools in order to create models of the
individual parts of the system. This enables the individual engineering disci-
plines to optimize specific parts of the system. By creating abstract high-level

1.3 Modelling of Embedded Systems 7

executable models of the entire embedded system, and then simulating them,
systems engineers are able to reason about system-level properties at design
time. This ensures early feedback on system properties, as well as easing
communication across different disciplines, since the impact of a given design
decision is made visible to the entire team. The following terms define the
difference of these modelling approaches:

Mono-disciplinary modelling: The entire system is modelled using a single
formalism. A high level of abstraction is applied to other discipline-
specific parts of the system, or those parts are abstracted away all to-
gether. In this thesis, the mono-disciplinary modelling is done using the
discrete-event (DE) formalism VDM.

Multi-disciplinary modelling: Different formalisms are used for modelling
separate discipline-specific parts of the system. In this thesis the soft-
ware controller of the embedded system is modelled using a DE for-
malism while the physical dynamics are modelled using a continuous-
time (CT) formalism. In this thesis, the multi-disciplinary modelling
is mainly done in the DESTECS tool, where the two domain-specific
models are analysed using co-simulation linking the simulation engines
of the two domain-specific modelling tools.

Modelling is applied at various maturity levels focusing on a single dis-
cipline or spanning several engineering disciplines; Figure 1.1 gives an over-
view of four levels of maturity. Just like similar capability maturity mod-
els [93], it should be seen as a progressive standard where an organisation
must pass their current level in order to proceed to the next. This ensures
that the organisation undergoes a slow, steady progress through the levels of
modelling maturity. Rios et al. [169] have defined a similar maturity model
for model-driven development that focusses more on code generation.

Figure 1.1 Modelling maturity model.

8 1 Introduction

Each of the four levels of modelling maturity supports several levels of
fidelity. The simple mono-disciplinary models could focus solely on function-
ality of the system, while the more advanced mono-disciplinary models add
an architectural description. The multi-disciplinary models add fidelity to the
model by describing the physical dynamics of the system, while the multi-
party integration adds complex considerations to the modelling process. This
last level of modelling maturity is outside the scope of this thesis, however.

1.3.1 Research Projects

In the research world, modelling of embedded systems has been considered
for more than a decade. Many research projects have attempted to tackle the
challenges for developing such multi-disciplinary systems in a predictable
fashion. Below the research initiatives that are most relevant for this thesis
are listed. A more complete overview of related projects can be found in
Appendix C.

DESTECS [43] developed methods and tools that combine CT plant mod-
els with DE controller models through co-simulation to allow multi-
disciplinary modelling, including modelling of faults and fault tolerance
mechanisms.

Modelica [79] is a non-proprietary, object-oriented, equation-based language
to conveniently model complex physical systems.

MODELISAR [76] has developed an open co-simulation interface for cou-
pling models called the Functional Mock-up Interface (FMI).

Ptolemy [44] has studied modelling, simulation and design of concurrent,
real-time embedded system, using a heterogeneous mixture of models
of computation using an actor-oriented modelling approach.

Some of these projects have an academic approach to system modelling,
while others have more focus on industrial applicability. DESTECS and MO-
DELISAR are good examples of projects that are inspired by the industry
needs described in Section 1.2.1.

1.4 Scope of the Thesis

The area of research presented in this thesis is modelling and validation of
embedded systems. However, creating models specifying concurrency, dis-

1.4 Scope of the Thesis 9

tribution, real-time, and that combine several formalisms is itself a complex
endeavor. The focus of this thesis is providing guidelines that support the
model designer in this challenging task. The thesis remains in the scope of
modelling in the early phases of embedded system development where the
concept of operations for the embedded system must be defined and different
design alternatives must be analysed. A model-based implementation of the
final system is outside the scope of the thesis. The thesis is placed in the
context of the V-model as depicted in Figure 1.2 below — the main focus
of the thesis is on modelling in the “Concept of operations” phase, and to a
lesser extent in the “Requirement”, “Architecture” and “Design” phases.

Figure 1.2 Project scope identified in the context of the standard V-Model defined by
INCOSE.

The work presented in the thesis fits into existing international industrial
de facto standards like IEEE/IEC 12207 [95] and Rational Unified Process
(RUP) [53]. The main focus is on the operational concept of IEEE 12207 and
the vision of RUP, where a potentially huge design space must be explored
in order to define the most feasible concept for the embedded system. In
the Requirements definition and analysis phases models can be created to
explicitly state the user requirements elicited to help identifying ambiguous
and/or incomplete requirements. Such models can fit into the different arti-
facts produced in these phases in a natural way [184]. The models can also
help in identifying critical corner-cases in which the final implementation of
the system needs to function correctly. Some of the effort put into validation
and verification of the models can potentially be saved in the testing of the
finalised system since model test cases can be reused.

10 1 Introduction

The IEC 61508 Functional Safety standard [94] defines an overall safety
lifecycle that forces safety to be addressed independently of functional issues.
The methodological guidelines presented in this thesis mainly support activi-
ties in phase three “hazard and risk analysis” of the safety lifecycle, and to a
lesser extent in phase one “concept”, two “Scope definition” and four “safety
requirements”. Since IEC 61508 addresses safety for both the equipment un-
der control (the physical plant) and the control system, a multi-disciplinary
modelling approach should be used. An alternative safety standard is the
ANSI/ISA-S84.01[16]. This standard only addresses safety instrumented sys-
tems, and not the equipment under control. Hence, a mono-disciplinary mod-
elling approach is a better fit.

1.5 Objectives of the Thesis

The objective of this thesis is to define and evaluate methodological guide-
lines supporting modelling and design of embedded systems. To support dif-
ferent levels of modelling maturity, separate guidelines must be developed
for mono-disciplinary modelling (where the entire system is modelled us-
ing a single formalism) and multi-disciplinary modelling (where different
formalisms are used for modelling the software controller and the physical
properties of the system).

Creating models of complex embedded systems to be used for exploration
of different design alternatives is inherently difficult, and it is hard to esti-
mate the duration of the individual activities involved. Describing a process
including activities with such a degree of uncertainty would not make much
sense — processes are more useful for describing well known tasks of a more
repetitive nature. This is the reason why this thesis focuses on methods and
guidelines which should be seen more like a collection of tools — when
encountering a modelling challenge methodological guidelines are in place
to support the user in overcoming this challenge.

1.6 Evaluation Criteria

The developed guidelines will be evaluated with regard to the properties de-
scribed below. The evaluation criteria are defined based on the challenges
of embedded software development identified by the Aberdeen Group in
Section 1.2.1. Challenge #3 is not addressed since the final system imple-
mentation is outside the scope of this thesis.

1.7 Thesis Structure 11

Prediction of system behaviour: The guidelines must help the model de-
signer in predicting real system behaviour based on model simulation.
This is important when exploring different system design alternatives
using a modelling approach. This criteria is based on challenge #4 in the
Aberdeen Group survey.

Cross-disciplinary collaboration: The guidelines must strengthen cross-dis-
ciplinary collaboration by ensuring common means of communication,
and by allowing the individual disciplines to work with the domain-
specific tools they are accustomed to. Collaboration across both tech-
nical and non-technical boundaries must be enhanced. This criteria is
based on challenges #1 and #5 in the Aberdeen Group survey.

Understanding system-level impact of design decisions: Design decisions
must be made visible at the system-level. This will help in the analysis
of system-level impact of local design decisions, and will help the in-
dividual disciplines to understand the effect of domain-specific design
decisions. This will help in optimising the system globally opposed to
local optimisation of only parts of the system. This criteria is based on
challenges #2 and #6 in the Aberdeen Group survey.

Industry-ready: It is important that the methodological guidelines fit into
existing development methods used by the industrial partner Terma A/S.
The guidelines shall augment existing development practices and stan-
dards, and be applied with the least disruption possible. This criteria is
not based on any one of the challenges identified by the Aberdeen Group
survey, but is of major importance to ensure that the industrial partner
will benefit from the guidelines.

1.7 Thesis Structure

The thesis structure accommodates the thesis objectives of providing meth-
odological guidelines that support various levels of modelling fidelity. Part I
introduces the thesis and provides information on the application domain. If
the reader is primarily interested in mono-disciplinary modelling guidelines
he should proceed to Part II and from there go straight to the evaluation,
discussion and conclusion in Part IV. Readers interested in multi-disciplinary
modelling should go to Part III and from there to Part IV. Of course the thesis
can also be read all the way through which will provide information on both
mono- and multi-disciplinary modelling. Each chapter provides concluding

12 1 Introduction

remarks on that specific chapter, whereas Chapter 11 concludes the thesis in
its entirety. This reading guide is shown graphically in Figure 1.3.

Figure 1.3 Structure and reading guide for the thesis.

1.7 Thesis Structure 13

Part I of this thesis introduces the problem domain and defines the objec-
tives of the thesis (this chapter). The electronic warfare domain is introduced
in Chapter 2, giving the reader the necessary background knowledge needed
in order to understand the case studies presented throughout the thesis. Part I
is based on the following publication1:

[199] Sune Wolff, Peter Gorm Larsen, and Tammy Noergaard. Development
Process for Multi-Disciplinary Embedded Control Systems. In proceed-
ings of the 7th EUROSIM Congress on Modelling and Simulation. Sep-
tember 2010.

Part II of this thesis describes the use of mono-disciplinary modelling
(using the DE formalism VDM) in the development of embedded systems.
A structured, stepwise approach to developing distributed real-time models
using the formal language VDM-RT is described in Chapter 4. In Chapter 5
a way of combining formal and agile methods is discussed, and a concrete
example is given of how formal specifications can be used in the agile project
management framework Scrum [174]. The use of formal methods in an indus-
trial setting is discussed in Chapter 6. The discussion is based on a case study
within the electronic warfare domain. A combination of the methodological
guidelines presented in Chapters 4 and 5 is applied in the case study. The
guidelines are deliberately kept separate from the case study exemplifying
their use. This was done to create a better reference document, easing fu-
ture use of the guidelines without having them cluttered with the case study
description. In addition, this creates a clearer separation of the guideline
presentation to the evaluation. Part II is based on the following publications:

[119] Peter Gorm Larsen, John Fitzgerald, and Sune Wolff. Methods for the
Development of Distributed Real-Time Embedded Systems using VDM.
International Journal of Software and Informatics, 3(2-3), October 2009.

[120] Peter Gorm Larsen, John Fitzgerald, and Sune Wolff. Are formal meth-
ods ready for agility? a reality check. In Stefan Gruner and Bernhard
Rumpe, editors, 2nd International Workshop on Formal Methods and
Agile Methods, pages 13–25. Lecture Notes in Informatics, September
2010.

[197] Sune Wolff. Scrum Goes Formal: Agile Methods for Safety-Critical Sys-
tems. In ICSE 2012: Proceedings of the 34th International Conference
on Software Engineering, pages 23–29, June 2012. Workshop on For-

1 Bibliographic reference added for reading convenience

14 1 Introduction

mal Methods in Software Engineering: Rigorous and Agile Approaches,
FormSERA 2012.

[198] Sune Wolff. Using Formal Methods for Self-defense System for Fighter
Aircraft — An Industrial Experience Report. International Journal of
Empirical Software Engineering, 2012. Submitted — under review.

Part III of this thesis describes the use of multi-disciplinary modelling
(combining DE and CT models) in the development of embedded systems.
An overview of available tools capable of collaborative modelling and co-
simulation is given in Chapter 7. The Ptolemy and DESTECS tools are sub-
jects of a comparative study in Chapter 8. Both tools are used for modelling an
aircraft fuel system and several comparison criteria are used to benchmark the
two tools against one another. In Chapter 9 methodological guidelines for de-
veloping collaborative models are presented and evaluated in Chapter 10. As
part of this evaluation the central case study from Chapter 6 is extended with
a CT description of the environment in which the system operates, following
the methodological guidelines. As in Part II, the guidelines are kept sepa-
rate from the case study applying them, to create a methodological reference
document easing future use. Part III is based on the following publications:

[74] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and
Sune Wolff. Collaborative Modelling and Co-simulation in the Devel-
opment of Dependable Embedded Systems. In D. Méry and S. Merz
(editors), IFM 2010, Integrated Formal Methods, volume 6396 of Lec-
ture Notes in Computer Science, pages 12–26. Springer-Verlag, October
2010.

[200] Sune Wolff, Ken Pierce and Patricia Derler. Multi-domain Modelling
in DESTECS and Ptolemy — a Tool Comparison. In SIMULATION:
Transactions of The Society for Modeling and Simulation International
(journal). Submitted — under review.

[196] Sune Wolff. Methodology for collaborative modelling. In International
Journal of Software and Systems Modeling. Submitted — under review.

In the final part of this thesis (Part IV), the research contribution of the
PhD thesis is summarised. The extent to which the objectives of the thesis
have been met is discussed, and future work is identified.

Appendix A provides a glossary of commonly used abbreviations and
terms used in this thesis. In Appendix B, a complete list of all the operators
of the formal method VDM are listed along with some examples of the use
of the formal specification language. Related projects are briefly introduced
in Appendix C.

2
Application Domain: Electronic Warfare

Throughout this thesis several case studies are presented, all associated
with the electronic warfare domain. They showcase the application of the
guidelines and how they support the modelling of embedded systems. This
chapter provides necessary domain knowledge for the case studies described
in Chapter 6 and 10 and to a lesser extent to Chapter 8.

2.1 Introduction

Military forces depend on the electromagnetic spectrum for many applica-
tions including: detection; identification; and targeting. Combatants try to
dominate the electromagnetic spectrum in order to find, fix, track, target,
engage, and assess the adversary, while denying that adversary the same
ability. Electronic Warfare (EW) is traditionally divided into the following
three categories:

Electronic Support Measures (ESM) : Used to gain knowledge of the en-
emy using sensors operating in the electromagnetic spectrum. Examples
of this are infrared (IR) sensors mounted on missiles to track the position
and movement of an enemy, or IR sensors mounted on airborne systems
to acquire information of incoming missiles.

Electronic Countermeasures (ECM) : Used to suppress the enemy use of
ESM. One way to do this is to deploy decoys emitting energy in the
correct frequency band of the electromagnetic spectrum in order to hide
the airborne system from incoming threats. Another example is active
ECM like jammers that blind or destroy enemy ESM.

Electronic Protective Measures (EPM) : Used to lower the enemy use of
ECM. As an example, resistance to jamming can be mentioned. Is some-
times called Electronic counter-countermeasures (ECCM).

15

16 2 Application Domain: Electronic Warfare

These three categories –as well as the electromagnetic spectrum– are
described in further details in the following sections of this chapter. The de-
scription below is based on the engagement scenario between a fighter aircraft
and a missile. The main inspiration for this chapter was found in [173], [166]
and [21] — for a more detailed description of the electronic warfare domain,
please consult these texts.

Section 2.2 gives a short introduction to the electromagnetic spectrum.
In Sections 2.3 an overview of different categories of threats is given, while
Sections 2.4 introduces various generations of missile guidance technologies.
Sensor technologies used to monitor the electromagnetic spectrum are intro-
duced in Section 2.5, and Section 2.6 describes various technologies used to
reduce the effectiveness of these sensors. Section 2.7 describes techniques
used to protect the sensors, and finally Section 2.8 gives a brief introduction
to movement and rotation in 3D space.

2.2 The Electromagnetic Spectrum

For a large part of history, light was the only known part of the electro-
magnetic spectrum. Renowned scientists like Michael Faraday and James
Maxwell started the expansion of this definition to encompass the range of
all possible frequencies of electromagnetic radiation. An overview of the
electromagnetic spectrum is given in Figure 2.1.

Figure 2.1 A diagram of the electromagnetic spectrum, showing radiation type across the
range of frequencies and wavelengths.

EW is mainly concerned with the radar and IR bands of the electromag-
netic spectrum. Radar is short for RAdio Detection And Ranging. A radar
system continuously transmits waves or short bursts of electromagnetic en-
ergy in the radio frequency (RF) band, that bounces off objects such as ships
or aircraft. Part of the transmitted signal is reflected back to the radar system
making it possible to determine the direction of and range to the objects. A

2.2 The Electromagnetic Spectrum 17

special type of radar system called a Doppler radar can determine the velocity
of an object using the difference in the frequencies between the emitted radar
signal and the returned signal, caused by the movement of the object relative
to the radar source.

Asymmetrical objects (like aircrafts) return different amounts of energy
when hit from various angles. This phenomena is call the radar-cross-section
(RCS) of a given object and is used by radar systems to determine the type of
object detected. An example of the RCS of an aircraft is given in Figure 2.2.

Figure 2.2 Example of radar-cross-section of an aircraft.

Radar systems operate in different modes: initially the radar is scanning
for possible enemy aircrafts; once an aircraft is intercepted, the radar can
track it in order to monitor the trajectory of the aircraft; if a missile is fired,
the radar is locked onto the aircraft in order to help guiding the missile to-
wards its target. The energy transmitted from the radar differs in these modes,
which makes it possible for sensors to determine the current mode of the radar
system.

Radiation of energy from an aircraft within the infrared band of the elec-
tromagnetic spectrum is mainly due to the heat generated by the engine. In
addition, air friction generates heat on the leading edges of the aircraft that
leads to energy emission in the IR band. Examples of the IR signatures of a
fighter aircraft, helicopter and commercial aircraft can be seen in Figure 2.3.
This energy is monitored by IR sensors and is used by IR guided missiles

18 2 Application Domain: Electronic Warfare

(heat-seeking missiles in layman’s terms) to guide the missile towards its
target.

2.3 Threats

An aircraft can encounter different types of threats when flying missions in
enemy territory — either from a ground-based missile launcher (Surface-to-
Air Missile (SAM)) or from an enemy aircraft (Air-to-Air Missile (AAM)). A
special type of SAM is the Man Portable Air Defense System (MANPADS)
— a small portable missile system that can be operated by a single person.

Older types of missiles needed to actually impact with a target in order to
detonate. Most modern missiles however, have proximity sensors that deto-
nate the missile once it is within a certain range of the aircraft — this is called
the deadly envelope of the missile.

2.4 Missile Guidance

Modern missiles use a guidance system to steer towards the target. The guid-
ance system uses electromagnetic radiation in either the RF or IR bands of
the electromagnetic spectrum to determine the position of the target.

RF guided missiles are either equipped with a radar system itself or make
use of one or more ground-based radar systems to locate the target. This is an
active type of guidance where the missile transmits energy in the RF band to
determine the position of the target.

IR guided missiles uses a sensor to monitor the IR radiation from the
surroundings that is used to determine where the target is. Since no energy is
emitted from the ESM of an IR guided missiles this type of guidance is called
passive.

IR guided missiles have evolved a lot through the years. A quick overview
of four generations of IR guidance systems is given below (for a more in depth
explanation, see [21]):

First generation seekers: Using an un-cooled detector technology, operat-
ing in the near-IR waveband, see high temperature targets like the engine
and exhaust plume of an aircraft. This limits the use of this guidance
technology to rear-engagement. A rotating disk in front of the IR sensor
is used to determine the size of the target as well as determine if the
missile is flying towards the middle of the target. This generation of

2.4 Missile Guidance 19

Figure 2.3 Infrared signatures of (a) F22 fighter aircraft, (b) helicopter and (c) commercial
aircraft.

IR guidance suffers from insensitivity when the target is directly in the
center of the field-of-view of the sensor.

Second generation seekers: By rotating the IR sensor, the insensitivity of
the first generation IR guidance is removed. Instead of trying to maintain
the target directly in the middle of the field-of-view of the sensor (as the
first generation does) the target must rotate around the center field-of-
view in a perfect circle if the missile is on target. Late second generation
missiles started using dual band IR sensors enabling them to distinguish
the hot engine of an aircraft from the warm leading edges resulting in a
much more nuanced target picture.

Third generation seekers: Creates a simulated image of the target by ro-
tating prisms in front of the IR sensor in certain patterns in order to
move the target over the IR detector (this technology is often called
Pseudo Imaging Systems). This generation of guidance uses a much
narrower field-of-view (while maintaining the same accuracy as earlier
generations) which increases the robustness against countermeasures.

Fourth generation seekers: Multi-element detectors are used to create a true
2-dimensional IR image of the target. This technology is robust against
countermeasures since the missile has an actual image of the target, and
is less likely to be lead away from this. The more pixels in the IR sensor,
the more accuracy — but also the more computational power is needed
to process the imagery.

Once the missile target has been determined (using one of the technolo-
gies described above) various steering techniques are used to control the
missile trajectory. Line-of-sight trajectory continuously maintain the target

20 2 Application Domain: Electronic Warfare

in the center of missile field-of-view. This is often called pure pursuit since
the missile continuously steers directly towards the target.

Figure 2.4 Pure pursuit (left) and proportional navigation (right) explained. Source [21].

Proportional navigation uses a proportional gain on the current direction
error in order to aim at where the target is moving towards instead of the
targets current position. These two approaches are illustrated in Figure 2.4.

2.5 Electronic Support Measures

ESM is the general term used when describing equipment used to monitor
and sense energy being emitted in the electromagnetic spectrum. ESM covers
the RF and IR guidance sensors used by missiles, but this section focuses on
the ESM installed on-board aircraft used by pilots to gain knowledge of the
current threat situation.

2.5.1 Radar Warning Receiver

Radar tracking is an active type of missile guidance, where the aircraft is hit
by the electromagnetic energy transmitted by the radar system. This enables
sensor systems (called Radar Warning Receiver (RWR)) installed on-board
the aircraft to notify the pilot of incoming radar guided threats. As described
in Section 2.2 radar systems operate in different modes if they are scanning
for a target, if a target is being tracked and if the systems locks onto the target

2.6 Electronic Countermeasures 21

in order to guide a missile towards it. By detecting the characteristics of the
radar signal, the RWR can determine the current mode and warn the pilot.

2.5.2 Missile Warner System

IR guidance is a passive guidance system, which in itself does not emit elec-
tromagnetic energy that can be monitored by ESM. A Missile Warner Sys-
tem (MWS) is a passive system operating in either the IR or RF domain. A
passive IR-based MWS continuously monitors the IR images of the surround-
ings of the aircraft. If a hot spot is detected (the exhaust plume of a missile),
which over a short time span is moving towards the aircraft, the MWS issues
a missile warning to the pilot.

Active MWS also exist, operating in the RF frequency band. Radar waves
are continuously being transmitted in order to determine the range and veloc-
ity of incoming missiles. RF-based MWS systems can have issues detecting
missiles with a small RCS (see Figure 2.2). Another major drawback by hav-
ing an active MWS is that missiles can use the transmitted energy to help
track the aircraft.

2.6 Electronic Countermeasures

In an engagement scenario between an aircraft and a missile, both systems
make use of ESM: the missile uses ESM to determine the position of the
aircraft, and the aircraft uses ESM to detect missiles to determine incoming
direction, range, missile type and so on. ECM are used to counter the enemy’s
use of ESM — in this section we are mainly concerned with the ECM used
by the aircraft in order to reduce the effectiveness of the missile ESM.

2.6.1 Jammer

Radar systems utilise the reflected energy from a transmitted radar signal
to determine position and velocity of the aircraft. To counter radar guided
missiles an aircraft can use a radar jammer — the simplest of which basically
emits a noise signal within the same frequency band as the one used by
the enemy radar system. More sophisticated jammers can transmit a signal
that tricks the radar system into calculating the wrong position, range and/or
velocity of the aircraft.

For the jammer to be effective, the emitted signal needs to be with a higher
power than the signal the enemy radar would otherwise receive. This ensures

22 2 Application Domain: Electronic Warfare

that the original signal is interpreted as noise, and the jammer signal is used
instead. There is a drawback to this though: the jammer signal can attract
enemy radar systems. Thus, it is important to turn off jammers when not in
use, so that the jammer is not acting as a beacon for enemy radar systems.

2.6.2 Chaff

An alternative type of ECM effective against RF guided threats are dispens-
able decoys called chaff. Chaff consists of thin pieces of aluminum foil or
metalised glass fibres, which creates a cloud when dispensed from the air-
craft. This cloud has a RCS similar to that of the aircraft appearing as an
alternative target. By combining the dispensing of chaff with aircraft evasive
maneuvers, the enemy radar system will start tracking the chaff cloud instead
of the aircraft. This scenario is illustrated in Figure 2.5.

Figure 2.5 Chaff dispensing scenario. In (a) the missile is tracking the aircraft. A chaff cloud
is dispensed in (b) at which point the missile see one long target. The chaff cloud separates
from the aircraft in (c) at which point the missile has two targets to choose from. In (d) the
missile hos chosen the chaff cloud as the new target.

RF guided missiles use different techniques to determine the main target
amongst multiple possible targets. One such technique is a range gate where

2.7 Electronic Protective Measures 23

the missile only evaluates targets within the given gate — if the aircraft can
escape this gate before the chaff cloud disappears, the missile looses its track
on the aircraft.

2.6.3 Flare

IR guided missiles rely only on the electromagnetic radiation in the infrared
waveband. Dispensable decoys called flares can be used by the pilot to escape
incoming missiles. Flares are made from flammable material that creates an
IR signature when dispensed. The engagement scenario is similar to the one
described in Figure 2.5.

As described in Section 2.4 early generation IR guided missiles only mon-
itor a single frequency band in the IR domain to detect the engine and exhaust
plume of the aircraft. To counter this type of IR guidance, flares which emit
energy in a single frequency band are used — the flares need to emit more
energy in that frequency band in order to be more attractive to the missile.

Later generation IR guidance systems are able to distinguish the hot en-
gine from the warm leading edges of the aircraft by monitoring the IR domain
in two separate frequency bands. To counter these more modern types of IR-
based guidance systems, pilots can deploy dual-frequency flares that emit
energy in two separate frequency bands to better resemble the IR signature of
the aircraft.

Once the flares are dispensed from the aircraft the velocity quickly de-
grades due to drag generated by the air resistance. More modern IR guidance
systems are forward-biased — they prefer a target that keeps moving forward
and does not slow down all of a sudden. In order to counter these more in-
telligent systems, self-propelled or kinematic flares can be used. This type of
flares follows the movement of the aircraft for a longer time, and only slowly
increase the distance to the aircraft making it much harder for the missile to
distinguish the flare from the aircraft.

2.7 Electronic Protective Measures

Whereas ESM are used to monitor the electromagnetic spectrum and ECM
are used to reduce the enemy’s electromagnetic knowledge, EPM are used
to protect one’s own ESM equipment from enemy ECM interference. One
example of EPM already mentioned in Section 2.6.3 is the forward-biasing
of modern missile guidance systems. This is a protective mechanism used in
order to avoid interference from flares dispensed by the target. EPM is also

24 2 Application Domain: Electronic Warfare

often called counter-countermeasures since they try to counter the enemy use
of ECM.

Radar systems can also make use of EPM in order to reduce the effect
of jammers. One such technique is frequency agility where the radar system
swiftly shifts the frequency used. This makes it much harder to RWR systems
to determine the correct frequency to be used by the jammer.

2.8 Movement and Rotation in 3D Space

Most of the background information described in this chapter applies to not
only fighter aircrafts, but also to helicopter, transport aircrafts and even bat-
tleships — even though ships are outside the scope of this thesis. A full
introduction to flight dynamics is also outside the scope of this thesis, but
a short introduction to some of the terms used when describing the position
and rotation of an aircraft in a six degrees of freedom (6DoF) model is needed
though.

Figure 2.6 The three rotational axis of an aircraft: roll, pitch and yaw.

The position of an aircraft can be described using Global Positioning
System (GPS) coordinates, or (as is the case in this thesis) as a simple three
dimensional vector: forward-backward on the x-axis; right-left on the y-axis;
and up-down on the z-axis. The angles of rotation in three dimensions about
the vehicle’s center of mass, known as roll, pitch and yaw are shown in
Figure 2.6. In this thesis, the three-dimensional rotation is described using
quaternions, which are four-dimensional structures, representing an axis vec-
tor and an angle of rotation around this vector.

Part II

Mono-Disciplinary Modelling

25

3
Formal Methods for Embedded Systems

Development

This chapter introduces a mono-disciplinary modelling approach for em-
bedded systems development through the use of formal methods. The formal
method VDM is described, as are selected industrial applications of formal
methods. Related work on incremental formal methods and the combina-
tion of agile and formal methods is also presented. This chapter provides
the formal foundation for Chapter 4, which describes guidelines for incre-
mental development of VDM models, and Chapter 5, which discusses the
combination of agile and formal methods.

3.1 Introduction

As has been described in Chapter 1, embedded systems are omnipresent.
As functionality is added, the software embedded in them grows to incorpo-
rate more powerful algorithms. For example: a hybrid car with its advanced
propulsion, safety and navigation features runs on as much as 200 million
lines of embedded code. A method for managing the complexity of such sys-
tems is needed, and the use of system models throughout the design process
has been proposed as a possible solution.

System models are often used to capture ideas and requirements. A sys-
tem model can be an executable specification that allows collaboration across
engineering disciplines and modelling domains. The design space of an em-
bedded system encompasses all possible solutions to a given problem. Design
Space Exploration (DSE) is the task of exploring these alternative designs in
order to find the optimal solution. A system model can be simulated to explore
design trade-offs quickly, decreasing the size of the viable design space.

Modelling provides the freedom to innovate by making it easy to try out
new ideas and exposing design problems early. Moving design tasks from
the lab and field to a simulated environment on desktop computers, enables
exploration of the design before any real hardware prototypes exist. This has

27

28 3 Formal Methods for Embedded Systems Development

the potential to speed up the development of embedded systems, and to help
discovering design issues as early as possible.

One way to create such system models is using formal methods which are
a collection of mathematically-based techniques used in the development of
computer systems. Formal methods consists of a formally defined language
(a formal specification language) and various techniques for system descrip-
tion and analysis. Using a formal specification language, a system can be
described precisely with regards to functionality, concurrency, completeness,
correctness, etc. This means that the properties of a system can be analysed
without actually having to execute the system [87]. Many formal specification
languages have an executable subset that can be used to specify executable
models of the system. The model developer can then exercise the system
model in order to investigate runtime properties of the system [81].

This second part of this thesis describes the use of mono-disciplinary
modelling as a tool for developing embedded systems. The focus is on the
discrete-event (DE) domain where both the controller as well as the phys-
ical entities of the embedded system are modelled using a discrete formal
specification language. Section 3.2 gives an introduction to the use of for-
mal methods for developing embedded systems. The DE modelling language
used throughout this thesis is the formal method Vienna Development Method
(VDM) which is described in Section 3.3. A complete overview of the VDM
operators can be found in Appendix B. This chapter is concluded in Sec-
tion 3.4 with a literature overview of the use of incremental formal methods
and combinations of agile and formal methods.

3.2 Formal Methods in Industry

A survey of 62 industrial applications of formal methods carried out by Wood-
cock et al. [201] gives a good overview of application experiences as well
as future challenges in ensuring wider usage of formal methods in indus-
try 1. It appears that a lightweight approach [98] (where formal verification
techniques are applied to only the most critical parts or properties of a sys-
tem) dominates the industrial use of formal methods. Lightweight analysis
techniques involving targeted use of formalisms in only the most critical sub-
systems or system properties, or automated validation techniques seem to be
preferred over time-consuming formal proof. The survey shows that 85% of
the projects had staff with prior experience in the use of formal methods. The

1 In the most recent update, the survey now includes feedback from 98 projects.

3.2 Formal Methods in Industry 29

value of targeted assistance from experienced practitioners is emphasised by
several projects in the survey. The main challenges identified were making
tools more robust and usable, integrating the use of formal methods into
industrial development processes and overcoming skill barriers.

One of the industrial partners in the DEPLOY project [170] reports some
impressive benefits by using automatic checking of formal specifications:
“...one person-month of effort was replaced by 17 minutes of computation.” A
preference for lightweight formal methods is also expressed where the formal
elements should be as non-intrusive as possible. In one case, the industrial
partner SAP achieved this by building adapters to the formal notations used,
integrating these into well-established development environments. This en-
sured that a wider range of developers could make use of the formal notation
technique from within the development environments they preferred.

Two industrial applications of formal methods in the automated transport
sector (Line 14 of the Paris subway [26] and the shuttle at Roissy airport [19])
have been compared by Abrial [4], and common experiences and lessons
learned are derived. Both of the projects used the formal method B [3], where
a software specification is transformed into the executable code through a
series of formal refinement steps. Since the basis of the formal modelling is
the requirements document, the importance of the quality of this document is
stressed. By using formal methods to define the requirements of the software
system, the risk of ambiguous or erroneous requirements is reduced. The
missing integration of formal methods into existing development processes
is found to be a major obstacle though — especially the proof activities are
hard to incorporate.

Several reports on industrial usage of model checking at Rockwell Collins
have been conducted (e.g. [138] and [139]). Several interesting lessons were
learned including: “...it is easier for the developers to master the verification
tools than it is for experts in formal verification to master the complex product
domain.” — this clearly stresses the importance and challenge of good com-
munication between developer and customer in order to ensure knowledge
transfer of domain specific details. A high degree of automation was used,
ensuring automatic generation of verification models from the engineering
models used on a daily basis. This eliminates the tedious process of manually
keeping two types of models in sync and supports quicker re-verification of
models.

Androick et al. [15] have reported a rare success in large-scale formal ver-
ification — a formal, machine checked, code-level proof of the full functional
correctness of the seL4 microkernel is provided. 8700 lines of C code and

30 3 Formal Methods for Embedded Systems Development

600 lines of assembler were analysed in order to provide assurance for safety,
security, and correct functionality of the system. An approximate effort of
14 person-years was spent on the project — similar projects are expected to
take 4 to 6 person-years of effort using conventional development techniques
which would not produce a formally verified kernel. It is expected that a
subsequent project could be done in 8 person-years because of the experience
gained as well as the possibility to reuse many proofs.

Another successful application of formal verification is reported by Was-
syng and Lawford who describe the development of the shutdown system
for the nuclear generating station at Darlington, Ontario [193]. Through a
thirteen year project, formal methods were applied to all aspects of system
development: requirements, design, implementation and verification. A lot of
effort was put into making the formal methods used more easily understand-
able by domain experts. They conclude that: “using a notation and presenta-
tion method that industrial participants will accept, is about as important as
the technology in the formal methods themselves”.

3.3 Formal Modelling in VDM

The formal method VDM is used throughout this thesis — both for mono-
disciplinary modelling (because the author had prior experience using VDM)
but also for multi-disciplinary modelling (since VDM is used to describe the
DE models in the DESTECS toolchain as described in Section 7.2). This
section gives an introduction to VDM covering the notation, tool support and
industrial usage.

VDM is a collection of formal techniques to specify and develop soft-
ware. It consists of a formally defined language, as well as strategies for
abstract descriptions of software systems. In the rest of the thesis, the term
VDM is used to cover both the formal language, as well as the techniques
accompanying it.

VDM originates from IBM’s Laboratories in Vienna in the 1970s. The
very first language supported by the VDM method was called Vienna Defi-
nition Language (VDL), which evolved into the meta-language Meta-IV [27,
32] and later into the specification language VDM-SL [160] which has been
ISO standardised [97]. Over the years, extensions have been defined to model
object-orientation (VDM++ [72]) and distributed real-time systems (VDM-
RT [145, 185]). Two alternative tools exists; the commercial tool VDM-
Tools [75] and the open-source initiative Overture [116]. These are intro-
duced in more details in Section 3.3.3.

3.3 Formal Modelling in VDM 31

3.3.1 VDM Notations

In the following, an overview of the VDM notation is provided. This introduc-
tion to VDM is deliberately kept short. We only introduce the key operators
and concepts that are needed for understanding the capabilities of the formal
method, the case studies and the guidelines. For more details, Appendix B
includes a complete overview of all the VDM operators.

Data in VDM models is described using simple abstract data types such
as natural numbers, booleans and characters, as well as product and union
types and collection types such as sets, sequences and mappings. VDM has
both a mathematical and an ASCII based syntax, where the latter is used in
this thesis since it is much easier to understand. The system state is described
using state in VDM-SL and instance variables in VDM++ and
VDM-RT, the value of which can be restricted by invariants. To modify the
state of the system, operations can be defined either explicitly by imperative
statements, or implicitly by pre- and post-conditions. Functions that cannot
access the state are defined in a similar fashion. Even though a large subset
of implicit functions and operations can actually be executed (see [80]), this
thesis uses explicitly defined functions and operations that can be interpreted
by the VDMJ interpreter [127] of the Overture Tool [154].

In VDM++ and VDM-RT models, classes may be active or passive. The
instances of an active class have their own thread of control; instances of
passive classes are always manipulated from the thread of control of objects
belonging to active classes. A thread executes a sequence of statements. Each
thread is created whenever the object that houses it is created but the thread
needs to be started explicitly using a start statement. Each thread termi-
nates when the statements in the body of the thread completes execution.
It is also possible to specify threads that do not terminate, and this feature
is valuable in modelling reactive systems. Operations may be specified as
asynchronous, allowing the caller to resume its own thread after the call is
initiated. A new thread is created, automatically started and scheduled to
execute the body of the asynchronous operation.

Operation execution may be constrained by permission predicates [113],
which are Boolean expressions over instance variables. If a permission pred-
icate evaluates to false on an operation call, the call is blocked until the
predicate becomes true again. Such predicates can make use of history
counters that, for each object, count the number of requests, activations and
completions per operation. A shorthand mutex permission predicate allows
the user to specify mutual exclusion between the executions of specified op-

32 3 Formal Methods for Embedded Systems Development

erations. This is used to manage concurrent access to data by the objects
encapsulating the shared variables.

The VDM-RT extensions to VDM support the description and analysis
of real-time and distributed systems. VDM-RT includes primitives for mod-
elling deployment over a distributed hardware architecture and support for
asynchronous communication. Within a special system class, the modeller
can specify computation resources (CPUs) connected in a communication
topology by buses. Two predefined classes, CPU and BUS allow scheduling
(first-come-first-serve or priority-based) and performance characteristics of
CPUs and buses to be readily expressed.

The semantics of VDM has been extended with a notion of time so that
any thread running on a computation resource or any message in transit on
a communication resource can cause time to elapse. Each construct in the
modelling language has a default time associated with it, that can be changed
by the user if desired.

In VDM-RT, threads can be made periodic using the built-in time concept:�
thread

-- (period[ns], jitter[ns], delay[ns], offset[ns])
periodic(400E6,0,0,0) (PeriodicOp)
� �

The timing characteristics of a periodic thread are given by a 4-tuple
(p, j, d, o): p describes the period; j is the jitter, d is the minimum time be-
tween invocations of PeriodicOp and o is the initial offset (see Figure 3.1).

Figure 3.1 Period (p), jitter (j), delay (d) and offset (o).

Special (duration and cycles) statements may be used in operation
bodies to specify time delays that are independent of or dependent upon pro-
cessor capacity. The time delay incurred by a message transfer over a bus can
be made dependent on the size of the message being transferred and on the
bandwidth of the bus.

3.3 Formal Modelling in VDM 33

3.3.2 Semantics and Validation Techniques

The core VDM specification language has formally defined denotational se-
mantics [97, 125], a proof theory [30, 114, 69] and rules for formal refine-
ment [103].

The operational semantics have been defined [122] as part of the effort
to develop an interpreter for the executable subset of VDM. These semantic
definitions are themselves given in VDM and the language extensions to sup-
port object-orientation, concurrency, real-time and distribution have all been
specified in VDM in the same way. This also includes constructs supporting
loose specification [121] and operational semantics for features supporting
real-time and distributed systems [185, 92, 184].

The availability of formal semantics makes it possible to conduct a wide
range of analyses on VDM models. The term Integrity Checking is used to
refer to the generation and discharging of proof obligations [29, 167]. Proof
obligations are logical conjectures that are to be proven if a model is to be
regarded as well-formed and consistent. In broad terms, this means that there
exists at least one semantically correct model. Automated proof support is
being developed for discharging proof obligations [7, 8, 188].

In the last two decades, what has guided the development of VDM has
been the take-up of the technology by industry (see Section 3.3.4 below).
The perceived high barrier to the initial use of proof and model-checking
technology has led to a relatively greater emphasis being placed on validation
through testing. As a result, validation has mostly been through testing of
executable models, and there is considerable methodological and tool support
for this approach. Model validation in VDMTools and Overture (see Sec-
tion 3.3.3 below) is mainly supported by an interpreter allowing the execution
of models written in the large executable subset of the language. Scenarios
defined by the user are essentially test cases consisting of scripts invoking
the model’s functionality. In the case of VDM-RT models, the interpreter
executes the script over the model and returns observable results as well as
an execution trace containing, for each event, a time stamp and an indication
of the part of the model in which it appeared.

3.3.3 VDM Tool Support

VDM is supported by an industry-strength tool set VDMTools owned and
developed by CSK Systems [75] (now called SCSK) and derived from the
former IFAD VDM-SL Toolbox [67]. The tools offer syntax checking, type
checking and proof obligation generation capabilities, code generators, pretty

34 3 Formal Methods for Embedded Systems Development

printer, a CORBA-based Application Programming Interface (API) and links
to external tools for Unified Modelling Language (UML) modelling to sup-
port round-trip engineering. It is worth noting that the development of VDM-
Tools has itself been done using VDM [115].

The Overture project is developing an open-source Eclipse extension that
is designed to provide a common interface to all available tools for VDM,
covering all dialects [143] and to include proof support [188, 167]. The RT-
logger plug-in has been developed to allow execution traces of VDM-RT
models to be displayed graphically so that the user can readily inspect be-
haviour after the execution of a scenario, and thereby gain insight into the
ordering and timing of message exchange, thread activation and operation
invocation.

The Proof Obligation Generator [29] built into the Overture tool can de-
tect missing pre/post-conditions or invariants before making scenario-based
tests for the model. The tool automatically generates all the proof obligations
that must be discharged in order to guarantee the internal consistency of a
model. Examples of this includes: checks for potential run-time errors caused
by misapplication of partial operators and termination of recursion.

To run structured scenario-based tests, a unit testing framework called
VDMUnit can be used [72]. This framework is inspired by JUnit [49] and
is used to set up hierarchical test suites for unit and integration tests. This
enables easy regression testing, ensuring that all prior test cases still pass after
model updates. By using the special operations AssertTrue and Assert-
False that are built into VDMUnit the model state is tested against the
expected state.

In addition to the manually specified test scenarios, the combinatorial
testing tool [123] built into Overture can be used to automatically create a
large collection of test cases. Trace definitions are defined as regular expres-
sions describing a combination of inputs to a possible sequence of operation
calls. All possible permutations are generated by the tool and executed auto-
matically. The intent is to allow the definition of a large number of tests in a
compact manner.

3.3.4 Industrial Use of VDM

VDM’s rich collection of modelling abstractions has emerged because indus-
trial application of the method has emphasised modelling over analysis [70].
Although a well worked-out proof theory for VDM exists [30], more effort
has gone into developing tools that are truly “industry strength”. Although

3.4 Incremental Formal Methods and Agile Development 35

research on proof support has been ongoing for some years [105, 61, 189],
the tools have never fully incorporated proof, mainly due to a combination of
lack of demand from industry users, and a lack of robustness and ease of use
on the part of the available tools.

The majority of the industrial applications of VDM can be characterised
as uses of lightweight formal methods in the sense of Jackson and Wing [98].
Early experience of this was gained in the 1990s when the ConForm project
compared the industrial development of a small message processing system
using structured methods with a parallel development of the same system us-
ing structured methods augmented by VDM, supported by VDMTools [118].
A deliberate requirements change was introduced during the development
in order to assess the cost of model maintenance, and records were kept of
the queries raised against requirements by the two development teams. The
results suggested that the use of a formal modelling language naturally made
requirements more volatile in the sense that the detection of ambiguity and
incompleteness leads to substantial revision of requirements.

The use of a formal method to validate and improve requirements has
been a common theme in VDM’s industrial applications [63, 175, 163]. For
example, two recent applications in Japanese industry, the TradeOne system
and the FeliCa contactless chip firmware [111, 112], have used formal models
primarily to get requirements right. In some situations, such as the FeliCa
case, the formal model itself is not primarily a form of documentation — it is
merely a tool for improving less formally expressed requirements and design
documents that are passed on to other developers. In these applications, the
trade-off between effort and reward of proof-based analysis has come down
against proof, but in favour of a carefully scoped use of the formalism.

Several VDM industry applications have made successful use of high vol-
ume testing rather than symbolic analysis as a means of validating models. So
for example the FeliCa chip was tested with 7000 black box tests and around
100 million random tests all with both the executable VDM specification as
well as with the final implementation in C. The FeliCa chip is now deployed
in more than 225 million mobile phones in Japan, with no recalls to date.

3.4 Incremental Formal Methods and Agile Development

It is of great importance that the modelling guidelines described in this thesis
fit into existing development practices used by the industrial partner (see
evaluation criteria in Section 1.6). Incremental (and sometimes even agile)
system development is the de facto standard for system development, so the

36 3 Formal Methods for Embedded Systems Development

modelling techniques used must fit into an iterative mindset. The techniques
used in the industrial applications of VDM mentioned above, have had a con-
tinued focus on the needs of the customer and the process of applying VDM
has been one for removing more and more uncertainty rather than focusing
on obtaining a perfect system by verification. This section gives an overview
of related work in the field of incremental formal methods; agile software
development; and the combination of the two.

Work in SCTL/MUST [191] addresses the iterative production of early-
stage models of real-time systems. Validation by testing is supported and
the model production process gives feedback to the requirements scenar-
ios. The Credo project [58] focuses on modelling and analysis of evolution-
ary structures for distributed services and also includes formal models, in a
combination of Creol [102] and Reo [17].

Suhaib et al. [180] have proposed a method derived from that of eX-
treme Programming, in which “user stories” are expressed as Linear Tem-
poral Logic (LTL) formulae representing properties that are model-checked.
On each iteration, new user stories are addressed. The ordering of properties
is significant for the practical tractability of the analysis on each iteration.
In the context of research on real-time UML [65], a combination of UML
and System Design Languages (SDL) with a rigorous semantic foundation
has been presented [59]. Burmester et al. [46] describe support for an itera-
tive development process for real-time system models in extended UML by
means of compositional model checking, and Uchitel et al. [181] address the
incremental development of message sequence charts, again model-checking
the models developed in each iteration.

The relationship between formal and agile methods has been explored for
many years. More than 20 years ago, Richard Kemmerer investigated how
to integrate formal methods into conventional development processes [108].
More recently the issues were brought into focus by Black et al. in their
article for IEEE Computer in 2009 [33]. Some researchers have sought to
develop hybrid methods that benefit from both rigour and agility. For exam-
ple, Ostroff et al. [153] seek to harness Test-Driven Development (TDD), a
well-known agile technique, with a more formal method of Design by Con-
tract. Niu and Easterbrook [147] argue for the use of machine-assisted model
checking to address the problem of partial knowledge during iterations of
an agile process. López-Nores et al. [136] observe that evolution steps in
an agile development typically involve the acquisition of new information
about the system to be constructed. This new information may represent
a refinement, or may introduce an inconsistency to be resolved through a

3.4 Incremental Formal Methods and Agile Development 37

retrenchment. Solms and Loubser [176] describe a service-oriented analy-
sis and design methodology in which requirements are specified as formal
service contracts, facilitating auto-generation of algorithm-independent tests
and documentation. Model structure is formally defined and can be verified
through a model validation suite. The combination of agile and formal ele-
ments into an incremental development process has been done by del Bianco
et al. [60].

Some work seeks to develop more agile formal methods. For example,
Eleftherakis and Cowling [66] propose XFun, a lightweight formal method
based on the use of X-machines and directed at the development of compo-
nent-based reactive systems. Suhaib et al. [180] propose an iterative approach
to the construction of formal reference models. On each iteration, a model
is extended by user stories and subjective to regression verification. Liu et
al. have described the integration of formal methods into industry develop-
ment standards with the SOFL language and methodology [133]. Instead
of a pure mathematical notation, they use condition data flow diagrams as
a graphical notation of the high level architecture of the system. Through
several semi-formal refinement steps the final implementation is developed.
More recently Liu has applied the SOFL method using a more agile ap-
proach [132] where an incremental implementation is used.

4
Guidelines for Stepwise Development of VDM-RT

Models

This chapter provides guidelines for mono-disciplinary modelling of dis-
tributed real-time embedded systems in VDM-RT. Both the embedded con-
troller and the environment with which it interacts are modelled in the
discrete-event formalism VDM. Chapter 6 describes a case study in the
electronic warfare domain where these guidelines are applied.

4.1 Introduction

Formal models have a potentially valuable role to play in managing the com-
plexity of embedded systems design. Rapid feedback from the machine-assis-
ted analysis of such models has the potential to detect defects much earlier in
the development process. However, models that incorporate the description
of functionality alongside timing behaviour and distribution across shared
computing resources are themselves potentially complex. Moving too rapidly
to such a complex model can increase modelling and design costs in the long
run.

While there are many formal notations for the representation of distributed
and real-time systems, guides to practical methods for model construction and
analysis are essential if these approaches are to be deployed successfully in
industrial settings. Such methods should be incremental, allowing the staged
introduction of detail, and make use of tool-supported analysis of the models
produced at each stage.

This chapter proposes a pragmatic and tool-supported method for the
stepwise development of models of distributed embedded systems. Guide-
lines –summarising the key aspects of the method– are supplied to ease future
referencing. At each step in our method, we develop a model that considers
an additional aspect of the design problem, such as distribution or concur-
rency. Formal notations provide explicit support for these aspects, and tools

39

40 4 Guidelines for Stepwise Development of VDM-RT Models

provide an analytic capability based on static analysis and systematic test-
ing of models at each stage. Our approach uses and extends VDM and its
tools (VDMTools and Overture) described in more details in Section 3.3.

Section 4.2 presents our approach to the development of formal models of
distributed real-time systems. Sections 4.3 to 4.6 describe the different tiers of
models constructed at each phase in the development. Section 4.7 describes
validation techniques and tools. Finally, Section 4.8 summarises the work
done and identifies further work.

4.2 An Incremental Approach to Model Construction

As indicated above the goal of our work is a method for developing formal
models of distributed real-time systems that is incremental and allows tool-
supported validation of the models produced at each stage. Using such models
for design space exploration helps in defining the correct software and/or
system design which meet the timing requirements specified.

We propose a stepwise approach [55] which exploits the capabilities of
each of the VDM modelling language extensions described in Section 3.3.
Our approach aims to assist the management of complexity by enabling the
developer to consider a different facet of the modelled system at each stage.
The steps themselves are as follows:

1. System Boundary Definition.
2. Sequential Design Modelling.
3. Concurrent Design Modelling.
4. Distributed Real-time Design Modelling.

In the design of models of embedded systems, a key decision is the draw-
ing of the boundary between the environment, which consists of elements
that can not be controlled by the designer, and the controller that is to be
developed. In particular, this allows the developer to state assumptions about
environment behaviour and the guarantees that describe the correct opera-
tion of the controller in a valid environment. The first stage of our method
involves making the system boundary, assumptions and guarantees explicit.
Such an explicit abstract description can be given informally or using both
formal and informal elements side by side. It is important to note that the
description of the environment is only a rough approximation described in a
DE formalism used for injecting stimuli into the system model and to observe
the responses from the system. To add additional details to the environment
model, a domain-specific notation must be used, though this is not described

4.2 An Incremental Approach to Model Construction 41

in this chapter. Support for modelling and analysis of more realistic environ-
ment models is the subject of Part III of this thesis. Using a CT formalism, a
high fidelity model of the environment is created. The DE controller is then
co-simulated with the CT environment model.

Based on this abstract description of the system boundary, an object-
oriented architecture is introduced, creating a sequential model with structure
expressed using the features of VDM++. Consideration of the synchronisa-
tion of concurrent activities is deferred in order to focus on functional aspects.
In the next stage, this sequential model is extended to encompass concur-
rency and thread synchronisation (still using the VDM++ language, which
includes concurrency modelling features). Subsequently, the concurrent de-
sign model may be extended with real-time information and a distributed
embedded architecture using the VDM-RT extensions. At this stage it may
prove necessary to revisit the concurrent design model, since design decisions
made at that stage may prove to be infeasible when real-time information is
added to the model (for instance, the model may not be able to meet its dead-
lines). From the concurrent and distributed real-time VDM design model an
implementation may subsequently be developed. Testing of the final imple-
mentation and the various design-oriented models may be able to exploit the
more abstract models as a test oracle. Note that the approach suggested here
enables continuous validation of the models if these are written in executable
subsets of the different VDM dialects.

Figure 4.1 Overview of the models produced.

42 4 Guidelines for Stepwise Development of VDM-RT Models

Figure 4.1 gives an overview of the relationships between the products in
our proposed method. The four phases of model development are indicated
by the large arrow — prior models feed into subsequent models. The circular
arrows show iteration that might follow the detection of modelling errors
in the validation of the model produced at each stage. Note that this is not
intended as a process model, but rather a rational structure for the relation-
ships between the models produced. Internal iterations, and even iterations
between models, are likely to occur in practice. Details are introduced in
a staged manner, where the executions at each level might, informally, be
seen as providing a finer level of granularity than its predecessor, ensuring a
gradual increase in model fidelity.

In the following sections, we describe each stage in our approach, identi-
fying the features particular to each type of model and the typical structures
of models produced. The original publication of this process [119] includes
a running example from the home automation domain explaining the process
steps. Chapter 6 of this thesis introduces another case study that makes use of
the guidelines described here.

In [126] the approach is described in more detail, where a concrete exam-
ple of requirements capture is given. A case study is also included, where a
complete countermeasures system is modelled using the guidelines.

The approach to developing VDM-RT models described in this chapter
has also been tested in an academic setting. For several years students fol-
lowing the VDM courses of Aarhus University have been taught the process,
and applied it in mandatory projects. Feedback from the students has been
used for improving the process.

4.3 System Boundary Definition

As indicated in Section 4.2, defining the boundary between the environment
and the engineered system is an important step on the way to specifying the
assumptions under which the system operates and the guarantees that it offers
when those assumptions are satisfied. Given the explicit statement of these
contracts, it should be possible to formulate sound engineering arguments for
the overall system having desirable properties.

Guideline mono 1: Explicitly specify the assumptions under which the
system operates and the guarantees that it offers when those assumptions
are satisfied.

4.4 Sequential Design Modelling 43

4.3.1 System Requirements and Guarantees

There are many approaches to systematic requirements capture, and we do not
propose a particular method here. However, past studies [118] and recent in-
dustry experience [111, 117] suggest that the development of a formal model
can have a strong positive effect on the identification of defects in require-
ments. We have provided rough guidelines on the extraction of “first pass”
models from natural language requirements [71, 72] but other more structured
approaches exist, targeted at embedded systems. For example, the approach
of Hayes, Jackson and Jones [104] uses the expression of desired system-level
behaviour coupled with modelling the environment as a means of deducing
the specifications of control systems. Such an approach provides ways of
reaching initial models that can be expressed using the formal notations that
we consider here.

The assumptions made about the environment are key to the formulation
of engineering arguments. In order to derive precise statements of environ-
mental assumptions, the model developer must enter into a dialogue with
domain experts. The kind of environment is likely to determine the formalism
in which these assumptions are most naturally expressed. For example, if
the assumptions have to do with a moving mechanical device, it would most
likely best be described in a formalism including differential equations; if
the assumptions are logical in nature it may be more natural to express it in
VDM.

The purpose of an initial model of the engineered system is to provide a
basis for the description of its functionality. At first the focus is on function-
ality rather than the static structure of a design or the dynamic architecture of
processors on which such a design might be implemented — those features
are introduced in the later models. At this stage in the modelling process,
functional and timing requirements are captured. For the systems to which
we have applied our approach so far (e.g. [55, 135]), an appropriate initial
model is usually structured around one top-level function taking as input a
sequence of events acting as stimuli on the controller from its environment.
The output is the trace of events generated by the system.

Guideline mono 2: Create an initial model with one top-level function tak-
ing as input a sequence of events acting as stimuli on the controller from its
environment and generating the trace of events as output.

44 4 Guidelines for Stepwise Development of VDM-RT Models

4.4 Sequential Design Modelling

The purpose of the sequential design model is to provide a description of the
static structure of the system under development in terms of classes, without
making any commitment to a specific architecture for the dynamic system.
For the techniques of class structure derivation, the reader is referred to a
standard text such as [64].

Activities in the basic model that are functionally independent are typ-
ically encapsulated in separate classes in the sequential design. For an em-
bedded system, each kind of sensor and actuator will typically get its own
class. We find that it is advisable to add a World class that sets up and
manages the interaction between objects representing the environment and
those representing the system under development. In this section we consider
the representation of such a class structure in VDM as well as aspects that are
specific to embedded systems.

4.4.1 Class Descriptions in VDM

Class diagrams in UML provide a convenient notation for the expression of
object-oriented class structures. Tool support exists in both VDMTools and
Overture, allowing class diagrams developed in a UML tool to be translated
into VDM class definitions with the same inheritance and association struc-
ture. Consistency is maintained between the two views: a modification to
either the VDM or the UML is reflected in the other model, enabling round-
trip engineering between a UML class diagram view of a system and a VDM
textual view.

Where possible, invariants on types and instance variables should be iden-
tified and specified. Pre-conditions should be specified for all operations and
functions that are non-total, and post-conditions should be specified wherever
appropriate, especially if they provide a clear, distinct, representation of func-
tionality that is not simply a restatement of the expression in the function or
operation body.

Guideline mono 3: Specify invariants on types and instance variables and
pre- and post-conditions for operations and functions.

4.4.2 Typical Design Structure

Figure 4.2 illustrates a typical class structure for reactive embedded sys-
tems of the kind covered by our method. We advocate the structural sepa-

4.4 Sequential Design Modelling 45

ration of the environment and the technical system, shown here by the classes
Environment and SystemName respectively.

Guideline mono 4: Create a structural separation of the environment
(Environment) and the engineering system (SystemName).

A World class sets up instances of both environment and system and
manages the interaction between them, and so manages the execution of test
scenarios during validation.

+World()
+Run()

World

+GetTime()

TimeNotion+timeRef

+Environment()
+CreateSignal()
+HandleEvent()
+ShowResult()
+Step()
+IsFinished()

Environment

-env

+Step()
+IsFinished()

EnvironmentClass1

+Step()
+IsFinished()

EnvironmentClass2

SystemName

+Step()
+IsFinished()

SystemClass1

+Step()
+IsFinished()

SystemClass2-sysObj

Figure 4.2 Generic class diagram for sequential design of an embedded system. The World
class instantiates the model, and holds static references to both system, environment and time.
The Environment class generates input to the system (CreateSignal), and receives
the system response (HandleEvent). When all input has been processed, the Environment
shows the results of the simulation (ShowResult).

46 4 Guidelines for Stepwise Development of VDM-RT Models

The Environment should contain operations to provide a sequence of
input for the embedded system (CreateSignal) and operations to receive
feedback from the system (HandleEvent).

Guideline mono 5: In the Environment class, add operations for pro-
viding input (CreateSignal) to the system and receiving the response
(HandleEvent).

For all the classes that need to conduct active tasks this functionality is
normally organised into Step operations that describe the functionality to be
performed each time the instances of the class are scheduled to be executed.
An operation (IsFinished) should be included in all environment and sys-
tem classes that play an active role in a scenario to indicate when processing
is finished locally.

Guideline mono 6: All active classes should have Step operations per-
forming the periodic functionality of the class, and IsFinished opera-
tions to indicate that the process is finished.

For the Environment class it is also necessary to provide an operation
(ShowResult) that can show the result of running a given scenario.

To avoid passing object references around the system, we recommend the
use of public static instances contained in the World class and the overall
system class SystemName. This ensures that all object references are ac-
cessible throughout the model. This also includes a global discrete notion
of time: in the sequential model a basic TimeNotion class is appropriate,
but in the concurrent model a stronger notion of time and synchronisation is
required (see Section 4.5 below).

Guideline mono 7: Use public static instances contained in the World
class and the overall system class SystemName to avoid passing object
references around the system.

Normally, we expect the flow of control in the sequential model to be
steered by the Environment. This is because most reactive systems are
designed to respond to stimuli by sending commands to the actuators to
control the environment in the desired fashion. However, there are excep-
tions to this where the system is intended to react when a stimulus from the
environment is absent; for example, a cardiac pacemaker might be expected
to produce a stimulus when a natural pulse is expected but not detected. In
such cases we recommend modelling the omission of the expected stimuli by

4.5 Concurrent Design Modelling 47

using special stimuli from the environment. Alternatively, the system could
periodically check the environment for stimuli, and only react when a stimuli
is absent. At the sequential level this is typically done using a loop until both
the environment and the system are finished (using different IsFinished
operations). Inside the loop, Step operations are used for progressing time
and passing control.

4.5 Concurrent Design Modelling

The objective in developing the concurrent VDM++ design model is to take
the first steps towards a particular dynamic architecture, deferring for the
moment the complexity introduced by real-time behaviour and distribution
concerns.

The first steps in developing a concurrent model are the identification
of computations that can be performed independently of one another and
their separation into independent threads. Often, this separation is forced
by hardware constraints and/or pre-defined architectural requirements. While
it is worthwhile to identify as many independent threads as possible, this
should be balanced against the complexity of understanding and validation.
Syntactically such threads are expressed as VDM++ statements written after
a thread keyword.

Guideline mono 8: Identify processes that can be performed indepen-
dently, turning these into separate threads. The bodies of the Step
operations are typically turned into threads.

As threads are identified, it is necessary to specify the communication be-
tween them in terms of both communication events and any necessary object
sharing. Classes that define objects that contain shared data are responsible
for ensuring synchronised access. Explicit synchronisation points may also
be required to orchestrate the ordering of events among threads or to ensure
data freshness. Permission predicates and mutual exclusion constraints (see
Section 3.3.1) can be defined for the operations in a class in a special sync
part of the class definition.

Guideline mono 9: Specify synchronisation between threads using permis-
sion predicates and mutex constraints.

The signatures for the IsFinished operations are changed so that no
value is returned. Instead, the Boolean expressions typically become permis-

48 4 Guidelines for Stepwise Development of VDM-RT Models

sion predicates. This way the threads requesting each operation are blocked
until the corresponding instance is indeed finished.

It is recommended that the simple Timer class is replaced by a combina-
tion of the standard TimeStamp class and the ClockTick class. Time-
Stamp is a subclass of the WaitNotify class used in Java [84] in order
to easily synchronise the steps taken when the flow of control is distributed
to multiple threads. ClockTick is used to ensure lock-stepping between
different concurrent threads. The use of these classes is illustrated in the case
study in the original paper [119].

Guideline mono 10: Replace the simple Timer class with a Wait/Notify
approach to easily synchronise the steps taken when the flow of control is
distributed to multiple threads.

4.6 Distributed Real-Time Design Modelling

The purpose of the distributed real-time design model is to add information
on real timing constraints, and to describe allocation of system functionality
to multiple processors using the predefined BUS and CPU classes. Following
a timing analysis, it might be concluded that a proposed system architecture
is infeasible, necessitating revision of the system architecture, redeployment
of functionality to CPUs, or modifications of the capabilities of the CPUs.

The explicit notion of time modelled at the concurrent level using the
TimeStamp class is removed. Now time is implicit and a keyword time
is used to refer to the current global time, which is a finite accuracy discrete
clock represented as a natural number.

The SystemName class is extended with additional instance variables
for the CPUs and buses in the system architecture. A class that is to de-
fine such a deployment is identified by using the system rather than the
class keyword. The class’ constructor defines the actual allocation of static
instance variables to CPUs. The constructor can be used to define the priority
of operations on CPUs that operate a priority-based scheduling scheme.

Guideline mono 11: Extend the SystemName class (using the system
rather than the class keyword) with additional instance variables for the
CPUs and buses in the system architecture.

In most cases a common virtual CPU is used for all objects that are not
a part of a declared system class describing a deployment architecture. How-

4.7 Validation Technology 49

ever, the Environment class may also be defined as a system in order to
enforce restrictions such as limiting the concurrent execution of environment
functions.

Some of the threads (typically those that previously had Step function-
ality) are made periodic, as described in Section 3.3.1.

Guideline mono 12: Step operations should typically be converted into
periodic threads.

Deployment to processors allows the model designer to take advantage of
potential asynchrony where a calling operation need not wait for the called
operation to complete. Note that the user does not need to know where every
instance is deployed; the interpreter looks up the relevant deployment infor-
mation (which is concentrated in the system class and not spread about the
model) before passing calling parameters over the BUS to the relevant CPU.

Guideline mono 13: Use asynchronous operations for distributed commu-
nication so the calling operation need not wait for the called operation to
complete.

Where the designer has a priori knowledge of real-time characteristics
of design elements, for example where off-the-shelf components are being
reused, it is possible to give precise estimates of fixed execution times via
duration statements. For example, when modelling a closed loop system,
a duration statement might be used to record the delay between sending a
command to an actuator and seeing its effect at a sensor. The modelling
language also supports cycles statements, which are used to give precise
estimates of execution time relative to a processor (in the form of the number
of expected clock cycles).

Guideline mono 14: Specify estimates of fixed execution times (using
the duration statement) or execution time relative to the computational
power of a processor (using the cycles statement).

The task switching overhead for the target real-time kernel should be as-
certained and then used to configure the task switching overhead in Overture
during execution of the model. Whenever there is a task switch between two
tasks on a CPU, the time is stepped forward by the task switching overhead
time.

50 4 Guidelines for Stepwise Development of VDM-RT Models

4.7 Validation Technology

Validation takes place on each of the models produced through the process
that we have outlined. In this context we use the term validation conjecture
for a logical expression describing a property which is expected to hold.
A systematic testing approach [72] is used to validate the models derived
during the staged development process. “Validation” in this context refers
to the activity of gaining confidence that the formal models developed are
consistent with the requirements [135]. The initial system model, which is
typically expressed in VDM-SL, can be validated by proof or by testing.
Overture automatically generates proof obligations from the model and these
may be discharged using theories of the basic VDM logic and types [30, 69].

Recent extensions to Overture [124] allow the designer to create a Java
applet or JFrame that can act as a Graphical User Interface (GUI) of the
VDM model. This allows an external program to manage the GUI, reflecting
the current state of the model back to the expert user, who can then invoke
operations to change the state, allowing the execution of scenarios [9].

4.7.1 Test-Based Validation

Unit and integration tests should be made for the Sequential model, using
VDMUnit or the combinatorial testing feature built into Overture (see Sec-
tion 3.3.3). The test-suite must ensure that every part of the model is exercised
and that the model reacts according to the specified requirements.

Guideline mono 15: Perform unit- and integration tests of the model to
gain confidence in the functionality of each component as well as the
integrated system model (for example using the VDMUnit framework).

These sequential test scenarios can be reused for the Concurrent and
Distributed Real-Time models with minor modifications. Instead of having
several invocations of the Step operations in the different classes, all threads
run concurrently handling a sequence of input to the model. This allows for
incremental development of test scenarios as well as the models themselves,
which further increases the reuse from one modelling phase to the next.

Guideline mono 16: Reuse test scenarios from the sequential model in the
test of the concurrent and real-time model.

The Concurrent and Distributed Real-Time models should be executed
using the same scheduling policies that are likely to be available in the target
processors. There is not yet a formal static deadlock analysis for the con-

4.8 Summary 51

currency part of VDM, so confidence in deadlock freedom is limited by the
comprehensiveness of the scenarios used as test cases. A general guarantee
of deadlock freedom cannot be constructed because of the expressiveness of
the permission predicates available in the language.

Riberio et al. [168] have proposed an approach to specifying temporal
constraints of a VDM-RT model and checking these at run-time. A prototype
tool has also been implemented as an extension to the Overture tool. Tim-
ing invariants are formulated as predicates over events to specify the timing
properties of the system that must hold. Examples of these are: deadline prop-
erty which is defined as a time by which en event must have happened, and
separation property which describe a minimum separation time between two
events happening. Using these timing invariants, it is possible to test schedu-
lability and other timing constraints of the system. Using the RT-logger (see
Section 3.3.3) violation of these timing invariants can be visualised.

4.8 Summary

We have described guidelines for the construction of formal models of po-
tentially complex distributed real-time control systems. The models support
validation of system properties, including timing behaviour on a specific em-
bedded and distributed system architecture. Our approach is based on the
staged introduction of detail into a series of extended VDM models derived
from an initial abstract specification based on initial requirements. Robust
tools support validation, predominantly using scenario-based testing at each
stage.

Considering our methodology, we have not so far addressed the process of
deriving a specification of a system that is embedded in a real-world environ-
ment. Systematic approaches such as that of Hayes, Jackson and Jones [104]
are worth further investigation here, in that they can also lead to clearer
initial separation of the controller under development and the model of the
environment. This separation is covered in further detail in Part III of this
thesis.

We have so far only provided preliminary guidance on the outline struc-
ture of the VDM models in our chain. Prior work shows that there is po-
tentially great value in developing model patterns appropriate to embedded
applications [195]. Such patterns have the potential to aid model construc-
tion, and also to support validation by encouraging re-use of test scenarios
and, where appropriate, proofs. Since we use a staged approach, we expect
patterns to encompass several models from our chain [96].

52 4 Guidelines for Stepwise Development of VDM-RT Models

Our approach has been pragmatic because it is meant to be an aid to sys-
tem architects when they try to take informed decisions between alternative
candidate system architectures. Thus, we have not formalised the incremental
addition of detail that occurs in each of our model development steps with for-
mal refinement. In particular, we would like to drive useful proof obligations
out of each of these steps. An examination of this issue must treat atomicity in
the abstract and sequential models (for example in handling the maintenance
of invariants).

The validation of execution traces does not replace formal verification.
Nevertheless, when development resources, especially time, are short, rapid
checking of validation conjectures offers a means of assessing key properties
of the formal model. Once conjectures have been defined and have been used
to validate the execution of the model (which also serves as a validation of
the conjectures themselves), they can be used (with event transformation) to
validate log files generated by the final implementation of a system. The vali-
dation framework discussed here might be extended to support the evaluation
of fault tolerance strategies at the architectural level.

5
Formal Methods Meet Agile Development

This chapter assesses the readiness of formal methods for integration with
agile development techniques. A concrete example of the use of formal meth-
ods in the agile project management process Scrum is given. Chapter 6
describes a case study where the combination of formal and agile principles
were applied.

5.1 Introduction

In spite of their successful application in a variety of industry sectors, formal
methods have been perceived as expensive, niche technology requiring highly
capable engineers [172]. The development of stronger and more automated
formal analysis techniques in the last decade has led to renewed interest in
the extent to which formal techniques can contribute to evolving software
development practices.

The principles of agile software development emerged as a reaction to the
perceived failure of more conventional methodologies to cope with the reali-
ties of software development in a volatile and competitive market. In contrast
with some established development approaches, like the methodologically
suspect waterfall model, agile methods were characterised as incremental,
cooperative, straightforward to learn and modify, and adaptive to changes in
the requirements or environment [2]. Four value statements [10] summarise
the principles of the approach. Proponents of agile techniques value:

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation; and
• Responding to change over following a plan.

This chapter discusses if agile and formal methods can work to mutual
benefit, or if the underlying principle of rigorous model-based analysis are
incompatible with the rapid production of code and the favouring of code over

53

54 5 Formal Methods Meet Agile Development

documentation. A review of the four value statements of the agile manifesto
is given in Section 5.2. In each case, we ask whether formal methods as they
are now are really able to help achieve the value goal, and what research
might be needed to bridge the gaps between the two approaches. The follow-
ing sections give a concrete example of the combination of formal and agile
methods: Section 5.3 provides an overview of the agile management method
Scrum. The addition of formal modelling techniques to Scrum is described in
Section 5.4. Finally, Section 5.5 gives a summary of the work on combining
formal and agile methods.

5.2 The Agile Manifesto Meets Formal Methods

The four value statements of the agile manifesto are supported by 12 princi-
ples [11]. In this section we consider each value statement and the principles
that relate to it. For each value statement, we review the extent to which
formal methods support it today, discuss some deficiencies and suggest future
research to remedy these.

5.2.1 Individuals and Interactions over Processes and Tools

This value statement emphasises the technical competence and collaboration
skills of the people working on the project and how they work together. If this
is not considered carefully enough, the best tools and processes are of little
use1. Two of the 12 principles supporting the agile manifesto are relevant:

• Build projects around motivated individuals. Give them the environment
and support their need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

The most important resources available to a project are the people work-
ing on it and not the tools or methods they use. But once the right people have
been chosen, neither the tools nor the processes should be disregarded.

A criticism of the work on the ConForm project (see Section 3.3.4), as of
other demonstrations of the effectiveness of formal modelling, is that clever
“pioneering” people were employed to do the formal methods work and they
were bound to do a better job than those applying traditional techniques. Our
industry colleagues have frequently refuted this claim, arguing that, while

1 The aphorism “A fool with a tool is still just a fool” is sometimes attributed to Grady
Booch.

5.2 The Agile Manifesto Meets Formal Methods 55

highly skilled engineers will perform tasks well given the most elementary of
tools and processes, the world is not full of excellent engineers. Most of us
benefit from having tools and processes that embody the wisdom gained by
previous projects and more capable colleagues.

To live up to this value statement, it is required that the team members
are technically competent in using efficient tools to develop working soft-
ware for the customer in short periods of time. We wonder if all our fellow
formalists appreciate the levels of competence among software engineers and
hence the work required to deliver methods that can be used in the majority
of products. Numerous research projects have demonstrated the potential of
new formal methods and tools, such as Rodin [6]. However, the process of
bringing them to a state where they are deployable even by research and
development engineers requires a major effort, as seen in Deploy [170].

The second principle above refers to “soft” skills and particularly to col-
laboration and communication. Given engineers who have a willingness and
ability to communicate easily among themselves, the tools supporting formal
modelling have to make it easy to share models and verification information
where appropriate. But how many formal methods tools integrate well with
existing development environments, allow models to be updated and easily
transmitted, or even exchanged between tools? Wassyng and Lawford have
presented high-level requirements for tools to support formal modelling of
safety-critical systems [194]. They emphasize the importance of a compre-
hensive tool suite, where the individual tools are designed to complement
and interface with each other. We agree, and further feel that collaborative
modelling and analysis is not given enough attention in formal methods re-
search.

There are noteworthy formal methods tools and specification languages
that integrate well with existing development environments: The verification
and testing environment Java PathFinder [192] integrates model checking,
program analysis and testing of Java bytecode; and the specification lan-
guages JML [129] for Java programs and Spec# [23] for C#, where source
files are annotated with pre- and post-conditions and object invariants that
are checked at run-time using various verification tools.

Most formal methods tools originated in academic research and few have
been matured for industrial use. As a result, the focus has been on the func-
tionality offered by the tools at the expense of the accessibility or user friend-
liness. If formal methods are to move a step closer to agility, the tool support
needs to become easier to pick-up and start using, so attention can be put back
on the people actually doing the formal models instead of the limitations of

56 5 Formal Methods Meet Agile Development

the tools. Increased automation is required, and research effort being put into
the interaction between modelling and verification tools and the engineer.

5.2.2 Working Software over Comprehensive Documentation

The second value statement of the agile manifesto asserts that, whilst good
documentation is a valuable guide to the purpose and structure of a soft-
ware system, it will never be as important as running software that meets its
requirements. The value statement is supported by the following principles:

• Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

• Working software is the primary measure of progress.
• Simplicity – the art of maximizing the amount of work not done — is

essential.
• Our highest priority is to satisfy the customer through early and contin-

uous delivery of valuable software.

We suggest that adherence to these principles is probably easier in a
project that is kept in-house, rather than a major distributed software devel-
opment with extensive subcontracting. For large projects with many person-
years of work involved, documentation is indispensable and is often a crucial
part of the contract between the developer and customer.

For the formal methods practitioner, these must be some of the more dif-
ficult agile principles to accept. Much of the work on model-oriented formal
methods emphasises the quality and clarity of models and the production of
proven refinement steps on the way to well engineered code, where proofs
document the correctness of the design steps. An agile process adhering to
the principle above is more likely to be based on rapid development cycles
in which the quality of the formal models produced takes second place to
the rapid generation of code. In turn, this may mean that models will tend to
be more concrete and implementation-specific than necessary. There is a risk
that the incremental development of system models will end up with models,
and of course proofs, that are much too hard to understand or verify to serve
a useful purpose.

Automation is once again a key factor: where code is automatically gen-
erated, the model may become the product of interest. Further, the benefits of
the model must be seen to justify its production costs, for example by allow-
ing automatic generation of test cases, test oracles or run-time assertions. An
agile process that wants to gain the benefits of formal modelling techniques

5.2 The Agile Manifesto Meets Formal Methods 57

has to be disciplined if the formal model is to remain synchronised to the
software produced. It is worth noting that nothing in this approach precludes
the use of formal methods of code analysis, for example to assist in identi-
fying potential memory management faults. Here again, the high degree of
automation can make it an attractive technology.

In general one can say that this value statement is most applicable with
executable models where one then needs to be careful about implementation
bias [87, 81, 14]. From a purist’s perspective this is not a recommended ap-
proach. As a consequence, formal refinements from non-executable models
cannot be considered agile since potentially many layers of models may be
necessary before one would be able to present anything to the customers that
they can understand [144, 18, 5]. Examples of less opaque formal methods
would be: the SOFL language and methodology [133, 132], tabular expres-
sions [100], or VDM which has a syntax that will be familiar to most software
engineers.

5.2.3 Customer Collaboration over Contract Negotiation

The third value statement of the agile manifesto, while recognising the value
of a contract as a statement of rights and responsibilities, argues that success-
ful developers work closely with customers in a process of mutual education.
Two of the agile principles would appear to relate to this value statement:

• Business people and developers must work together daily throughout the
project.

• Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.

Close customer collaboration has been a feature of several successful
industrial formal methods projects [118, 183, 175, 112]. However, in these
projects formal methods have only been used as a high-level executable model
of the system and no advanced formal methods techniques such as verification
have been applied. Examples of successful application of formal methods
using verification also exist (see the work of Wassyng and Lawford [193] as
well as Andronick et al. [15] described briefly in Section 3.2), though they
are seen more rarely. In order to successfully exploit collaboration between
business people and formal methods specialists interpersonal skills for this
kind of multi-disciplinary teamwork is essential.

A major weakness of many formal methods tools is the inability to attach
a quick prototype GUI to a model giving domain experts the opportunity to

58 5 Formal Methods Meet Agile Development

interact directly with the model and undertake early validation without requir-
ing familiarity with the modelling notation. Actually, this general idea was
implemented over 20 years ago in the EPROS prototyping environment [88].
As mentioned in Section 4.7, recent extensions to Overture [146] allow the
designer to create a Java applet or JFrame that can act as a graphical interface
of the VDM model. Many formal methods modelling tools could benefit from
similar extensions if they aim to support some of these agility principles.

5.2.4 Responding to Change over Following a Plan

The fourth value statement of the agile manifesto acknowledges that change
is a reality of software development. Project plans should be flexible enough
to assimilate changes in requirements as well as in the technical and business
environment. The following two agile principles are relevant here:

• Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Formal methods have no inherent difficulty in coping with requirements
change. Indeed formal models may form a better basis for predicting the con-
sequences of radical changes than attempting an analysis of complex code.
However, when formal models are adjusted, the associated validation and
verification results will need to be redone if full value is to be gained from
the model. Thus, the speed of repeat analysis, and the extent of automated
tool support are paramount.

As can be seen, applying the agile principles directly is not something
that fits every type of project, but this does not mean that some agile practices
cannot be applied to large projects. On the contrary, our experience is that
agile development is most often used as an element in a hybrid configuration.
For example, initial requirements might be analysed in a model-based, doc-
umented way, while day-to-day development might employ an agile method
like Scrum.

We are not convinced that formal methods and formalists in general “em-
brace change”. Black et al. state [33] that “formal methods cannot guarantee
against requirements-creep”. While the concept of requirements creep has
negative connotations associated with confused and drifting functionality,
being ready to address changing requirements is a necessary part of the agile
mindset. Coping adequately with requirements change in a formal setting

5.3 Agile Development — Scrum 59

requires models that are well structured and mechanisms for checking validity
that are rapid. Further, to be able to respond to changes in a quick and seam-
less manner, formal methods practitioners need to accept that models can be
less than perfect, especially in the early stages of an iterative development.

5.2.5 Two Remaining Principles of Technical Excellence

Two of the 12 principles do not fit the value statements quite so easily as the
others listed above. Both of them deal with aspects of the technical quality of
the product:

• Continuous attention to technical excellence and good design enhances
agility.

• The best architectures, requirements, and designs emerge from self-orga-
nizing teams.

Formal techniques certainly support this focus on quality. Black et al. [33]
also mention the potential synergy between agile and formal methods, open-
ing up the possibility of agile methods being applied to more safety critical
domains — something which is currently, to a large extent, off limits to pure
agile methods. We conjecture that the second value statement of the original
agile manifesto (working software over documentation) has provided a pre-
text for hack-fixing and ad-hoc programming to call itself an agile process.
This has hurt the reputation of agile development, and we would suggest that
the addition of a fifth principle favouring quality of the end product over
ad-hoc solutions could prevent some of the abuses of agility.

Formal methods can be more agile than is normally perceived, if light-
weight analysis approaches and tool automation is used over more time con-
suming formal proof activities. Agile methods must be disciplined, following
well defined process steps, if they want to gain benefits of formal specification
techniques.

The rest of this chapter provides a concrete example of how formal meth-
ods can be used as part of the agile project management process Scrum.
Scrum was chosen since it is well structured and well established in industry.
The goal is to describe a concrete example of how formal methods can be
added to a widely used agile method. Our hope is that this will help break
down the barriers between formal and conventional software development
by introducing the use of lightweight formal analysis techniques in an agile
setting.

60 5 Formal Methods Meet Agile Development

5.3 Agile Development — Scrum

Scrum has been used to develop complex software systems since the early
1990s and is one of the most widely used agile methods in industry [47]. Like
all agile methods Scrum focusses on short feedback loops in system develop-
ment, user requirements and the development process itself. By involving the
user continuously in the iterative process it is ensured that the final product
fulfils the user needs. This requires great adaptive capabilities of both process
and development team in order to support change in user needs.

5.3.1 The Relevant Roles of the Scrum Process

In a Scrum setup, project participants take on one of three roles:

Product owner: The person who represents the customer’s interest, and de-
termines the goal of each iteration called a sprint. One of the most
important tasks of the product owner is to prioritise the different tasks
ensuring that the most important functionality is implemented first.

ScrumMaster: It is the task of the ScrumMaster to facilitate the Scrum pro-
cess and protect the agile principles. He also needs to protect the team
by removing any impediments encountered, ensuring that they are not
distracted from the task at hand.

Team: A Scrum team consists of five to nine people working together to
create a functional system that satisfies the user needs. Usually, the team
consists of people with a broad set of competences in order to ensure
that the team is self-organised and contained.

5.3.2 Relevant Activities and Artifacts of the Scrum Process

Scrum consists of several activities which describe the workflow and artifacts
produced during the Scrum development:

Product vision: This is the initial idea phase, where the vision of the product
is defined.

Product backlog: A prioritised list of functionality or artifacts that are need-
ed in the final product. It is good practice to describe the items in the
product backlog as user stories which add value for the user — it is
then the job of the team to develop a product that fulfils these needs and
supports the stories.

5.3 Agile Development — Scrum 61

Figure 5.1 Overview of the Scrum process with a 30-day sprint duration.

Sprint: This is a development iteration which is time-boxed to last between
2 and 6 weeks — a sprint length of one month is commonly used.

Sprint planning: The first day of every sprint is dedicated to plan the goal
of the sprint.

Sprint backlog: Tasks derived from the user stories from the product back-
log which the team has committed to implement in the sprint planning
meeting. Two types of tasks are defined: implementation and investiga-
tion tasks. Implementation tasks are completely defined with little or no
uncertainty. Investigation tasks often involves the use of new technol-
ogy, and are used to investigate the feasibility of said technology and to
better estimate the implementation tasks which will be derived from the
investigation.

Daily Scrum meeting: A daily meeting called a “daily scrum” with a short
duration of approximately 15 minutes is held every morning. Each team
member describes what was accomplished since last meeting, what will
be done until the next meeting and describes any impediments discov-
ered or encountered.

62 5 Formal Methods Meet Agile Development

Sprint review: At the end of each sprint, a review meeting is held, where the
team demonstrates what has been accomplished to the product owner.

Sprint retrospective: Following the sprint review an additional meeting is
held, where focus is on people, processes and tools and not on the items
produced in the last sprint.

5.4 Formal Methods in a Scrum Setting

The process proposed here is inspired by the process supporting the mod-
elling guidelines presented in Chapter 4 and then adjusted to a more agile
iterative process like Scrum.

Formal methods are used for modelling and validation of investigation
tasks, before they are implemented in future sprints. The goal of this ap-
proach is to mitigate risk by investigating critical system properties or the use
of new technologies using formal modelling. Once these investigation tasks
have been modelled, new implementation tasks are derived from the results of
the analysis. These new tasks will be implemented by conventional software
engineers in subsequent sprints.

It is important that the formal specification helps the programmers under-
standing the requirements and design of the system, and that the formalists
can communicate their findings to the software engineers. This communica-
tion process can be eased by using a graphical representation of the formal
specification as it is done in SOFL, using a syntax like VDM which is read-
able by most programmers, or by using an executable specification using
simulation results to aid in the communication.

5.4.1 Relevant Changes to Roles

The roles of the ScrumMaster and product owner are identical to the conven-
tional Scrum process. Only the role of the Team is changed:

Team: The team has several tasks: to create a high level executable for-
mal specification of the system; to validate key concepts of the system
design; to investigate the use of new technology and finally the team
must implement the functionality needed to solve the tasks defined in
the sprint. This means that the team needs to include engineers with
expertise in formal methods as well as conventional software developers
in order to solve both types of tasks.

5.4 Formal Methods in a Scrum Setting 63

5.4.2 Relevant Changes to Activities and Artifacts

The main changes in the method described here compared to conventional
Scrum are in the individual sprints. Hence, the product vision, product back-
log and daily Scrum meeting are unchanged.

Sprint: It is important for the formal team members to have a good under-
standing of what the conventional software team members are working
on, and vice versa, to support better knowledge transfer within the group.
This ensures that more engineers get a good understanding of formal
modelling techniques and opens up the option of using a formal engi-
neer to solve some of the conventional software tasks (or the other way
around) in order to balance the tasks within the team during a sprint.

Sprint planning: The sprint planning is similar to the conventional Scrum
version, with the product owner and team deciding which stories from
the product backlog go into the sprint. It is important to balance the
number of investigation and implementation tasks to match the team
composition of formalists and software developers.

Sprint backlog: The sprint backlog is divided into two parts: one for the
formal specification investigation tasks and one for the conventional
software implementation tasks.

Sprint review: After the sprint is finished, the team will present and demon-
strate their work to the product owner. Apart from customer and product
owner feedback, the focus on the sprint review should be on deriving
future conventional software implementation tasks based on the formal
modelling done on the investigation tasks. It is important to decide if
enough knowledge has been gained from the formal modelling to fully
clarify the investigation tasks so these can be turned into implementation
tasks for future sprints.

Sprint retrospective: Following the sprint review, the team will have a sprint
retrospective meeting discussing what went well and what could be done
better process-wise in each of the parts of the sprint. It is important to
assess both general interpersonal issues but also issues tied to either the
formal or software tasks individually. Since knowledge transfer is a key
aspect of this project setup, it is important to discuss the degree to which
this is working as well.

64 5 Formal Methods Meet Agile Development

5.4.3 Benefits of Combining Formal and Agile Methods

One of the key skills for software engineers is abstraction [110] — the ability
to specify in detail the system elements needed in order to verify a cer-
tain property, while abstracting away from all unnecessary details. This is
a complex challenge often mastered by engineers with formal specification
experience. Conventional software developers can have a tendency to focus
on low-level implementation details of the system and not having the more
abstract overview of the entire system. Working alongside formalists (who
utilise more abstract thinking) will in time improve the abstraction skills of
the programmers which could potentially lead to better system quality.

One of the main benefits of adding the use of formal methods is to give
valuable input to the implementation phase. Test cases used to evaluate the
formal specification can be reused to test the final implementation. In the
agile development method TDD developers are required to write automated
unit tests defining the code requirements before the code is implemented. In
VDM it is possible to define implicit functions by means of a signature and
pre- and post-conditions. By using VDM and TDD as the daily development
methods, the formal modelling tasks can generate unit tests which can be
reused in the conventional implementation tasks, and hence saving time. This
combination of VDM and TDD could be ideal for the method described in
this chapter, but more work is required before any conclusions are drawn.

5.5 Summary

The improved analytic power of formal methods tools and greater under-
standing of the role of rigorous modelling in development processes are grad-
ually improving software practice. However, the claim that formal methods
can be part of agile processes should not be made lightly. In this chapter, the
value statements and supporting principles of the agile manifesto are exam-
ined and areas in which formal methods and tools are hard-pressed to live up
to the claim that they can work with agile techniques are identified.

Formal methods should not be thought of as development processes, but
are better seen as collections of techniques that can be deployed as appro-
priate. For the agile developer, it is not possible to get benefits from using
a formalism unless the formal notation or technique is focused and easy to
learn and apply. Luckily, formal modelling and analysis does not have to be
burdensome. For example, forms of static analysis and automatic verification
can be used to ensure that key properties are preserved from one iteration to

5.5 Summary 65

the next. For this to be efficient, and to fit into the agile mindset, analysis
must have automated tool support. Formalists should stop worrying about
development processes if they want to support agility. Instead, they should
start adjusting their “only perfect is good enough” mindset, and try a more
lightweight approach to formal modelling (already discussed in Section 3.2)
if their goal is to become more agile.

A concrete approach to using formal methods in the popular agile project
management method Scrum has been presented. A single team, consisting
of formalists as well as conventional software engineers, creates a formal
model in addition to the software implementation in each sprint. By having
engineers trained in the use of formal methods working alongside conven-
tional software engineers in a single team, we hope to remove some of the
mysticism that surrounds formal methods. During the daily Scrum meetings,
knowledge is transfered implicitly, ensuring that the use of formal develop-
ment methods is better understood by the software engineers. In time, the
software engineers of the team can help out on the investigation tasks getting
an even better understanding of formal validation techniques.

We hope that the method presented here will provide valuable input to
companies looking into adding the use of formal modelling techniques to
their agile software development processes. Introducing the use of formal
methods in an industrially widely used process like Scrum makes formal
methods more accessible and hence increase the industrial penetration.

6
Mono-Disciplinary Modelling

Case Study

This chapter describes a case study that applies a combination of the mono-
disciplinary modelling approaches described in Chapters 4 and 5. The
experiences gained are summarised and compared to the general feedback
from industrial use of formal methods described in Chapter 3. Chapter 10
expands the case study presented here by adding a high fidelity model of the
physical dynamics.

6.1 Introduction

In a recent project at Terma A/S several components of a self-defense sys-
tem for fighter aircraft needed to be updated to meet new customer needs.
The communication between two subsystems required an update in order
to support more complex message types. In order to avoid re-certification
of the military-certified handshake protocol used, it was proposed to add
information to the existing message structure to enhance the capabilities of
the protocol. To gain a higher degree of confidence in the proposed design
it was decided to make use of formal analysis techniques to ensure that the
communication upgrades did not compromise the core functionality of either
of the two subsystems. The guidelines and modelling approaches described
in prior chapters were used.

The design of the case study using formal methods is presented in Sec-
tion 6.2 describing the self-defense system that was analysed in the case study
which was called the ECAP case study (short for Electronic Combat Adaptive
Processor). The purpose of this case study is also defined here. Section 6.3
shows examples of the formal specification created as well as the tests used
to evaluate the model. The results of these tests are described in Section 6.4,
and lessons learned during the ECAP case study are discussed in Section 6.5.
Finally, a summary of the work is given in Section 6.6.

67

68 6 Mono-Disciplinary Case Study

6.2 Case Study Design

An important first step of any case study is to design it thoroughly. The ap-
proach described by Runeson et al. [171] was followed. A clear description
of the ECAP case study itself is made and a clear purpose of the case study is
defined.

6.2.1 Case Study Description

This section gives a functional overview of the self-defense system and the
protocol which is the main focus of this study. There are details of the system
which cannot be presented here due to military classification restrictions, but
sufficient information is given to introduce the reader to this complex system.

When fighter pilots are flying missions in hostile territory there is a risk of
encountering enemy anti-aircraft systems. To respond to these threats, the pi-
lot can deploy different types of countermeasures, as described in Section 2.6.
Since anti-aircraft systems are becoming increasingly sophisticated, and on-
board self-defense systems are also becoming more sophisticated, the fighter
pilot is in need of assistance in choosing the optimal countermeasure strategy.

A system called (ECAP) has been developed by Terma A/S to assist the
pilot in choosing the optimal response to incoming threats. The system is a
programmable unit that provides threat-adaptive processing, threat evaluation
and countermeasure strategy to counter incoming threats. From a multitude
of sensor inputs (aircraft position, orientation, speed and altitude, and threat
type and incoming angle to name a few) the system chooses an effective
combination of countermeasures against the incoming threat. The sensors
attached to ECAP can detect different types of threats, and will report data of
incoming threats to ECAP. The threat response calculated by ECAP, which
can consist of one or more countermeasure components, is sent to a Digital
Sequencer Switch (DSS) subsystem which administers the deployment of the
correct types of dispense payloads with the correct timing.

The subsystem of interest for this case study is a special Advanced Sen-
sor (AS). This sensor not only detects incoming threats, but also calculates
the optimal countermeasures against incoming threats much like the ECAP
functionality. AS is running in parallel with the rest of the system, and relies
on ECAP to accept and execute generated threat responses. Hence, ECAP
–acting as the master– needs to check the proposed response from the AS
slave for conflicts with the current system state, and accept or reject the
response based on this information. A robust handshake protocol has been
specified, defining the communication between ECAP and AS. A threat re-

6.2 Case Study Design 69

Figure 6.1 Self-defense system overview: Advanced Sensor (AS), Missile Warner System
(MWS), Tactical Data Unit (TDU), Advanced Threat Display (ATD), Digital Sequencer
Switch (DSS), Electronic Warfare Management Unit (EWMU) and Electronic Combat
Adaptive Processor (ECAP). The Host connects all the components of the system.

sponse consists of several components, that are either dispensing routines
of countermeasure decoys, a command to a subsystem or audio feedback to
the pilot. In the previous version of the system, ECAP treated all components
separately which resulted in the need for several pilot-consent actions in order
to execute a response. Not only did this put unnecessary strain on the pilot, but
it also resulted in delays between the different countermeasure components
which could decrease the effectiveness of the compound threat response.

The main focus of this case study was to evaluate an update to the way
ECAP interprets messages from the AS system. The protocol itself has un-
dergone military certification, hence no changes to the protocol were possible
as this would involve re-certification of the protocol which is both a costly
and time-consuming task. In addition to the individual components of the
threat response, it was proposed that AS should also generate a compound
threat response message which is the concatenation of the sequence of com-
ponents. What distinguishes a component from the compound threat response
is the position in the complete AS message — only the last sub-message
is the compound threat response whereas all preceding sub-messages are
components.

70 6 Mono-Disciplinary Case Study

An example is shown in Figure 6.2 where the first component is a dis-
pense routine, the second component is another dispensing routine, the third
component is a jammer program and the fourth component is a command to
a subsystem (audio feedback to the pilot for example). The new part of the
AS message is the compound message which is the concatenation of the four
prior components.

Figure 6.2 Countermeasure components and compound threat response from AS.

ECAP will still test for system conflicts for each of the message compo-
nents, but will only ever execute a compound threat response. This ensures
that only a single pilot-consent is ever needed, which in turn also solves the
issue of unwanted delays between countermeasure programs. At any time
before the accept of the final complete threat response, ECAP can cancel the
requests from AS if another threat surpasses the AS request, or if a higher
priority threat is discovered by another subsystem. The use of components
ensures that AS knows exactly which part of the compound message is re-
jected by ECAP, and it will then try to generate another effective compound
threat response not using that particular component.

The functionality of –and communication between– ECAP and AS is
complex because of both a) potential conflicts between system state and pro-
posed countermeasures from AS; and b) different priority levels of incoming
threats reported by different subsystems. In order to gain confidence in the
proposed update using the compound messages in addition to the individual
countermeasure components, many corner cases needed to be analysed in
order to ensure that no details were ignored. Traditionally, this analysis would
have been done by hand — a time-consuming and error-prone process. As an

6.2 Case Study Design 71

alternative, an executable model of the updated ECAP system with the AS
subsystem was developed and analysed.

The extension of ECAP described above was only a small part of a larger
update to the self-defense system used by the customer, including modifica-
tion to other parts of the on-board self-defense system. True to the intent to
use lightweight formal methods, only the extension to ECAP was included
in the case study described in this chapter. Traditional software development
methods (mainly Scrum, based on a thoroughly negotiated backlog) were
used to manage the upgrades of the self-defense system. The project had a
short timespan with only four months of development time with a workforce
of roughly 30 engineers. The case study presented in this chapter was con-
ducted by the author in parallel with the main product development. This
setup made it possible to try out a limited version of the process described in
Chapter 5 where agile software development was combined with the use of
VDM.

Parts of the stepwise approach to VDM model development described in
Chapter 4 were used to define the tasks of the individual sprints. The system
boundaries were defined and a sequential VDM++ model was created and
analysed. By applying an additional phase of the stepwise process, a con-
current VDM++ model was also created to test if the added fidelity made
the model more competent. This was not the case, though, so the descrip-
tion of the concurrent model is not included in this chapter. Hence, only
the application of Guideline mono 3 through mono 7 for the modelling and
Guideline mono 15 and mono 16 for tests of the sequential VDM++ model
are described in this chapter.

Figure 6.3 gives an overview of the backlog and duration of the three
sprints. The author was not fully integrated into the Scrum teams of the
software developers, so their tasks are not included in the figure.

Figure 6.3 Overview of the stepwise model construction.

72 6 Mono-Disciplinary Case Study

6.2.2 Purpose of the Case Study

The purpose of the case study, was to create an executable model where vari-
ous combinations of the ECAP system state and the proposed threat response
from AS could be analysed.

In order to enable rapid feedback to the user it was decided that the output
created by the model should be in a format that the customer was already
familiar with. This would reduce the amount of manual translation needed
for the customer to understand the result of the analysed scenario and would
also reduce the possibility of introducing errors in the manual translation.

6.3 Case Description: VDM Model of ECAP

Several extracts of the model are shown in order to highlight some of the
benefits and challenges in using formal methods.

6.3.1 Model Structure

The structure of the model follows Guideline mono 4 ensuring a structural
separation of the environment and system (ECAP). Figure 6.4 shows a UML
class diagram of the main parts of the model.

+Step()

World

+GetTime()

Timer

+CreateSignal()
+HandleEvent()
+Step()
+IsFinished()

Environment

ECAP

+Step()
+IsFinished()

SubsystemInput

PriorityTable

+Step()
+IsFinished()

Quantizer

+Step()
+IsFinished()

IMU

ThresholdTable

+Step()
+IsFinished()

Executer

ResponseTable

+Step()
+IsFinished()

ConsentQueue

+Step()
+IsFinished()

SubsystemOutput

1 1 1

ECAP contains public static
instance variables of:
- SubsystemInput
- IMU
- Quantizer
- Executer
- ConsentQueue
- SubsystemOutput

Figure 6.4 UML class diagram of the sequential ECAP VDM++ model.

6.3 Case Description: VDM Model of ECAP 73

Following Guideline mono 7, ECAP contains public static instances of
the rest of the engineering system, easing the access of these system elements.
The Environment class contains CreateSignal and HandleEvent
operations for generating input to and receiving responses from the model re-
spectively (Guideline mono 5). The CreateSignal operation can be seen
below:�
class Environment

types
public inline = MissileType * Angle * Time;

instance variables
inlines : seq of inline := [];

operations

private CreateSignal: () ==> ()
CreateSignal () ==
if len inlines > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

done : bool := false;
while not done do
def mk_ (type, angle, t) = hd inlines in
if t <= curtime
then (ECAP‘ssIn.AddInput(type, angle);

inlines := tl inlines;
done := len inlines = 0);
);
� �

The CreateSignal operation creates input consisting of type of mis-
sile, incoming angle and time from the sequence of inputs using the head (hd)
sequence operator. When the simulated current time surpasses the time of the
input, the AddInput operation of the SubsystemInput class is called,
and the sequence of input is updated using the tail (tl) sequence operator.
Once all input has been processed, the operation terminates.

All active classes were given Step operations for performing the periodic
functionality of the class and IsFinished operations to indicate that the
process is finished (Guideline mono 6).

74 6 Mono-Disciplinary Case Study

6.3.2 Abstract Data Types

To define the boundaries of the model, all the data types to be used by the
system were specified. This is a great way to gain insight into the system and
helps defining the interfaces between individual components. All necessary
types were defined in a class called ECAP Types (not included in Figure 6.4)
that all other classes in the model inherit from — this way all parts of the
system share the same types. Below is a simple example of one of the abstract
types in the model.�
class ECAP_Types

types
public static Coordinate ::
x : nat
y : nat;

public static Area ::
LowLeft : Coordinate
UpRight : Coordinate

inv a == a.LowLeft.x <= a.UpRight.x and a.LowLeft.y <= a.UpRight.y;

end ECAP_Types
� �
When the aircraft is inside enemy territory the system has to operate in a

specific mode. A rectangular Area defines an enemy territory as two coordi-
nates defining the lower-left and upper-right corners. This is a simplification
of the real system where an enemy territory can be defined as any polygon.
The benefits of this abstraction is clear in the IMU (Inertial Measurement
Unit) which uses these types when checking if the aircraft is within enemy
territory: if the aircraft x and y coordinates are within the upper and lower
bounds of the Area, the aircraft is inside hostile territory.�
class IMU is subclass of ECAP_Types

values
HOSTILE_ZONE : Area = mk_Area(mk_Coordinate(10,30),

mk_Coordinate(20,50));
functions

public CheckPosition : Coordinate -> GeoZone
CheckPosition (pos) ==
if (pos.x <= HOSTILE_ZONE.UpperRight.x and

pos.x >= HOSTILE_ZONE.LowerLeft.x and

6.3 Case Description: VDM Model of ECAP 75

pos.y <= HOSTILE_ZONE.UpperRight.y and
pos.y >= HOSTILE_ZONE.LowerLeft.y)

then <Hostile>
else <Friendly>;

end IMU
� �
6.3.3 Model Contracts

Design by contract languages like JML [129] and Spec# [23] enable formal
interface definitions through: pre- and post conditions; invariants; and errors
and exceptions. This interface definition is added as basic annotations of the
individual methods and modules. Similarly, VDM can define formal inter-
faces using pre- and post conditions and invariants. A simple example of an
invariant is shown below:�
types
Angle : nat
inv a == a < 360;
� �

This invariant ensures that an angle only can be specified as a natural
number between 0 and 359. By defining such an invariant the expected inter-
val of an angle is clearly documented.

In a similar fashion pre- and post-conditions can be used to document the
accepted entry- and exit-conditions of an operation (Guideline mono 3). It
is possible to define functions and operations implicitly by only defining the
signature of the operation along with pre- and post-conditions but without
specifying the body of the operation. This is a convenient way of docu-
menting the expected use of the operation without having to describe any
algorithmic details otherwise needed by the interpreter in order to execute an
explicit operation. Below is an example of the use of pre- and post-conditions
in the model. The operation AddThreat is explicitly defined in the model
but the body is left out in the model extract below.�
public AddThreat : Threat ==> ()
AddThreat (threat) ==
...
pre threat.ID not in set dom Threat_Map
post threat.ID in set dom Threat_Map;
� �

76 6 Mono-Disciplinary Case Study

The Threat Map is a mapping from unique thread IDs to the actual
threat information. When a new threat is added to the system the pre-condition
states that the ID of this new thread must not be known by the system (to avoid
registering the same threat several times). The post-condition states that once
the body of the operation has been evaluated the ID of the threat should now
be known by the system. This is a convenient way of defining the intended
behaviour of the operation without having to go into implementation details.

6.3.4 Abstract Operators

VDM has many abstract operators which can be used to describe what should
happen without having to describe how this should be done — similar to the
use of implicit specifications. Set and sequence operators provide a compact
way of describing functional behaviour without having to consider constraints
imposed by the target implementation language. An example is shown below:�
private PrioritiseQueue : () ==> ()
PrioritiseQueue () ==
let PrioOneQueue : seq of ThreatResponse =

[Queue(i) | i in set inds Queue & Queue(i).Prio = 1],
PrioTwoQueue : seq of ThreatResponse =
[Queue(j) | j in set inds Queue & Queue(j).Prio = 2],
...

in
Queue := PrioOneQueue ˆ PrioTwoQueue ˆ

PrioThreeQueue ˆ PrioFourQueue;
� �
The sequence comprehension operator (described in Appendix B) is used

to sort a sequence of threat responses based on the priority of each individual
threat. A sequence is created for each of the four levels of priority defined
in the system. In the end the four sequences are concatenated in ascending
order. This clearly defines the intended behaviour of the operation without
having to use target implementation language specific constructs to write a
high performance sorting algorithm.

6.3.5 Testing the Protocol

Three different techniques were used to analyse and validate the model cre-
ated in the ECAP case study: the Proof Obligation Generator [29]; the unit
testing framework VDMUnit [72]; and the Combinatorial Testing tool [123]
all built into the Overture tool. These validation tools have already been
introduced in Section 3.3.3.

6.3 Case Description: VDM Model of ECAP 77

During the system boundary definition, it was decided to model the in-
stance variable DecoyLeft as a natural number, since the system cannot
have a negative number of flares left. The operation DecoyUsed is called
when decoys are dispensed ensuring the number of decoys available on board
the aircraft is updated. If more decoys are used than is available, a run-time
exception would be generated. Below is an example of the output generated
by the proof obligation generator:�
((Dispenser.DecoyLeft) - n) >= 0
� �

To manually discharge this proof obligation, a pre-condition was added
to the operation. This also documents the intended use of the operation, re-
minding the model designer to check if the required number of decoys for a
given threat response are in fact available.�
public DecoyUsed: nat ==> ()
DecoyUsed(n) ==

Dispenser.DecoyLeft := Dispenser.DecoyLeft - n;
pre Dispenser.DecoyLeft - n >= 0;
� �

Following Guideline mono 15, 21 different unit test scenarios were con-
structed using VDMUnit, testing different combinations of ECAP system
state and requests from the AS subsystem. Most of these scenarios were
defined by the customer who wanted to analyse different corner-cases. Most
of these scenarios are long and complex, so only a simple example is included
below:�
class SimpleTest is subclass of TestCase

operations

protected Test: () ==> ()
Test() ==
(--Req 105: Use Cat1, Cat3; IAT=(4,0,4,0,0); RT=3
ECAP‘AP.Generate_TestInput({{mk_ (1,<Req>),

mk_ (2,<Req>),
mk_ (105,<Req>)}});

World‘Step(); -- 1 timeunit delay from AS
World‘Step();
World‘Step(); -- Response executed
AssertTrue(ECAP‘IAT.GetIatTable() =

mk_ECAP_Types‘IntAvoid(4,0,4,0,0));
);
� �

78 6 Mono-Disciplinary Case Study

In the example above a compound threat message from AS is generated as
input for ECAP. The compound threat message has ID 105 and is composed
of two components with ID 1 and 2. Since no conflicts exist, the compound
threat message is executed by ECAP and the Interference Avoidance Time
(IAT) specified in the response is set in the system state. Should the assertion
be violated the test would fail and the model designer would be pointed to the
failing test case.

To reuse these unit tests for future concurrent and real-time models (Guide-
line mono 16), only minor modifications are needed. Instead of the World
class having the thread of control repeatedly invoking the Step operation of
active classes, these processes will run independently processing any avail-
able input. The Environment class only needs to supply an input to the
model, and check if the expected output is generated after a certain time has
elapsed.

The model created in the ECAP case study made use of hierarchical
mappings to define huge multi-dimension look-up tables used to acquire the
response to a given threat situation. The sets used inside the hierarchical
mappings were limited to a maximum of four elements, to limit the size of the
state-space of the model. The real ECAP system can be configured to manage
more than 64.000 different responses. The model can be extended to support
an equally large state-space, but it was not deemed necessary for the ECAP
case study presented here, where only the conceptual design of the system
needed to be tested.�
class ResponseTable is subclass of ECAP_Types

instance variables

private ResponseTableDB :
map AzimuthZone to
(map ChaffLeft to

(map GeoZone to
(map Speed to

(map Altitude to ThreatResponse))));
� �
Combinatorial testing (see Section 3.3.3) was used to ensure that the

multi-dimension look-up tables contained an output for every possible com-
bination of input accepted by the system. As a concrete example, the trace
definition below was used to ensure that the ECAP Executer could gener-
ate a response to all possible combinations of input the hierarchical mappings
were limited to:

6.4 Case Study Discussion 79

�
class CT

instance variables
table : ResponseTable := new ResponseTable();

traces
CT_Test_ResponseTable:
let azi in set {<Front>,<Left>,<Right>,<Rear>}
in
let chaff in set {<Normal>,<Low>} in
let geo in set {<Hostile>,<Friendly>} in
let speed in set {<Fast>,<Normal>,<Slow>} in
let alt in set {<High>,<Normal>,<Low>} in
table.Lookup(azi,chaff,geo,speed,alt)
� �

This simple regular expression expanded to 144 individual test cases which
were automatically executed by the tool in less than 5 seconds. The tool also
enables post-execution inspection of the individual test cases as well as their
results. Using this testing approach on other parts of the model ensured that
there were no combinations of input that the model could not handle.

An alternative to the combinatorial testing would be to translate the model
to another formal specification language and make use of symbolic model
checking techniques [20]. This ensures that the entire state-space would be
searched in order to find counterexamples to a given claim. The level of detail
in our model would cause the state-space to explode if we tried symbolic
model checking. In order to utilize model checking we would need to abstract
away from details in the model which involves a risk of over-simplifying
critical details.

6.4 Case Study Discussion

In total, the model of ECAP and the AS subsystem consists of more than
1800 lines of VDM++ specification. In addition, more than 1500 lines of
test scenarios were created to run the many scenarios needed to exercise the
new use of the protocol. The Overture tool has the ability to generate test
coverage of a model, which gives an indication of parts of the model which
are exercised less than other parts. The AS subsystem has a test coverage
of 100%, meaning that every line of specification has been exercised by the
scenarios. This only ensures that all lines have been executed at least once,
but not that all combinations of input have been covered. On average, the

80 6 Mono-Disciplinary Case Study

complete model of ECAP, AP and all other subsystems has a test coverage of
94.1%. The unit tests were used to find errors in the model where the wrong
level of abstraction had been applied. These errors were fixed before more
large scale testing was applied.

A total of 253 proof obligations were generated by the Overture proof
obligation generator — the majority of these were caused by the extensive
use of mapping applications in the model where the model needs to ensure
that the domain value is in the domain of the mapping. The proof obligations
generated helped locate missing invariants on data types and pre-conditions
for functions and operations.

The ECAP and AS model made use of extensive logging, so at any point
in time the system state was available for post-execution analysis. The logfiles
from the many scenarios were used directly in the communication with the
customer to give a precise description of how the systems should react in the
different situations. This was a great aid in agreeing on how ECAP should
interpret the countermeasure components and compound threat response.

For a system the size and complexity of the one presented here, it is
difficult and error-prone to analyse the many combinations of system state
and input by hand. The test suite composed for this project does not ensure
complete coverage of the state-space of the system model, but provided a sim-
ple framework enabling extension of other scenarios to analyse some newly
discovered corner-cases. This ensured a short duration of the iterative cycles
internally in the company when new scenarios had to be tested. The model
test suite was also used as input for the integration test of the realisation of
the final system.

The models of ECAP, AS and the protocol were developed by a single
person over a period of just two months including knowledge gathering of
the systems involved. This was only possible due to the fact that many of
the details of the real system were omitted in the model, and only the main
functionality of the systems was included in the model. Below are a few
examples of abstractions:

• In the real self-defense system the different subsystems are connected
by a military standard communication bus which could have been mod-
elled in detail to test collision of messages. This was omitted as it was
not relevant to the model’s purpose of testing the enhancement of the
communication protocol, and hence beyond the scope of this case study.

• Several subsystem commands to enable and disable various subsystems
were omitted.

6.5 Lessons Learned 81

This is one of the main advantages of using system modelling in the early
phases of system development: key properties of the system are described in
detail while any unnecessary details are abstracted away.

6.5 Lessons Learned

The industrial cases from the literature survey described in Section 3.2 had
several common conclusions. Each of these key points are compared with
experiences gained from the ECAP case study described in this chapter.

6.5.1 Lightweight Formal Methods

Many of the industrial cases reported a preference for a more lightweight
approach to the use of formal methods. By only modelling the ECAP and
AS subsystems rather than the entire self-defense system it was possible to
finish the model and analyse the numerous scenarios defined by the customer.
A more heavyweight formal approach would be more suitable for verifying
the absence of errors in the model, however this requires much more work
and would definitely have been outside the scope of this four month long
development project at Terma.

In projects like the seL4 microkernel [15], full formal verification was
done resulting in a high confidence in the resulting system. In the case pre-
sented here a higher confidence was gained in the concept of the enhancement
of the communication protocol: the model clearly showed that the concept
was valid but said nothing of the actual implementation. Much can be gained
from this early insight into the feasibility of a design or concept. In the case
presented here it was all that was needed to assure the customer that a correct
solution to the existing protocols limitations had been designed. It is impor-
tant, though, to understand the limitations of a more lightweight approach in
order to avoid expectations of full proof of all properties of the system.

One of the key benefits of using formal methods is the way they force
questions to be asked of the requirements. A lot of accuracy and detail is
needed in a formal specification to precisely model the system. This forces
the formalist to ask accurate and detailed questions to the domain expert.
These questions are often completely overlooked in non-formal development
techniques which can lead to incompleteness in the requirements specifica-
tion.

82 6 Mono-Disciplinary Case Study

6.5.2 Prior Knowledge

The author had prior experience with both VDM and the Overture tool, so
no training was necessary. Domain specific information, readable by both the
systems engineers and customer, was produced when exercising the model
with the different scenarios. This removed the need for any formal methods
knowledge by others than the author, which eased the use of the model. After
the model had been interpreted the results could be sent unaltered to the
customer who could easily understand them. It is our clear experience that
this is a major step forward in ensuring a wider use and acceptance of formal
methods.

As a test, the author led a one-day workshop, introducing some of the
other engineers to VDM. At the end of this workshop, engineers (especially
those with a strong coding background) had no problems reading and un-
derstanding VDM models, and they even succeeded in producing their own
simple models. Further assistance would be needed if these engineers should
use VDM for real tasks, but even such a short introduction was enough for
most engineers to actually start creating their own models.

The model was developed over a short period of time to validate the con-
ceptual changes to the communication protocol. It was not the plan to main-
tain the model beyond this short window of opportunity. Had this been the
case, it would have been imperative to include some of the software develop-
eres and/or domain experts in the creation of the model to ensure knowledge
transfer and through that increase the maintainability of the model.

6.5.3 Tools

The author found the Overture tool to be stable and easy to use compared
to many other open-source formal methods tools. The combinatorial testing
helps greatly in producing a large test suite as it is a convenient way of testing
all permutations of input of the model, and greatly reduced the time needed
on tests. This type of automation is imperative for formal methods to see
wider use in industry. The Overture tool does not provide any assistance with
regards to proof, except the possibility of translating VDM proof obligations
automatically [188, 189] to the theorem prover HOL [83] where these can be
formally verified. Since a more lightweight approach was chosen, this feature
was not used.

6.6 Summary 83

6.5.4 Existing Development Process

As mentioned, the author was the sole formalist in the project, and was as
such not fully integrated into the development team working on the actual
system. In order to fully utilise the formal model produced, the formalist and
conventional developers should be working in much closer collaboration, and
the formal method should be fully incorporated into the development process
used.

6.5.5 Formal Requirements Specification

Traditionally it is advised to use formal methods as early in the development
process as possible because the sooner errors are found the cheaper they are to
correct [36, 37]. Often the requirements specification is seen as the most crit-
ical document [85] so this is one place where formal methods have been used
most in industry. Unfortunately, having a formal requirements specification
does not ensure that it actually describes what the customer wants and needs.
For this, the ability to interpret an executable specification can provide much
more valuable input to the process and help in ensuring that the customer and
developer have the same understanding of the system. This was the way the
formal model was used in the ECAP case study described here, and proved
to be a valuable addition to existing communication methods.

6.6 Summary

The outcome of the ECAP case study was positive — the customer was es-
pecially satisfied with the early and rapid feedback provided by the formal
model created. The software developers gained some insight into the benefits
of using formal specifications, but since the author was not fully integrated
into the daily Scrum meetings the knowledge transfer was limited.

This was the first time the systems engineers had any experience with
formal methods and their first time using executable models to specify func-
tional requirements in general. One of the systems engineers on the project
commented:

“The possibility to run numerous scenarios to analyse different
combinations of ECAP system state and AS input was invaluable,
and the rapid feedback from the model designer was very useful
due to the time constraints of the project. We are extremely happy
with the results obtained from this case study, which helped us in

84 6 Mono-Disciplinary Case Study

reaching an agreement with the customer within a limited period of
time.”

The use of a formal model and lightweight formal analysis principles,
such as the scenario-based tests and manual inspection of the generated proof
obligations, proved to be valuable for the ECAP case study. A lot of insight
was gained in the functionality of the system in general and specifically of
the new interpretation of the messages passed between ECAP and the AS
subsystem which was invaluable in reaching an agreement with the customer.

The ECAP case study was later extended to enable analysis of more com-
plete electronic warfare scenarios, including a continuous-time model of the
rigid body dynamics of the flares, and flight dynamics and target seeking of a
missile — this is described in Chapter 10. In addition, the industrial partner
Terma is planning a follow-up project in the surveillance domain. This clearly
shows the industrial impact of the ECAP case study presented in this chapter.

Part III

Multi-Disciplinary Modelling

85

7
Multi-Disciplinary Modelling

This chapter introduces a multi-disciplinary modelling approach where the
discrete controller and the continuous dynamics of the environment are
described using two different formalisms. The DESTECS toolchain is in-
troduced, which is capable of collaborative modelling and co-simulating of
multi-disciplinary systems. This chapter provides the formal foundation for
the rest of this thesis, where the DESTECS tool is used.

7.1 Introduction to Multi-Disciplinary Modelling

In classical physics, aspects like movement, acceleration and forces are de-
scribed using differential equations. Naturally, models of the environment in
which an embedded system is operating are best described using differential
equations as well. Continuous-time (CT) models excel at describing mechani-
cal systems and rigid body dynamics. These types of models, however, are not
suited for describing discrete-event (DE) controllers. An embedded controller
is typically constructed using a layered architecture, separating the concerns
of the application layer from the safety layer — CT models rarely support this
type of structure. To model both the embedded controller and the dynamics
of the environment at a high level of fidelity, a multi-disciplinary modelling
approach is needed.

A strong engineering methodology for embedded systems will be collab-
orative. A collaborative modelling approach 1 enables the model designer to
describe not only the controller at a high level of fidelity, but also the physical
dynamics of the environment. In addition, co-modelling improves the chances
of closing the design loop early, encouraging dialogue between disciplines.

Such an approach will provide notations that expose the impact of design
choices early, allow modelling and analysis of dynamic aspects and support

1 Throughout this thesis, we term this approach “collaborative modelling” or “co-
modelling”.

87

88 7 Multi-Disciplinary Modelling

systematic analysis of faulty as well as normal behaviour. The hypothesis sup-
porting the multi-disciplinary modelling approach is that lightweight formal
and domain-specific models that capture system-level behaviour can supply
many of these characteristics, provided they can be combined in a suitable
way and be evaluated rapidly.

Verhoef has demonstrated that significant gains are feasible by combining
VDM and bond graphs [107], using co-simulation as the means of model
assessment [184]. The work reported in this part of the thesis mainly made use
of the tools developed as part of the EU FP7 Project DESTECS [43]. An intro-
duction to DESTECS is given in Section 7.2. Various other alternative tools
and technologies capable of creating and (co-)simulating multi-disciplinary
models are introduced in Section 7.3.

7.2 Multi-Disciplinary Modelling in DESTECS

DESTECS (Design Support and Tooling for Embedded Control Software)
aim to develop methods and tools that combine CT system models with
DE controller models through co-simulation. The focus of the project is on
multi-disciplinary modelling, fault modelling and modelling fault tolerance
mechanisms.

In the DESTECS approach to collaborative development, a model is a
more or less abstract representation of a system or component of interest. The
primarily concern of the DESTECS project is analysis by execution, so the
main interest is formal models that, while they are abstract, are also directly
executable. A test run of a model is called a simulation. A design parameter is
a property of a model that affects its behaviour, but which remains constant
during a given simulation. A simulation is normally under the control of a
script that determines the initial values of modelled state variables and the
order in which subsequent events occur. A script may force the selection of
alternative implementations of submodels and may supply external inputs
(e.g. a change of set point) where required. A test result is the outcome of
a simulation over a model.

A co-model (Figure 7.1) is a model composed of:

• Two component models, normally one describing a computing subsys-
tem and one describing the plant or environment with which it interacts.
The former model is typically expressed in a DE formalism and the latter
using a CT formalism.

7.2 Multi-Disciplinary Modelling in DESTECS 89

• A contract, which identifies shared design parameters, shared variables,
and common events used to effect communication between the subsys-
tems represented by the models.

A co-model is itself a model and may be simulated under the control
of a script. The simulation of a co-model is termed co-simulation. A co-
model offers an interface that can be used to set design parameters and to run
scripts to set initial values, trigger faulty behaviour, provide external inputs
and observe selected values as the simulation progresses.

Figure 7.1 Components of a DESTECS co-model.

In a co-simulation, a shared variable is a variable that appears in and can
be accessed from both component models. Monitored variables are moni-
tored by the embedded controller, while controlled variables are environment
variables controlled by the embedded controller — this is similar to the I’s
and O’s of the four-variable model of Parnas and Madey [156]. Shared vari-
ables may change value as the co-simulation progresses. The variables can
be of boolean type or real valued, and several can be passed using multi-
dimensional array structures. Predicates over the variables in the component
models may be stated. The changing of the logical value of a predicate at a
certain time is termed an event. Events are referred to by name and can be
propagated from one component model to another within a co-model dur-
ing co-simulation. The semantics of a co-simulation are defined in terms of
the evolution of these shared variable changes and event occurrences while
co-model time is passing.

In a co-simulation, the CT and DE models execute as interleaved threads
of control in their respective simulators under the supervision of a co-simu-
lation engine. The DE simulator calculates the smallest time ∆t it has to
run before performing the next action — this ∆t is communicated to the co-

90 7 Multi-Disciplinary Modelling

simulation engine, without the DE simulator actually executing. This time
step is communicated to the CT simulator which then runs the Ordinary
Differential Equation (ODE) solver forward by up to ∆t. If the CT sim-
ulator observes an event, for example when a continuously varying value
passes a threshold, this is communicated back to the DE simulator by the
co-simulation engine. If this event occurred prior to ∆t, then the DE simu-
lator does not complete the full time step, but it runs forward to this shorter
time step and then re-evaluates its simulator state. If no event happens, the
DE simulator runs forward the full ∆t. Note that it is not possible (in gen-
eral) to roll the DE simulation back, owing to the expense of saving the
full state history, whereas the CT solver can work to specified times analyti-
cally. Verhoef et al. [186] provide an integrated operational semantics for the
co-simulation of DE models with CT models. Co-simulation soundness is en-
sured by enforcing strict monotonically increasing model time and a transac-
tion mechanism that manages time triggered modification of shared variables.
The co-simulation semantics have been updated as one of the deliverables of
the DESTECS project [51].

The DESTECS toolchain uses CT models expressed as differential equa-
tions in bond graphs [107] and DE models expressed using the VDM notation
explained in Section 3.3. The simulation engines supporting the two nota-
tions are, respectively, 20-sim [42, 1] and Overture [116]. An introduction
to DE modelling in VDM has already been given in Section 3.3, and a short
introduction to modelling in 20-sim is given in the following subsection.

7.2.1 Continuous-Time Modelling in 20-sim

20-sim [42], formerly CAMAS [41], is a tool for modelling and simulation
of dynamic systems including electronics, mechanical and hydraulic systems.
All models are based on bond graphs which is a non-causal technology, where
the underlying equations are specified as equalities. Hence, variables do not
initially need to be specified as inputs or outputs — the energy flow is contin-
uously being evaluated at simulation time. In addition, the interface between
bond graph elements is port-based where each port has two variables that
are computed in opposite directions, for example voltage and current in the
electrical domain.

20-sim also supports graphical representation of the mathematical rela-
tions between signals in the form of block diagrams and iconic diagrams
(building blocks of physical systems like masses and springs) as more user
friendly notations. Using a combination of notations is also possible, since

7.2 Multi-Disciplinary Modelling in DESTECS 91

bond graphs provide the common basis. It is possible to create submodels of
multiple components or even multiple submodels allowing for a hierarchical
model structure. 20-sim includes a library of iconic components from several
different domains such as hydraulic, electric, mechanical and thermal as well
as pre-defined blocks for signal sources, controllers and filters. In addition
to blocks from pre-defined libraries, users may also define their own blocks,
and add them to the library for later reuse. These blocks may contain equa-
tions, bond graphs, or further graphical models. A block may have more than
one “implementation” allowing alternative behaviours to be modelled. The
DESTECS tool allows the user to select a specific implementation before
co-simulation.

20-sim has several tools for validating a model in both the frequency and
time domain. A Fast Fourier Transformation (FFT) can be used to calculate
the frequency content of a simulated signal. This is useful when comparing
the simulated signal with a measured signal from the real system. In the time
domain, 20-sim can do parameter sweeps where one or more parameters
are given a range of values and simulations are automatically done for all
permutations of the values. This is valuable when trying to find the optimal
value of a given parameter, or combination of parameters, and can greatly
reduce time spent on manual testing.

20-sim includes a 2D graph editor enabling the model designer to pick any
signal or parameter in the entire model from a hierarchical tree structure, add
a name and color and have them plotted either collided or in separate graphs
in the same window. 20-sim also has a built-in 3D animator. This enables the
model designer to use variable values of the model to scale, rotate or move
simple objects like cubes, cylinders or planes. In addition, objects can be
imported from other 3D modelling tools in a variety of standard formats. An
example of the capabilities of the 3D animator can be seen in Figure 7.2.

7.2.2 Basic Co-Simulation in DESTECS

In this section, a co-simulation is illustrated by means of a simple example
based on the level controller of a water tank (Figure 7.2).

The water level of the tank is based on the continuous input flow ϕin

and output flow ϕout described in Equation 7.1. The output flow through
the valve, when this is opened or closed, is described by Equation 7.2 in
Figure 7.2, where ρ is the density of the water, g is acceleration due to gravity,
A is the surface area of the water tank, R is the resistance in the valve and
V is the water volume. An iconic diagram model of this system created in

92 7 Multi-Disciplinary Modelling

dV

dt
= ϕin − ϕout (7.1)

ϕout =

{
ρ∗g
A∗R ∗ V if valve open
0 if valve closed

(7.2)

Figure 7.2 Water tank level controller case study system overview.

20-sim is shown in Figure 7.3 (a). There are two simple requirements for the
DE controller: when the water reaches the “high” level mark the valve must
be opened, and when the water reaches the “low” level mark, the valve must
be closed. A VDM model of the controller is shown in Figure 7.3 (b).

�
class Controller

instance variables
private i : Interface

operations
async public Open:() ==> ()
Open() == duration(50E3)
i.SetValve(true);

async public Close:() ==> ()
Close() == cycles(1000)
i.SetValve(false);

sync
mutex(Open, Close);
mutex(Open); mutex(Close)

end Controller
� �
Figure 7.3 (a) Iconic diagram CT model (left) and (b) event-driven DE controller in VDM
(right).

7.2 Multi-Disciplinary Modelling in DESTECS 93

The controller model is expressed in VDM-RT. An instance variable rep-
resents the state of the valve and the asynchronous Open and Close op-
erations set its value. Both operations are specified explicitly in the sense
that they are directly executable. In order to illustrate the recording of timing
constraints in VDM-RT, the duration and cycles statements constrain
the time taken by the operations to 50,000 ns in the case of Open and 1000
processor cycles in the case of Close. The time taken for a Close oper-
ation is therefore dependent on the defined speed of the computation unit
(CPU) on which it is deployed (described in the system class of the model).
The synchronisation constraints state that the two operations are mutually
exclusive.

A co-model can be constructed consisting of the CT model and DE model
shown above. The co-simulation contract between them identifies the events
from the CT model that are coupled to the operations in the DE model and
indicates that valve is shared between the two models.�
sdp real maxlevel;
sdp real minlevel;

controlled bool valve;

event high;
event low;
� �

The contract indicates which state event triggers which operations. In this
case the water level rises above the upper sensor, the Open operation shall be
triggered and respectively when the water level drops below the lower sensor,
the Close operation shall be called. Note that valve represents the actual
state of the valve, not merely the controller’s view of it.

7.2.3 Miscellaneous DESTECS Tools

The DESTECS toolchain includes various other tools useful during co-model
analysis. These tools are briefly described here.

The DESTECS Command Language (DCL) is a scripting language which
is used to simulate user input and activate latent fault behaviours during a
co-simulation. An example of the use of DCL, can be seen in Section 8.3.2.

To setup a co-simulation run a Launch Configuration is created inside
the DESTECS tool, defining the entry point of the simulation, simulation
time, shared design parameter values, type of ODE solver, etc. If the CT

94 7 Multi-Disciplinary Modelling

model includes several implementations, the correct one is set in the launch
configuration as well.

An interface to the tool Octave [148] has been implemented in DESTECS
enabling the user to choose any signal from the CT or DE model to be plotted
in a 2D graph. This gives the user further possibilities to monitor and compare
parameter values in the model.

The Automated Co-model Analysis (ACA) of the DESTECS tool enables
the user to setup parameter sweeps on multiple parameters at the same time.
A special launch configuration defines the value ranges of the shared design
parameters, and the ACA tool will then automatically perform all possible
permutations of these sweeps. A results file is generated giving a comparative
overview of the ACA, and individual co-simulations can be chosen to be co-
simulated again.

7.2.4 Limitations of Co-simulation in DESTECS

The ACA tool is an important aid in performing design space exploration, au-
tomating some of the tedious tasks involved. The entire state-space of the co-
model is not searched though — this is not possible since most continuous-
time variables are real-valued types resulting in state-space explosion.

When time is synchronised and variable values are passed between the
discrete and continuous-time simulators, there is a communication overhead,
that has a negative impact on the co-simulation speed. The model designer
must be cautious when designing the two models and the contract between
them, as to not synchronise values more often than is needed. For example,
the type of CT solver as well as the minimum step-size of the CT solver
must be adjusted to allow it to evaluate the differential equations correctly,
with minimum overhead. To examine the simulation overhead caused by the
DESTECS architecture, Chapter 8 compares DESTECS with the Ptolemy
tool that consists of only a single simulator for both CT and DE models.

Even a high fidelity co-model, is still just a model of the real system and
environment, and will always contain inaccuracies and abstractions. It is im-
portant all significant parameters of the system are included in the co-model
to decrease the level of inaccuracy, ensuring a competent model. Physical
prototypes can highlight aspects of the system that the co-model must ignore
for the sake of simplicity. The prototype can be tested in the real environment
in which the embedded system operates. This is not a limitation isolated to
co-models, but is an inherent limitation of all types of models.

7.3 Alternative Multi-Disciplinary Modelling Approaches 95

7.3 Alternative Multi-Disciplinary Modelling Approaches

Various other alternative tool and modelling approaches exist for collabora-
tive modelling and (co-)simulation of multi-disciplinary systems. The most
significant of these are described below.

7.3.1 Application Domain Modelling

The objective of domain engineering as introduced by Dines Bjørner [31] is
to create a domain description. In principle a domain model does not contain
any reference to the machine, and strives to describe the domain as it is. A
domain description specifies entities, functions, events and behaviours of the
domain such as the domain stakeholders think they are. A domain description
thus expresses what there really is, whereas a requirements model expresses
what there ought to be.

To develop a proper domain description necessitates a number of devel-
opment stages: i) identification of stakeholders, ii) domain knowledge ac-
quisition, iii) business process rough-sketching, iv) domain analysis, v) do-
main modelling: developing abstractions and verifying properties, vi) domain
validation and vii) domain theory building.

As such, domain engineering is not a multi-disciplinary modelling ap-
proach, but some of the principles can be used for defining the system bound-
aries (i.e. phase one of the VDM-RT process described in Chapter 4, or
to better define the contract between the continuous and discrete parts of a
co-model).

7.3.2 Hybrid Automaton

A hybrid system is a dynamic system that exhibits both continuous and dis-
crete dynamic behavior [12]. The term hybrid system is often used inter-
changeably with embedded system or cyber-physical system in the literature.
A hybrid system can be described by means of a hybrid automaton consisting
of a finite automaton with continuous dynamics associated with each discrete
state of the automaton that are typically modeled via differential equations.
Each discrete state includes:

• initial conditions for time and values of the continuous state;
• differential equations that describe the flow of the continuous state; and
• invariants that describe regions of the continuous state-space where the

system stays at the discrete state.

96 7 Multi-Disciplinary Modelling

The transition from one discrete state to another is guarded by boolean
expressions, typically inequalities on the values of the continuous state. When
a discrete transition occurs, then assignments are made to the continuous state
that act as initial conditions to the next discrete state.

7.3.3 Problem Frames

The task of developing a specific piece of software for a system can be seen as
a problem [99]. The problem consists in developing a machine that satisfies
some requirements in a given environment — i.e. a part of the real world.
The machine is then the solution to the problem, but in the problem frames
approach, emphasis is explicitly put on the task of understanding the problem
before searching for specific solutions. A problem is understood by describ-
ing the environment and the requirements for the behavior that the machine
should bring about in terms of resulting interaction between the machine and
the physical entities of the environment. In the problem frames approach,
problem diagrams are used for describing the structural properties of specific
software development problems.

Hayes, Jackson and Jones have extended the use of problem frames [86,
104]. They argue that the specifications of a system should be derived for-
mally from a description of required phenomena in the physical world in
which the system will operate. Like domain modelling, problem frames can
be used to define the system boundaries of a multi-disciplinary system.

7.3.4 MADES Co-Simulation Approach

The project MADES Co-simulation Approach (MCA) [22] allows designers
to combine logic formulae describing the controller with non-casual CT mod-
els created in Modelica [79]. MCA supports simulation of nondeterministic
models, where the simulator tries out different alternatives in order to find
an execution trace that does not violate either of the two models. Users can
specify logical constraints on the execution. An example of this is temporal
logical constraints like: “a variable v must assume a value between 2 and
3 within 5 time units”. The co-simulation tool then picks a value randomly
within the specified interval. It is assumed that the CT environment model
is deterministic since the differential equations always evaluate to a unique
solution.

In MCA the controller and environment have private variables that are
only visible in the individual models. In addition the two models commu-

7.3 Alternative Multi-Disciplinary Modelling Approaches 97

nicate through shared variables. Each variable belongs to a model (shared
controller variables and shared environment variables) — similar to the con-
trolled and monitored shared variables of DESTECS. The shared variables of
MCA can be real-valued or boolean signals.

The MCA approach is similar to the DESTECS approach in that it allows
designers to combine different, complementary formalisms instead of requir-
ing that the models fit into a single all-encompassing notation. This approach
takes advantage of the strengths of each of the individual formalisms.

7.3.5 MathWorks Tools

In industry MATLAB/Simulink [137] created by MathWorks is one of the
most widely used tool for creating CT models. MATLAB is a modelling
language and interactive environment which lets the user create the models
fast compared to traditional programming languages. Simulink is an environ-
ment for multi-domain simulation and model-based design for dynamic and
embedded systems. It provides an interactive graphical environment and a
customizable set of block libraries which lets the user design, simulate, imple-
ment, and test a variety of time-varying systems, including communications,
controls, signal processing, video processing, and image processing.

Two tools have been created to increase the co-simulation capabilities of
the MathWorks tool suite. These two tools are described briefly below.

Stateflow
Stateflow adds control logic to the MATLAB/Simulink toolbox for modelling
reactive systems using state charts and flow diagrams for the controller model.
The control logic is then co-simulated with a CT model created in Simulink.
The Simulink models use a causal approach where the ODEs describing the
continuous behaviour of the environment have a causal relation between in-
put and output variables and are connected using signals. The control logic
in Stateflow is represented by finite state machines allowing for hierarchy,
parallelism and history within the state charts. Additional tools allows for
automated code generation from the Stateflow charts to C, HDL and PLC
code.

AMESim
Advanced Modeling Environment for performing Simulations of engineer-
ing systems (AMESim) [134] extends the MathWorks toolbox with a non-
causal modelling approach where the interface between model elements are

98 7 Multi-Disciplinary Modelling

ports representing physical entities that operate bi-directionally. This is en-
abled due to the underlying bond graph theory also used in 20-sim (see Sec-
tion 7.2.1) which facilitates links between various physical domains.

7.3.6 Ptolemy

Ptolemy II [44, 56] 2 is a modelling and simulation framework for multi-
disciplinary systems which is developed at University of California, Berkeley.
The framework is an open-source Java project that has been developed since
1996.

Ptolemy has been used in industry, for example in HP’s DSP Designer
and DSP Synthesizer [159] or MLDesigner [141] which use concepts de-
veloped in the Ptolemy project. Mirabilis Design [140] have commercialised
Ptolemy in the tool VisualSim. Ptolemy has also seen a wide non-commercial
use, most noteworthy are the Kepler project [109] and the Building Controls
Virtual Test Bed (BCVTB) [24].

The actor-oriented design principle is used to describe systems. Actors
are components that communicate via ports. The semantics of an actor and
the communication is given by a Model of Computation (MoC). Examples of
MoCs in Ptolemy are DE, CT, various data flow variants such as synchronous
data flow (SDF), process network (PN) and synchronous reactive (SR).

Heterogeneous composition of different MoCs is enabled via hierarchies
where every hierarchy level represents exactly one MoC. A special actor,
the director, enforces the MoC on each hierarchy level. Composite actors
contain actors and, in the case of opaque composite actors, they contain a
director. To the enclosing model, a composite actor behaves like an atomic
actor with ports for communication. Transparent composite actors do not
contain a director and are mere logical groupings of actors.

Ptolemy includes several types of plotters used to give a 2D graph of
model signals over time. To add a signal to a plotter a connection is simply
drawn from the signal to the plotter. Ptolemy also has a Java3D interface
which enables 3D visualisation of models.

7.3.7 Functional Mock-up Interface

Functional Mock-up Interface (FMI) [35] is an emerging standard (defined by
the MODELISAR project [76]) which supports both model exchange and co-
simulation of dynamic models. Numerous simulation tools already support

2 Ptolemy II is from hereon referred to as “Ptolemy”

7.3 Alternative Multi-Disciplinary Modelling Approaches 99

FMI: AMESim, CosiMate, Dymola, MapleSim, and MATLAB, to mention a
few. Ptolemy has a FMI under development, which will enable co-simulation
of Ptolemy models and models created in other tools supporting FMI.

7.3.8 Custom-Built Simulators and Game Engines

As an alternative to high fidelity multi-disciplinary modelling, custom-built
simulators can be used to analyse the behaviour of embedded systems. An
example of this is Gazebo which is a 3D environment simulator which is
part of the Player/Stage project [161]. For dynamic physics and rigid body
simulation, Gazebo uses the Open Dynamics Engine (ODE) [149] physics
engine, and for visuals the open-source rendering engine Ogre.

Physics engines like ODE, Bullet [45] or PhysX [158] are often used for
computer games or movies, and excel in real-time physics simulations. This
is possible through the use of predictive algorithms instead of high fidelity
simulation. In recent extensions to 20-sim, an interface to the Bullet physics
engine was added to support rigid body collision and contact modelling.

In the work of Baqar [21] MATLAB was used with the virtual reality
(VR) toolbox from Mathworks to model and simulate IR signatures of air-
crafts and flares. The VR toolbox is a simple renderer environment which
lacks high quality visualization.

Most modern game engines includes both high quality rendering environ-
ments and a physics engine. Craighead et al. have used the Unity game en-
gine [182] to create a Search and Rescue Game Environment (SARGE) [54].
In Unity, a custom rendering engine is integrated with the PhysX physics
engine and Mono, which is an open-source implementation of Microsoft’s
.NET libraries. This, combined with a user-friendly editor, makes the Unity
game engine an interesting alternative to high-fidelity modelling of embedded
systems.

8
Multi-Disciplinary Modelling Tool Comparison

This chapter presents a comparison between the DESTECS tool (used in
Chapter 9 and 10) and the Ptolemy tool — one of the alternatives tools capa-
ble of multi-disciplinary modelling presented in Sections 7.3.6. An aircraft
fuel system is used as a case study, and both qualitative and quantitative
comparison results are discussed.

8.1 Tool Comparison Introduction

Of the available tools capable of multi-disciplinary modelling and (co-)simu-
lating, the DESTECS toolchain was chosen for most of the work presented
in this thesis. To evaluate the capabilities and maturity of the DESTECS tool,
it was compared to another simulator with roots in academia — the Ptolemy
tool. In addition, the comparison was made to broaden the scope of the thesis,
to not only include the DESTECS tool. It is not the intent of this comparison
to declare a winner, but rather to provide an in-depth investigation of the
multi-disciplinary modelling tools, highlighting the pros and cons of each.

Section 8.2 summarises related comparison work on simulators. In Sec-
tion 8.3 a case study of an aircraft fuel system is introduced as is the mod-
elling of the case in the two tools. Section 8.4 describes the comparison
criteria used — both qualitative and quantitative, and Section 8.5 reports
the results of the various comparisons done. Finally, a summary is given in
Section 8.6.

8.2 Related Comparisons of Simulation Tools

In the Columbus project [48] ten different tools and techniques for modelling
multi-disciplinary systems are reviewed. The syntax of each simulator is pre-
sented, as well as the different domains they are capable of modelling. A
very simple example of a bouncing ball or an electrical RC circuit is mod-
elled to try out the capabilities of each tool. These examples do combine DE

101

102 8 Multi-Disciplinary Modelling Tool Comparison

and CT elements, but are not good examples of multi-disciplinary embedded
systems since they do not include a discrete controller which interacts with a
continuous plant.

Bretenecker et al. are working on an ongoing series of classifications and
comparison of simulators for physical modelling [39]. The focus of this work
is on the physical modelling capabilities of different simulation tools, but in
a recent revision multi-disciplinary modelling and co-simulation have been
added to the comparison. The Arbeitsgemeinschaft Simulation (ARGESIM)
benchmarks [40] (which define 19 different case studies) are used to evaluate
more than 20 different simulators. The work done is extensive but focuses on
how to solve the different case studies and lacks a more in-depth introduction
and comparison of the capabilities of the tools.

In the work of Verma et al. [187], research in software evaluation and
comparison is reviewed and a large set of comparison criteria are derived.
The tools evaluated are of less interest than the comparison criteria used —
we have been inspired by these criteria for the comparison presented here. An
important conclusion made by Verma et al. is that no single tool is best for
every task. For that reason, the comparison presented here is not an attempt
to find the best tool, but rather to evaluate the use of the two tools for solving
various tasks.

8.3 Case Study Description

The fuel systems on-board aircraft are complex systems, with multiple tanks
in each wing as well as in the tail of the aircraft. Fuel must be transfered
between these tanks to ensure the engines always have a sufficient supply of
fuel and to maintain a proper balance of the aircraft front to back as well
as sideways. As a means to manage this complexity, computer models have
been developed of such systems for the last twenty years (as an early example,
see [57]).

For this tool comparison, a simplified version of the case presented by
Jiminez et al. [101] is used, where only the left side of the aircraft fuel system
is modelled and the outermost tank in the wing is removed. An overview
of the fuel tanks in our study and how they are connected can be seen in
Figure 8.1.

There are three tanks in our fuel system case study: the feeder tank (LFT)
supplying the engine with fuel, the middle tank (LMT) carrying extra fuel
and the trimmer tank (TT) placed in the rear end of the aircraft, which is
used to balance (“trim”) the aircraft. At takeoff, TT must be empty for safety

8.3 Case Study Description 103

Figure 8.1 Overview of the the fuel tanks in the fuel system case study.

reasons, but once cruise altitude has been reached TT must be filled to obtain
better balance of the aircraft. The LFT must always have sufficient supply
of fuel to the engine which continuously consumes fuel (more during takeoff
than at cruise altitude). If the fuel level of the feeder tank reaches a minimum
threshold, fuel must be pumped from the LMT to the feeder tank. If LMT is
empty, fuel must be transferred from TT to ensure a sufficient level of fuel for
the engine. Finally, before landing the aircraft TT must be emptied for safety
reasons.

Two scenarios are used in the comparative study:

“Sunshine” scenario: The aircraft takes off from ground level, and when
reaching cruise altitude stops its ascent. The aircraft stays at this al-
titude until LFT reaches the low threshold at which point the aircraft
starts descending. This scenario tests the normative behaviour of the fuel
system.

“Faulty” scenario: In this scenario the TT fuel level sensor malfunctions
and no signal is sent to the controller. This scenario tests that the con-
troller can handle the malfunctioning sensor, while maintaining a suffi-
cient supply of fuel to the engine ensuring a safe landing of the aircraft.

104 8 Multi-Disciplinary Modelling Tool Comparison

8.3.1 Modelling in Ptolemy

Airplane fuel system models in Ptolemy are studied in [62]. The various
models highlight challenges when modelling multi-disciplinary systems. In
this chapter, the fuel system model is extended to a more realistic version
which is presented in Figure 8.2.

plant

controller

controller modes

error mode

normal mode

flight mode refinement of a flight mode

Figure 8.2 The multi-disciplinary fuel system model in Ptolemy.

The top level model consists of two composite actors: a controller and a
plant. As the top level Model of Computation (MoC), DE was chosen. The
plant is modeled with a CT MoC, and the controller inherits the DE MoC
from the top level. Inputs to the plant model are discrete and have to be con-
verted to continuous signals with zero-order-hold components. Outputs are
discretised with samplers. The plant comprises: the three tanks; fuel mover
components that transfer fuel between the tanks; and an altitude profile. The
control logic is specified via modal models and mode refinements define the
control outputs. Modal models are used to express:

• Normal and faulty operation. An input to the modal model (TT error)
is checked and based on the value of this input, the mode is switched.
Refinements of the states express the different behaviors;

8.3 Case Study Description 105

• The flight modes takeoff, flight and landing;
• Various error modes; and
• Various modes that, based on certain fuel levels in the tanks, move fuel

between the tanks. This represents the main control logic.

Figure 8.3 shows the outputs of the simulation. The fuel levels of the three
tanks as well as the altitude of the aircraft are monitored.

Figure 8.3 Fuel levels obtained through simulation in Ptolemy.

8.3.2 Modelling in DESTECS

The three fuel tanks –as well as the dynamics of transferring fuel between
these– were modelled as a CT model in the 20-sim tool, while the discrete
control scheme was added as a VDM-RT model in the Overture tool. 20-sim
includes pre-defined iconic blocks for modelling components in the hydraulic
domain which could have been used in order to add realism to the model with
regards to the flow of fuel; volume components for the tanks; pump compo-
nents; and hydraulic inertia in the pipes connecting the fuel tanks. To better
compare the two tools it was chosen to model the tanks using an equational
approach similarly to what was done in the Ptolemy tool. Figure 8.4 gives an
overview of the DESTECS fuel system model in the 20-sim editor.

106 8 Multi-Disciplinary Modelling Tool Comparison

Figure 8.4 The fuel system model in 20-sim.

VDM-RT, being an object-oriented language, enables the modeller to ex-
press the DE controller using inheritance, polymorphism and composition.
The faulty sensor was modelled as a concrete subclass of an abstract sensor
class. To run the faulty scenario the faulty subclass was instantiated for the TT
fuel level sensor and the normal sensor subclass for the remaining sensors of
the system. To trigger the faulty sensor the DESTECS Command Language
(DCL) was used. Below the simple DCL script used to activate the faulty TT
level sensor after 3.9 seconds of simulated time is shown. Separate launch
configurations were created for the normal and faulty scenario ensuring that
the correct concrete sensor class implementations were used and that the DCL
script was activated for the faulty scenario.�
when time >= 3.9 do
(

ct boolean TTLEVELERROR := true;
);
� �

To visualise the complete system model the 3D animator built into 20-sim
was used. To add to the visual presentation an aircraft model was imported,
and simple cubes were added as the fuel tanks — a screenshot from the
resulting 3D animation can be seen in Figure 8.5.

8.4 Comparison Criteria 107

Figure 8.5 Screenshot of the 3D animation of the DESTECS fuel system model.

8.4 Comparison Criteria

The comparison criteria used during the comparison of the two tools are di-
vided into three parts: usability criteria giving an overview of the accessibility
of the tools; quantitative criteria comparing the tools on simulation speed and
similar measurable metrics; and finally qualitative criteria giving an overview
of the pros and cons of each of the tools.

8.4.1 Usability Comparison Criteria

This part of the comparison focuses on the usability of the two tools: how
easy is it for a new user to install the tool and get initial help when technical
issues are encountered? The usability criteria are divided into the following
sub-categories:

Installation: This category covers the installation experience of the tools.
The following gives examples of questions that are answered in this
category: How easy was it to install the tool? Do the tools depend on any
additional software (Java runtime environment or similar) to be installed
in order to work, and are these installed automatically as part of the
installation process? Are there any license required to use the tool, and
how easy is it to acquire such a license?

Updates: This category covers anything related to updating the tools. How
frequent are public updates made available? How are users notified of

108 8 Multi-Disciplinary Modelling Tool Comparison

these updates? Is it possible to use developer builds? If yes, how easy is
it to access these and what is the frequency of release?

Model management: This category describes how easy it is to manage the
models created in the tools: How many files are created for a single
model, and how are they organised? Do the tools support the use of
different alternative implementations of submodels, and how easy is it
to switch between these?

Extensions: How easy is it to extend the tool with additional capabilities?
This category analyses internal extensions with the addition of new func-
tional blocks for example, as well as external extensions like linking to
other tools or export of data to be used by other tools.

Help: This category answers questions like: How easy is it to get help con-
cerning technical issues? Are there existing examples to get inspiration
from? Is there an active community with a forum or mailing list to ask
technical questions? How well is the tool documented with regards to
user guidance? Is there an in-tool help function to quickly access the
documentation of the tool?

8.4.2 Quantitative Metrics

This part of the comparison focuses on quantitative comparison criteria where
the two tools are benchmarked against each other, resulting in metrics that are
directly comparable.

The (co-)simulation speed, time to load the model, and memory consump-
tion are all metrics which are compared. In addition, the number of ODE
solvers each tool support is compared, divided into fixed-step and variable-
step solvers. Table 8.1 lists the technical specifications of the laptop used for
the quantitative comparison.

Laptop Lenovo ThinkPad R© T500
CPU Intel R© CoreTM2Duo T9400 (2.53GHz, 6MB L2,

1066MHz FSB)
Operating system Windows R© 7 Professional 64-bit
Installed memory (RAM) 8 GB
Graphical Processing Unit ATI Mobility RadeonTM HD 3650

Table 8.1 Technical specifications of the PC used for the comparative tests.

8.5 Results of the Tool Comparison 109

8.4.3 Qualitative Comparison Criteria

In the qualitative category the following comparison criteria were chosen
prior to creating the two models:

Discrete-event controller expressiveness: Are there limitations as to what
can be modelled in the DE controllers in the two tools? Is it possible to
model an object-oriented architecture? Do the tools support the use of
abstract data types?

Hierarchical modelling: Do the tools support a hierarchical structure in the
models?

Model reuse: How easy is it to reuse parts of the model? Can submodels be
created and linked to other projects, or is model reuse only supported by
copy-paste? Do updates to submodels automatically mitigate to projects
in which they are used?

Fault modelling: How easy is it to model faults and fault-tolerance mech-
anisms? Do the tools contain implicit help to this or must it be done
explicitly by the model designer?

Extensions of the model: How easy is it to extend models, for instance add-
ing additional fuel tanks?

In addition to these comparison criteria defined prior to the comparative
work, additional criteria were discovered during the creation of the two mod-
els. If at any time the model designers encountered some issue or something
well supported by one of the tools, this feature (or lack thereof) was added to
the comparison criteria. These are described under results in Section 8.5.4.

8.5 Results of the Tool Comparison

Version 1.3.3 of DESTECS from April 2012 and version 8.0.1 of Ptolemy
from October 28th 2010 were used for all the tests done.

8.5.1 Usability — Ptolemy

Installation
Ptolemy is an open-source framework built in Java and it is released under the
BSD license [151]. Installer and guides for installing on Windows, Linux and

110 8 Multi-Disciplinary Modelling Tool Comparison

OSX are available online and maintained regularly. Ptolemy comes with var-
ious packages where some are by default disabled and not compiled. In order
to compile these packages, additional libraries might be necessary. Ptolemy
can be executed as a standalone application or embedded into the Eclipse
development framework.

Updates
Official updates of the tool are released on an annual or biennial cycle. It is
also possible to work with the latest build of the source which is available
via a subversion repository. As of beginning of 2012 the code base for the
project takes about 1GB of hard disc space. An installation from the source
code repository takes up to one hour and following the guides is a lengthy
process though well documented. Installers are also built nightly to ease this
process.

Model Management
Ptolemy models are stored as XML files in a syntax called MoML [131].
A model is stored as one or multiple XML files. Ptolemy includes a special
mechanism for object-oriented modelling. A class can be implemented and
instances of that class can be reused in different parts of the model. The
object-oriented design principles in Ptolemy are unique [130]. Different ver-
sions of the model have to be stored in different files. There is no automatic
support for version control.

Extensions
Ptolemy comes with a library of directors and actors. Compared to commer-
cial tools such as MATLAB/Simulink, this library is fairly small. Extending
Ptolemy with new functionality such as a new MoC or new actors means
creating a new Java class which implements specific interfaces. Tutorials on
how to implement a new actor or a new MoC are available online.

Help
The Ptolemy project is released with many demos that illustrate how to create
models with different MoCs. Help is also provided via various mailing lists
such as the Ptolemy interest mailing list or the Ptolemy hackers mailing list.
The code base is constantly changing as a number of students, researchers and
industrial collaborators are extending and experimenting with the tools. All
extensions to Ptolemy are checked to ensure they still conform to the current
code base. This is done by creating regression tests, which can be written in

8.5 Results of the Tool Comparison 111

Tool Command Language (TCL) or implemented in the model by using a spe-
cial test actor. This actor learns the correct values in a training run and then
checks subsequent executions of the model against these values. Code that
is submitted to the source tree undergoes strict checks and has to adhere to
coding guidelines which are documented. Documentation is fairly extensive
and utilizes Javadoc [152] to automatically generate documentation.

8.5.2 Usability — DESTECS

Installation
The DESTECS tool is developed on top of the Eclipse [177] Integrated De-
velopment Environment (IDE) and official releases can be downloaded from
SourceForge. In addition, nightly builds can be accessed directly from the
build server. A part of the installer is the open-source IDE Overture. A free
viewer version of the commercial tool 20-sim is also installed which gives
access to all of 20-sim’s capabilities except saving models. To enable this last
feature the free license must be upgraded to a full professional license. 20-
sim is only built for Windows (XP and newer versions) so the DESTECS tool
only runs on this platform even though Overture is built for Windows, OSX
as well as Linux.

Updates
Only a few official updates of the DESTECS toolchain have been released on
an annual cycle. Developer builds used internally in the DESTECS project
have been released on a monthly basis. As of October 2012 public releases
outside the consortium have been made available on the project download
page.

Model Management
Different formats are used for the different parts of a DESTECS co-model:
20-sim models are stored in the XML-based proprietary format emx, VDM
models are stored in the vdmrt format and co-simulation settings are stored
as launch configurations in the DESTECS tool.

20-sim does not support object-oriented modelling of the CT components
like Ptolemy does. Instead, submodels can be created and imported into other
models (multiple instances if needed). If changes are needed to this part of
the model, only the separate submodel needs to be changed and the imported
instances can be updated to reflect the changes. There is no automatic support
for version control inside the DESTECS tool, but since it is based on Eclipse,

112 8 Multi-Disciplinary Modelling Tool Comparison

third-party plug-ins like Subclipse [179] can be used for this task inside the
IDE.

Extensions
Since the Overture tool is open-source it is possible to make extensions on
the DE side of the DESTECS toolchain. Since 20-sim is a commercial tool,
it is not possible to make extensions to the CT simulation tool. It is possible,
though, to define new blocks being either equation or graphical based. This
enables the model designer to manually describe the differential equations
of the CT components or to create graphical representations using the un-
derlying bond graph technology and saving these in a common submodel
library.

Help
20-sim comes with a large library of example projects, exemplifying the use
of: 1D, 2D and 3D mechanics modelling, block diagrams, bond graphs, elec-
tric motors, hydraulics, signal processing, and many more. Numerous sample
VDM-RT projects can be downloaded from the project wiki page [155] to get
a good introduction to DE modelling in the Overture tool. Currently only 15
publicly available co-model examples exist for the DESTECS tool — these
are small example projects explaining the use of all of the capabilities of the
tool.

8.5.3 Quantitative Comparison Results

Clean installations of both tools were made in order to gather data on the
installation process. The startup of the tools was monitored as well as the
duration of running (co-)simulations of the two scenarios defined in Sec-
tion 8.3. Finally, consumption of system resources was monitored. Results
of the quantitative comparison can be seen in Table 8.2.

The Ptolemy installer takes a lot longer to run than the DESTECS equi-
valent, but most of the installation time was spent on installing the full source
code of Ptolemy. If the source code is not needed, installation time as well as
the final size of the tool are decreased.

Since DESTECS is built on top of the Eclipse platform, models are not
loaded into the tool. Instead they exist in a workspace which is automatically
loaded as part of the tool — hence no measurement of model loading duration
was possible for the DESTECS tool.

8.5 Results of the Tool Comparison 113

Criteria DESTECS Ptolemy Unit
Installer size 147599 229022 KB
Installation duration 0:59 2:53 min
Size of installed tool 264 229 MB

Time to startup tool 4.3 3.1 sec
Time to load model N/A 3.7 sec
Size of model 1098 (167) 672 KB

Simulation speed
- Scenario 1 7.3 6.1 sec
- Scenario 2 18.3 5.1 sec
Memory consumption
- Idle (model loaded) 167540 212740 KB
- Peak (during simulation) 260640 580284 KB
CPU consumption
- Idle (model loaded) 0 0 %
- Peak (during simulation) 94 99 %
ODE solvers
- Fixed step 5 2
- Variable step 5 2

Table 8.2 Overview of the qualitative comparison results.

As described in Section 8.3.2, a 3D animation was created as part of the
DESTECS model. The core objects of the aircraft model was created in an ex-
ternal 3D modelling tool called Blender [34] and imported into the DESTECS
model. The size of these objects were 931KB in total, so to compare the
model size directly with Ptolemy (the Java3D interface of Ptolemy was not
used in the work presented here) these objects should be subtracted, resulting
in a DESTECS model size of only 167KB.

In the DESTECS tool, simulation of the faulty scenario was three times
slower than the “sunshine” scenario. In order to trigger the error an additional
value had to be passed between the Overture and 20-sim tools of DESTECS.
The co-simulation engine is only optimised with regards to the passing of
values defined in the contract between the two tools, and not these additional
values triggered via the DCL script. This is the reason for the significant per-
formance decrease in the simulation of the faulty scenario in the DESTECS
tool.

The Ptolemy tool performed better in the faulty scenario. This could be
due to the fact that when the TT fuel level sensor fails, Ptolemy stops drawing
the fuel-level in the 2D graph. This indicates that rendering the graphs is

114 8 Multi-Disciplinary Modelling Tool Comparison

quite demanding in Ptolemy, so reducing the number of signals plotted in 2D
graphs will increase performance of the tool.

When running multiple subsequent simulations the peak memory con-
sumption of Ptolemy slowly increased until settling at the value listed in
Table 8.2. This indicates that the tool has some memory of state between
simulations. If it had been a case of a memory leak, the memory consumption
would keep increasing — this was not the case.

Since 20-sim is a fully fledged CT modelling tool, it has more diversity in
the choice of ODE solvers. The wider choice can help optimising the duration
of simulations since it is easier to find one that is suitable for the model
at hand. Optimisations like this requires a deep insight into the CT model
though, so they are reserved for experts in this area.

8.5.4 Qualitative Comparison Results

This subsection describes several specific benefits and limitations of the two
tools which were discovered during creation of the models.

DE controllers
In Ptolemy, the DE controller was modelled as a hierarchically layered modal
model: the top layer switching between normal and faulty mode, and in-
dividual underlying modal models managing the transfer of fuel between
the different tanks in each of these two modes. The hierarchical structure
is achieved by making new modal models as refinements of the individual
modes in a modal model higher in the hierarchy. Examples of this can be
seen in Figure 8.2. This has the unfortunate side effect that the controller is
7 levels deep and has 15 individual modal models (even without counting all
the individual state refinements which set the value states) which makes it
complex to navigate. As an alternative, the controller could have been mod-
elled using a more flat structure. This would have made the model easier to
navigate, but the benefits of having a hierarchical model would be lost.

The use of a modal model description of the controller also have some
major advantages though. In embedded software the controller is commonly
structured as a state machine since the controller has state dependent be-
haviour. Using the same notation in the model makes it easier for embedded
software engineers to learn how to use the tool without having to learn all the
syntactic subtleties of a new language. Another benefit, is that the fault toler-
ance mechanism is encapsulated in its own mode — this reduces what might

8.5 Results of the Tool Comparison 115

crudely be termed pollution of models with descriptions of these non-ideal
behaviours.

In the DESTECS tool the model designer has a full object-oriented lan-
guage to express the DE controller. This is a major advantage when more
complex control algorithms are needed, which can be harder to describe using
state machines. The object-oriented structure enables the model designer to
try out different control strategies by having an abstract controller main class
with several alternative concrete controller implementations each specify dif-
ferent control schemes. This approach was used when modelling the faulty
sensor which was defined as a concrete subclass of an abstract sensor class.
To run the faulty scenario, the faulty subclass was instantiated for the TT
fuel level sensor and the normal sensor subclass for the remaining sensors of
the system. This is a great way of using alternative versions of the model in
different scenarios without polluting the model with unneeded information
and without forcing manual alterations to the model.

CT plant
The CT plant model in Ptolemy was created using a signal-based block di-
agram. When modelling the altitude profile for the aircraft an expression
actor was used, manually ramping the output from zero to cruise altitude;
stay at cruise altitude for a certain period of time; and finally descent to zero
altitude for landing the aircraft. This was done using three nested if-then-else
constructs written using the ternary operator, since the expression actor only
allows single line expressions. This makes the expression hard to read and a
source of errors. In DESTECS the CT model was created in the 20-sim tool.
To model the same altitude profile the built-in motion profile wizard was used
which guides the model designer through a series of steps constructing the
desired signal. This is done by making a single or continuous combination
of a series of ramp, constants, (co)sine or similar types of sources. The user
gets a graphical overview of the generated output to visually validate that
the correct motion profile has been generated. This is a much more user-
friendly approach to creating custom made sources compared to the Ptolemy
equivalent.

The simpler (so-called signal level) model of the fuel tanks was built
in 20-sim. A key reason for this was to permit a better comparison with
Ptolemy in terms of functionality of the CT model. This choice means that
if a tank is full the back pressure must be modelled explicitly between each
pair of tanks. The bond graph notation supported by 20-sim could be used
here, which offers a more compositional solution. All connections are “two

116 8 Multi-Disciplinary Modelling Tool Comparison

way” so that the back pressure from a full tank is automatically taken into
account. Further tanks can simply be connected and the causality determined
runtime. An initial bond graph model of the fuel tanks has been developed by
Qian [164]. This model includes more realistic tanks, pipes and pumps, with
the flows of fuel appearing as curves on the plots. The model also includes
a calculation for changing the centre of gravity during the flight (along the
nose-tail axis of the plane only), bringing it closer to the original model by
Jiminez et al. [101]. Note that it was possible to plug this alternative CT
model directly into the existing co-model, permitting the use of the same DE
controller and test scenarios.

Fault Modelling
In the Ptolemy model, the TT fuel level sensor is monitored using a watchdog.
If two consecutive readings are missing an error is issued, which switches the
DE controller to its error state. Ptolemy includes an alternative implemen-
tation of fault handling [77]. This mechanism allows for models to throw
errors in the same manner as programming languages such as Java do. These
errors are propagated up the hierarchy until there is a model that can deal
with the error. A special error transition in a modal model catches the error
and the model switches to a fault mode. The cited paper mentions how to deal
with timing errors in such models but this error handling mechanism could
be extended to arbitrary errors like the one in the fuel system case study
presented here.

One of the main goals for the DESTECS project, when modelling realistic
and faulty behaviour, is to avoid pollution of models with fault and fault tol-
erance descriptions. Hence, it is advocated to keep a clear distinction between
ideal and realistic/faulty behaviours in models. One way of achieving this is
by using the DCL scripts as described in Section 7.2.3. Using a combination
of subclassing to model both normal and faulty sensors and using the DCL
script to trigger the error is a great way of ensuring that the (de)activation of
the faulty sensor is decoupled from the rest of the model without polluting
the model.

Visualisation of the Simulations
The 2D plotters of Ptolemy are simple and user friendly. When comparing
variable values which exist at different hierarchical levels of a model, the
signals cannot seamlessly be dragged to the plotter, though. To plot two such
variables in the same window they must be passed in the interface of the
hierarchical blocks. Alternatively, the MATLAB interface of Ptolemy can be

8.6 Summary 117

used, passing the relevant variables and plotting these in MATLAB. In the 2D
graphs of 20-sim the user chooses any variable from the model which is then
plotted, which makes it easier to compare variable values existing in different
parts of the model.

As mentioned in Section 7.2.1, 20-sim also includes a 3D animator which
can be used to give an even better representation of the system model. Such
3D animations have been used with great success to explain the functionality
of co-models in the DESTECS project. Ptolemy has a Java3D interface which
can be used with similar results.

8.6 Summary

As stated at the beginning of this chapter, the intent of the tool comparison
was not to declare a winner, but rather to offer the reader insight into their use
on a common case study, presenting information that can help users make an
informed choice about which tool to use. Both tools were able to model and
simulate the fuel system case study, including modelling the plant in the CT
domain and the controller in the DE domain. Both tools were able to model a
single fault in a sensor with associated fault tolerance in the controller.

There are a few key ways in which the work on this chapter could be
expanded to give a better comparison. First, the case study was deliberately
kept simple, however this does not necessarily exercise both tools to their full
potential. The current fuel system case study could be expanded to include
more features such as more tanks, more faults and fault tolerance. Especially
the CT elements of the case study are simplified — fuel moves instantly
between tanks; fuel transfer is not affected by gravity; and the movement and
rotation of the aircraft is completely abstracted away. Adding some of these
element would ideally push both tools towards their limits and demonstrate
if one tool is better than the other for certain situations. Another way to
compare the tools is to try other models from different domains. This might
offer a way for users to decide between the tools based on the domain of
interest.

Finally, an extension of this comparison to other tools would be of great
interest and offer insight into a broader range of modelling and (co-)simulation
capabilities. The definition of challenge problems together with a set of eval-
uation criteria for tools would allow for better comparison and evaluation
for specific needs of the tool users. The comparison criteria and case study
defined in this chapter, could be used as a starting point for creating such a
common platform for collaborative modelling and (co-)simulation tools.

9
Collaborative Modelling Guidelines

This chapter provides guidelines for modelling multi-disciplinary embedded
systems. The guidelines support the use of collaborative modelling and (co-
)simulation tools like the ones introduced in Chapter 7 and compared in
Chapter 8. The guidelines are put into the context of a four-phase iterative
spiral model inspired by the mono-disciplinary process of Chapter 4 and
the agile process of Chapter 5. The value of the collaborative modelling
guidelines is evaluated in Chapter 10.

9.1 Introduction

A major challenge in the modelling of multi-disciplinary systems, lies in
the combination of models used by the different disciplines involved in the
development of the system. This chapter provides guidelines supporting the
process of creating collaborative models of multi-disciplinary embedded sys-
tems.

For the work presented in this thesis, the DESTECS toolchain was used
for collaborative modelling and co-simulation. The guidelines were devel-
oped in conjunction with the DESTECS toolchain supporting various tool-
specific constraints and capabilities. With minor modifications, the guidelines
are applicable to most of the multi-disciplinary modelling tools mentioned in
Section 7.3.

Section 9.2 gives an introduction to the modelling language SysML [150]
which is used throughout the following chapters. Section 9.3 gives an over-
view of a four-phase modelling process the guidelines support. Each of the
four phases of the process are described in the following four sections: model
purpose and requirements in Section 9.4, system decomposition in Section 9.5,
system modelling in Section 9.6 and analysis of the models in Section 9.7.
Finally, a short summary is given in Section 9.8.

119

120 9 Collaborative Modelling Guidelines

9.2 Overview of the Systems Modelling Language SysML

Since the methodological guidelines described here advocate the use of a
more holistic system view, using techniques commonly used by systems en-
gineers, is appropriate. SysML [150] is an extension to UML defined and
maintained by the Object Management Group (OMG) in cooperation with the
International Council on Systems Engineering (INCOSE). SysML is widely
used in industry to manage and track requirements, link test cases to require-
ments, decompose systems into more manageable components and allocate
requirements to the responsible system components. This section gives a
quick overview of some of the SysML diagram types and constructs. For
a more in-depth description of SysML the reader is advised to seek one of the
numerous SysML books available e.g. [78, 91].

9.2.1 Requirements Modelling

SysML provides modelling constructs to describe requirements and expected
system behaviour and link these to other elements of the system model. High
level system behaviour can be described in use case diagrams, which are
directly inherited from UML. In these diagrams, the interaction between the
system and various actors is defined. Use cases excel at describing user sto-
ries and can be used for deriving the system requirements. Requirements
diagrams are a new type of diagram in SysML, where sub-requirements can
be derived from parent-requirements or a refinement relation can link require-
ments. Test cases can be linked to requirements with the verified by relation
and system components can satisfy a certain requirement.

9.2.2 Structure Modelling

The main modelling element in SysML is the block which is a modular
unit of the system. A block can represent anything: a system on its own,
a process, a software component, a function or a context in which some-
thing happens. Blocks are arranged hierarchically in Block Definition Di-
agrams (BDDs) where their relations are described graphically. BDDs are
modified versions of UML class diagrams. Using composite associations
part properties of the block representing subsystems or components can be
described.

The internal structure of a block is described in an Internal Block Di-
agram (IBD) where the connections between properties are defined. The
interface of the internal parts can be described using ports which are divided

9.3 Collaborative Modelling Process Overview 121

into two types: standard ports which are mostly used in software design and
flow ports which are typed ports ensuring that the data, energy or material
passing through the port is well defined.

9.2.3 Behaviour Modelling

SysML defines three diagram types to specify system behaviour, which are
all directly inherited from UML. The sequence diagram describes message
oriented communication between and internally in blocks. Messages can be
interpreted as command requests between actors and the system or between
system parts inside the system itself.

Activity diagrams are used to give a graphical representations of work-
flows and stepwise activities (rounded rectangles). The diagram has support
for choice (diamonds), iteration and concurrency (split or join bars).

Statecharts are used to describe system state and behaviour and the tran-
sitions between states. States are represented as rounded rectangles annotated
with state names. The transitions between states, represented as arrows, are
labeled with the triggering events followed optionally by the list of executed
actions.

9.2.4 System Constraints Modelling

Parametric diagrams are a completely new diagram type in SysML, that are
used to describe constraints on system properties. Constraints are mathemati-
cally or logical expressions that precisely define performance and quantitative
constraints on system parameters. In parametric diagrams, constraints can be
nested in order to create complex constraints from more basic ones.

9.3 Collaborative Modelling Process Overview

The exploration of alternative designs is a creative activity. It is hard to es-
timate the time the exploration of design alternatives will take, so forcing a
design space exploration to fit into a fully fledged development process will
tend to hinder creativity. This is the main reason why this chapter focuses
on describing methodological guidelines which can be used as tools during
collaborative modelling. To describe the different phases involved in model
development and design space exploration, and to put the guidelines into this
context, the spiral model is outlined in Figure 9.1.

122 9 Collaborative Modelling Guidelines

Figure 9.1 Overview of the iterative spiral model that the methodological guidelines supports.

These four phases are inspired by the steps of the mono-disciplinary
guidelines from Chapter 4: the model purpose and system decomposition
phases are inspired by the system boundary definition; the system modelling
phase is inspired by the various VDM models produced; and the system ana-
lysis phase is inspired by the validation described in the mono-disciplinary
guidelines. Due to its iterative nature, the spiral process can also fit into an
agile setting as described in Chapter 5. In that case, each iteration of the
process must fit into a single Scrum sprint.

Each of the four phases are described in detail in the following four
sections. The four phases should be followed sequentially through several
iterations. The guidelines supporting each of the individual phases can be
used in the order the model designer finds most useful.

9.4 Model Purpose and Requirements

In systems engineering, use cases are used to represent missions or stake-
holder goals, and hence are perfect for defining the model purpose. Since use
cases are described using natural language it is a good common communi-
cation platform for engineers with different backgrounds and non-technical
stakeholders like a customer or potential end-users.

9.5 System Decomposition 123

As part of the process of defining the model purpose, it is advised to
document all (implicit as well as explicit) assumptions made of the system
as well as any definitions agreed upon: positive rotation direction, available
hardware, the environment in which the system must operate, units on system
parameters and so on. This process is often enough to discover many simple
cross-disciplinary errors and misconceptions. Using a list of assumptions can
also help defining the purpose of the co-model, ensuring that all involved in
the project agree on the main purpose.

Guideline multi 1: Document all assumptions made of the system as well
as definitions agreed upon.

One of the key aspects of the model purpose is to define all actors inter-
acting with the system. An actor can either be a person, a role, an external
system or a more abstract actor such as time. Unexpected actors can also
be modelled: unauthorised users, power loss or other unexpected interactions
with the system. Modelling faults is a key aspect in DESTECS collaborative
modelling — use cases are useful for this. Both normative and faulty interac-
tions with the system can be modelled, and since these are separate actors the
normative and faulty behaviour of the system are kept separate which is one
of the goals of the DESTECS project.

Guideline multi 2: Define the purpose of the model by identifying all ac-
tors and use cases of the system, documenting them in a SysML use case
diagram.

After identifying the use cases and actors of the system, more formal
requirements that the model must satisfy can be defined. Some requirements
can be derived directly from a use case whereas other requirements will be
refinements of use cases. In addition to these annotations, the trace associa-
tion can be used to document the rationale behind a certain requirement. The
use of these associations is a strong tool to ensure traceability of individual
requirements, and help document the rationale behind the requirements.

Guideline multi 3: Derive requirements of the system from the use cases
defined.

9.5 System Decomposition

Once the model purpose and requirements have been determined, the system
must be decomposed into its main parts. A BDD is used for defining the main

124 9 Collaborative Modelling Guidelines

blocks of the system and how they are connected. Obvious candidates for
main blocks are all the actors as well as the main nouns used in the use case
descriptions. Some blocks are contained within parent-blocks which can be
shown using the part association.

Once the main blocks of the system have been defined, it is time to de-
termine which parts of the system model should be modelled in the DE and
CT formalisms. This is mainly a task for the domain experts who possess the
detailed knowledge required for distinguishing this. Blocks describing rigid
body entities naturally belong in the CT domain, whereas software controllers
belong in the DE domain. There are exceptions to this though: if the controller
simply needs to control an actuator in order to reach a preset output value
using a Proportional-Integral-Derivative (PID) regulator, this could be done
in a CT formalism. 20-sim is capable of tuning PID controllers and will in
general obtain more precise results with less simulation speed overhead.

Guideline multi 4: Define the main parts of the system in a Block Defini-
tion Diagram and determine which domain each individual block belongs
to.

9.5.1 CT Constructs

To add levels of detail to the SysML model, an IBD can be made for each of
the main (parent) blocks of the system. In these diagrams the child-blocks,
their interfaces and interconnections are described using SysML ports. For
defining a directed flow between two blocks the atomic flow ports are used,
which map directly to a signal port in the interface of the 20-sim submodel.
The bi-directional flow ports of SysML are used to describe exchange of
energy (flow ports in 20-sim).

Guideline multi 5: Define the internal composition of the main blocks
using Internal Block Diagrams. The interfaces between child-blocks are
defined using ports.

To specify constraints on the parameters of the system, an additional
BDD can be made, containing constraint blocks which define constrains on
the physical properties of the system. Such constraints can also be used to
identify critical performance parameters and their relationships to other pa-
rameters — this is done in a parametric diagram. A parametric diagram
that is a child of a block shows the usage of one or more constraint blocks
within the context of the owning block. This diagram shows how constraint

9.5 System Decomposition 125

block parameters are bound: to value properties of the parent block, its parts
or parameters of other constraint properties. If a non-causal CT modelling
formalism like bond graphs is used, it is enough to use the constraint blocks,
since the causality description of a parametric diagram is not needed. This
defines the differential equations of the system, and 20-sim calculates the
causality run-time.

Guideline multi 6: Use a combination of the constraint blocks and para-
metric diagrams for documenting the differential equations of the system as
well as the causality between these.

9.5.2 DE Constructs

In addition to defining the main blocks of the controller in the BDD and
IBD as described above, it is beneficial to make a more detailed specifica-
tion of the software structure and behaviour. Using the UML class diagram
to specify the structure of an object-oriented software structure is the most
common approach. Since SysML is built on top of UML a class diagram can
be integrated into the SysML model.

Guideline multi 7: Use UML class diagrams to define the structure of the
DE controller.

The behaviour of the controller and other significant parallel processes
can be specified using one of the behavioural diagrams of UML: sequence
diagrams, state machines or activity diagrams. It is even possible to make a
combination of these behavioural diagrams: using a state machine for defin-
ing the high level state changes of the controller and separate sequence dia-
grams for each of the individual states.

Guideline multi 8: Use UML behavioural diagrams to define the intended
behaviour of the DE controller.

9.5.3 Co-Simulation Contract

Defining the monitored and controlled shared variables of the co-simulation
contract is supported by the details that have been added to all CT and DE
blocks. The interface between two blocks modelled using different formalisms
has already been specified: the name, type and direction of the individual
ports have been defined in the interface and can be added directly to the
contract.

126 9 Collaborative Modelling Guidelines

Shared design parameters (describing constant valued properties) can be
derived from constraint blocks in the parametric diagrams.

Events can be derived from sequence diagrams, which can specify both
operation calls as well as events happening. These events must be added to
the contract to enable event-driven communication.

Guideline multi 9: For the co-simulation contract, derive the monitored
and controlled shared variables from the interface between DE and CT
blocks in the internal block diagrams; the shared design parameters from
the parametric diagrams; and the events from sequence diagrams.

9.6 System Modelling

Once the system has been decomposed and the internal details have been
specified, the next phase of the process is the system modelling. In this phase
the co-model is produced using an iterative approach.

9.6.1 Modelling Approach

Partners from the DESTECS consortium have described different approaches
to collaborative modelling called DE-first and CT-first [73]. These approaches
advocate the construction of an initial mono-disciplinary model in order to
reduce the complexity and simulation overhead. In addition, an approach
called contract-first has been defined, where the contract is defined first and
two constituent models are constructed in parallel using the CT and DE for-
malisms:

CT-first: The entire system is initially modelled in the CT formalism — DE
elements are either modelled in a simpler form in the CT tool or stubs
are used to enable testing of the CT model without the DE controller.

Consider CT-first if the system mainly consists of CT elements with
only simple controllers. An example of such a system is a temperature
controller that needs to maintain the temperature at a preset value, using
e.g. a PID controller and a thermostat to achieve this. If legacy models
exist in the CT domain which can be used directly or adapted to de-
scribe the continuous behaviour of the system the CT-first approach is
recommended.

9.6 System Modelling 127

DE-first: Focuses on modelling a high fidelity controller, so the entire sys-
tem is initially modelled in the DE formalism. The CT elements of the
system are either modelled as discrete abstractions (see for example Alur
et al. [13]) or stubs are used to enable isolated test of the DE model.

Consider DE-first if the main complexity of the system is in the DE
domain or the continuous behaviour of the system can be discretised
while still maintaining a competent model. If the controller only needs
to monitor the CT model without directly affecting the environment, the
CT input can easily be modelled in the DE formalism as discrete input
values. If legacy models exist in the DE domain, which can be used
directly or adapted to describe the controller of the system, the DE-first
approach is recommended.

Contract-first: The interface between the CT and DE models is described
first, and based on this, the two domains are modelled in parallel. In this
approach, it is beneficial to use stubs to enable testing of each of the
models in isolation before combining them to the full co-model.

Consider contract-first if two separate teams have to work on the two
domain-specific parts of the model. This avoids one team waiting for
the other to generate the baseline for the co-simulation.

Having a fine-grained decomposition of the system is an advantage when
having to decide which modelling approach to choose. Having specified the
behaviour of the different blocks helps determining which parts of the sys-
tem contains the main complexity and hence helps determining the most
appropriate modelling approach.

Guideline multi 10: Determine the correct modelling approach (CT-first,
DE-first or contract-first) by analysing the system decomposition and the
background of the team as well as available legacy models.

9.6.2 Modelling Guidelines

With the detailed system decomposition completed in the previous phase,
the initial steps of creating a DESTECS co-model is made less complex.
For each of the internal blocks, create an empty submodel in 20-sim with
the input/output as specified in the internal block diagrams. The internals of
the blocks in the CT domain can be modelled using either bond graphs or
the iconic diagrams and equation submodels supported by 20-sim. Using the

128 9 Collaborative Modelling Guidelines

differential equations defined in the parametric diagrams eases the task of
creating the initial behaviour of the submodels in the CT domain.

Guideline multi 11: For each of the internal blocks, create an empty
submodel in 20-sim with the input/output as specified in the internal
block diagrams. Use the differential equations specified in the parametric
diagrams for describing initial continuous behaviour.

When developing the CT parts of the co-model, it is generally recom-
mended to start simple and slowly add details to the model in small incre-
mental steps. The reason for this is that the more differential equations the CT
model needs to evaluate, the harder it is to track down errors or ODE solver
problems caused by an unstable CT model. It is hard (or even impossible) to
debug the model stepwise in CT modelling tools, so tracking down errors is
much easier when only doing small incremental steps between simulations.

Guideline multi 12: When developing CT models start simple and add
functionality in small increments — this limits the risk of issues with the
ODE solver and eases debugging.

Using idealised parameters further simplifies the model. It is advocated to
start with ideal sensors and only add more realism, like noise in the analog-
to-digital conversion, once the idealised model is working as intended.

Guideline multi 13: Start by creating an idealised model where all param-
eters are ideal and any possible fault scenario cases are disregarded.

When creating models it is of great importance to discover the significant
parameters of the model — the parameters that have the greatest impact on
the model performance when changed. These are the parameters that define
the scope of the design space that needs to be explored in order to ensure
optimal system performance. Once an idealised co-model has been created,
the significant parameters can be found using the parameter sweep tool of
20-sim or the ACA tool. These tools automate the task of changing the value
of key parameters in order to analyse co-model performance impact.

Guideline multi 14: Find the significant parameters in the co-model using
parameter sweeps or “Automated Co-model Analysis”.

Once the significant parameters have been identified, it is advised to put
these into the co-simulation contract as shared design parameters. This en-
sures that all the significant parameters of the co-model are located in a single

9.6 System Modelling 129

place and not scattered all over the co-model. In addition, the parameters
actually need to be SDPs in order to enable the use of the ACA tool of
DESTECS.

Guideline multi 15: Put the significant parameters of the co-model into the
contract as shared design parameters — this makes it easier to optimise the
performance of the co-model using the Automated Co-model Analysis tool
of DESTECS.

If encountering a complex issue with the model, isolate the problem in
a separate model. Not only does this increase simulation performance, since
fewer differential equations need to be evaluated, but it is also easier to un-
derstand the issue with fewer parameters to change.

Guideline multi 16: Isolate issues in submodels to ease debugging.

The object-oriented structure of the DE blocks is defined in UML class
diagrams. Having the structure as well as operations and interactions defined
in UML eases the task of creating the VDM-RT model using a process like
the one described by Larsen et al. [119].

Many cross-disciplinary concerns are created by frequent changes to the
interface not communicated to everyone affected. In order to lower the risk
of such issues, we introduce the notion of micro- and macro-steps:

Micro-step: In a micro-step, changes are only done inside a single model.
Examples of such changes are refactoring of the model to get a better
structure, or adding functionality which does not require an interface
update towards the other models of the co-model.

Macro-step: In a macro-step the changes introduced require updates to the
interface. An example of such a change is adding functionality in the DE
controller which requires additional input from the CT side, or adding
actuators in the CT model that need to be triggered by the DE con-
troller. System level changes affecting both domains (e.g. interpretation
of positive rotation direction) are also macro-steps.

Having this clear distinction makes it much easier to discuss the im-
pact of various changes to the co-model. We recommend that the number
of macro-steps in each iteration is limited as much as possible, and are care-

130 9 Collaborative Modelling Guidelines

fully communicated to all engineers affected. This ensures that any issues
introduced by the interface changes are easier to track down.

Guideline multi 17: Limit the number of macro-steps in a single iteration
of co-model development.

9.7 System Analysis

After each iteration of system modelling, the co-model needs to be analysed.
The most important result of this phase is to determine whether the co-model
fulfils the model purpose with a high enough degree of fidelity, or if additional
changed and additions are necessary.

9.7.1 Validation Guidelines

Section 9.6.2 advocates the use of isolated submodels. Validating these sub-
models should be done outside the collaborative modelling environment, mak-
ing use of domain-specific validation tools.

Guideline multi 18: Use domain-specific tools on isolated submodels to
validate the functionality disconnected from the rest of the system.

Some possible domain-specific tools are listed below:

CT domain-specific tools
20-sim has built-in 2D graph and 3D animation toolboxes which can be used
to visually validate CT models. 20-sim also has several tools for validating a
model in both the frequency and time domain — these are explained briefly
in Section 7.2.1.

DE domain-specific tools
The Overture tool, used to create the DE models, has a number of built-in
tools as well. Debugging facilities enable the user to step through a simulation
giving a detailed view of the execution. Breakpoints can be used to ensure
that the execution stops at exact points in the model, and individual variables
can be monitored. The Proof Obligation Generator [29] and combinatorial
testing [123] tools introduced in Section 3.3.3 can be useful domain-specific
tools for gaining confidence in the DE models.

One of the ways a co-model can be analysed is through visual validation.
Using the 3D animator built into 20-sim is not the most precise way of val-

9.8 Summary 131

idating correct behaviour of a co-model, but it is useful as an early “sanity
check”. Viewing a 3D animation makes it easier to spot obvious system-level
errors that are easily missed on 2D graphs showing simulated values. The 3D
animation is a way to reduce complexity — it is an abstraction of the model,
only visualising the key properties of the model. Hence, it is also a great way
of showing non-technical stakeholders the functionality of the co-model.

Guideline multi 19: Use 3D animations early in the validation process to
ensure appropriate overall behaviour of the co-model.

Having a prototype of the embedded system being modelled available for
measurements makes it much easier to improve the fidelity and realism of
the co-model. The idealised parameters of the co-model can be tweaked by
making small iterative changes based on feedback from measurements of the
real system.

Guideline multi 20: Make the ideal parameters more realistic in an iter-
ative process until the co-model and the real system behaves sufficiently
similarly.

9.8 Summary

Collaborative modelling can be one of the means for managing multi-discipli-
nary system complexity. Each of the disciplines involved can create domain-
specific models in the most suitable tools and combine the analysis of these
in a co-simulation. A spiral model with four phases has been described, sup-
ported by 20 guidelines accompanying the DESTECS toolchain. The guide-
lines have been developed by generalising experiences gained from various
collaborative modelling projects using the DESTECS tool.

The system dynamics are described using the CT formalism bond graphs
and the embedded controller is described using the object-oriented DE for-
malism VDM-RT. These two domain-specific models are then analysed using
co-simulation. The methodological guidelines supports various phases of co-
model development: model purpose definition; system decomposition; sys-
tem modelling; and system analysis. The guidelines mainly accompany the
DESTECS tool, but with minor modifications they are applicable in various
other tools capable of co-simulation.

The guidelines presented in this chapter are put into context by describ-
ing a simple four-phase iterative process, but more work is needed in order

132 9 Collaborative Modelling Guidelines

to describe the business perspective of collaborative modelling. Chapter 5
describes the use of formal specifications in an agile setting — namely in
the agile project management process Scrum. The agile mindset, of self-
contained teams consisting of people with experience within all necessary
disciplines, fits well with the collaborative modelling philosophy.

The guidelines presented in this chapter provide a practical approach to
co-model development which guides both novice and experienced modellers
in managing multi-disciplinary system complexity by applying collaborative
modelling techniques.

10
Evaluation of Multi-Disciplinary Modelling

Guidelines

This chapter describes the different initiatives that were taken in order to
evaluate the value of the multi-disciplinary modelling guidelines described
in Chapter 9. A case study was conducted, adding CT element to the mono-
disciplinary case study from Chapter 6; and an M.Sc. project evaluated
the use of the guidelines through the development of a co-model of an au-
tonomous robot. The findings of the various evaluation efforts are discussed
in Chapter 11.

10.1 Introduction

The guidelines presented in Chapter 9 were developed by generalising experi-
ences gained from various collaborative modelling and co-simulation projects
using the DESTECS tool. To evaluate the value of the guidelines, various
initiatives were taken. First and foremost, the mono-disciplinary ECAP case
study from Chapter 6 was extended with CT elements to encompass: a he-
licopter; an IR guided missile; flares; and the existing DE model of a self-
defense system intended to protect the helicopter from the incoming missile.
The guidelines were followed strictly, and experiences documented.

It was also evaluated how well the guidelines supports the collabora-
tion of engineers with different fields of expertise, by setting up an M.Sc.
project where two students from software engineering and robotics engineer-
ing respectively created a co-model of an autonomous robot following the
guidelines. A prototype of the real robot was also built, and it was studied
to which extent the co-model resembled the real robot, and how well the
co-model could predict how the real robot would react in different scenarios.

The extended case study is introduced in Section 10.2 and Sections 10.3
to 10.6 describe the application of the guidelines on the case study. Sec-
tion 10.7 summarise the results of the case study, and Section 10.8 describes
additional initiatives taken in order to evaluate the value of the guidelines.

133

134 10 Evaluation of Multi-Disciplinary Modelling Guidelines

10.2 Case Study Description

In Chapter 6 a self-defense system for aircraft called ECAP was introduced.
A pure DE model of this system was created and analysed. To increase the
level of fidelity of the model, a CT model of the dynamic behaviour of the
dispensed flares was added. An IR guided missile was also added to the co-
model, with rigid body dynamics and a complex missile guidance controller.
This case study was called the electronic warfare case study.

The co-model was developed through three individual iterations - these
are shown in Figure 10.1.

Figure 10.1 Overview of the three iterations of co-model construction.

A CT-first approach was used in the development of the electronic warfare
case study. During the first iteration, a CT model of a single flare was devel-
oped. This was done to ensure that all the rigid body dynamics of the flare had
been modelled correctly before proceeding to a full co-model. In the second
iteration the initial co-model was created. In this model, the missile used a
simple pure pursuit navigation strategy (see Section 2.4), and the helicopter
could only dispense a single flare. In the third iteration the missile used a
proportional navigation strategy, and the helicopter could dispense entire flare
patterns, along with multiple other improvements.

10.3 Model Purpose and Requirements

The first three guidelines are concerned with the purpose of the model and
describing additional requirements. The purpose of the co-model was to ana-
lyse how different generations of IR-guided missiles could be countered by
dispensed flare patterns. It was decided to create a co-model to get a better
understanding of:

• The trajectory of dispensed flares to get a visual representation of the po-
sition of these over time. Since modern missiles have complex tracking

10.4 System Decomposition 135

algorithms, they simply filter out any IR sources which move in radical
directions compared to the current target. Having a visualisation of how
the aircraft and flares move over time would give a better understanding
of which countermeasures are more effective;

• Scenarios seen from the missile point of view. Since missiles have a
very narrow field of view to enhance their resistance against countermea-
sures, having a missile’s point of view would give a better visualisation
of how long flares stay within view of the missile and hence are effective;

• How different generation IR seekers work against different countermea-
sures; and

• Explore different dispenser placements, and their impact on the gener-
ated flare patterns.

Initially, a list of assumptions and definitions were documented as advised
by Guideline multi 1. A few examples of such assumptions and definitions
are provided below:

1. The missile has a 2 degree diagonal field of view.
2. Position, velocity, acceleration and forces are all 3D vectors giving both

a direction and a magnitude.
3. Rotation in 3D space is described using quaternions.
4. The max velocity of the missile is 680 m/s.
5. The max velocity of the helicopter is 85 m/s.

In order to document the purpose of the model (Guideline multi 2) a use
case diagram was derived from the textual purpose description. The main
actors of the system were identified to be: the helicopter, the missile and
the flares. The use cases identified reflect the purpose of the model. The
helicopter must be able to detect an incoming missile and react to the threat
by dispensing flares. The missile must be able to sense the helicopter and
any flares currently deployed, find a main target, and steer towards this target
using various generation of guidance mechanisms. The use case diagram can
be seen in Figure 10.2.

Since this case study was a “proof-of-concept” without a real customer,
it was not deemed necessary to specify a long list of requirements (Guideline
multi 3). The purpose description and the use case diagram clearly defines
what the co-model should include, and what it was going to be used for.

136 10 Evaluation of Multi-Disciplinary Modelling Guidelines

Helicopter

Missile

Flares

Dispense flare
pattern

Steer towards
target

Use 1st generation
IR guidance

Use 2nd generation
IR guidance

Sense IR
sources

Sense
incoming threat

Counter
incoming threat

«include»

«include»

«include»

«include»

«extend»

UCD [Package] Use Cases

Use Case Diagram - [Package] Use Cases

NH90

Page 1 of 1

Figure 10.2 Use case diagram defining the purpose of the model.

10.4 System Decomposition

The use case diagram in Figure 10.2 was used as a basis for the initial system
decomposition. The actors were used as the main blocks of the system model,
and child-blocks were derived from the nouns used in the description of the
individual use cases. Following Guideline multi 4 the blocks were structured
in a Block Definition Diagram (BDD), and can be seen in Figure 10.3.

The main blocks (flares, helicopter and missile) are all nested blocks of
the main countermeasure system model. Linking each of the child-blocks to
its parent is done using the composition relation.

The missile is composed of: a physical airframe which represents the rigid
body missile; an IR sensor which can monitor all IR sources within the field
of view of the missile; and a guidance controller which finds a main target
and steer the missile airframe towards this target.

The helicopter is composed of: a physical airframe which represents the
rigid body helicopter; a Missile Warner System (MWS) which senses in-
coming threats; an Inertial Measurement Unit (IMU) which monitors the
helicopter position, rotation and velocity; ECAP which is the main counter-

10.4 System Decomposition 137

bdd [Package] Structure

«block»

Helicopter

«block»

ECAP

«block»

IMU

«block»

DSS

«block»

MWS

«block»

Helicopter Airframe

«block»

Missile

«block»

Missile Airframe

«block»

IR sensor

«block»

Guidance Controller

«block»

Flares

«block»

Countermeasure System

1

1

airframe

1

1

ecap

1

1

imu

1

1

dss

1

1

sensor
1

1

airframe

1

1

controller

1

1

sensor

BlockDefinitionDiagram - [Package] Structure

NH90

Page 1 of 1

Figure 10.3 Block definition diagram defining the main blocks of the system along with any
contained child-blocks. The missile Guidance Controller is the only DE block of the initial
co-model. ECAP will be a future DE extension.

measure controller which calculates and executes the optimal countermeasure
strategy against the current threat; and a Digital Sequencer Switch (DSS)
which manages the dispensing of the individual flares.

The main parts of the model were defined and allocated to either the DE
or CT domain (Guideline multi 4). The main purpose of the model was to
precisely describe and monitor the flare trajectory. To create a high fidelity
model of the rigid body dynamics of the flares they were modelled in the CT
domain.

The helicopter airframe was also modelled in the CT domain. It was
chosen to exclude a lot of details in the helicopter ECAP controller in the
initial version of the collaborative model: once a threat was within a given
distance of the helicopter, a flare pattern would be dispensed in the direction
of the threat. The full ECAP model from Chapter 6 would be added as a DE
component in later iterations of co-model construction.

The airframe of the missile was modelled in the CT domain. The determi-
nation of the main target and steering calculation maintained by the guidance
controller was done in the DE domain. This enabled the use of an object-
oriented structure, easing the use of different generation guidance algorithms
and choose between these.

138 10 Evaluation of Multi-Disciplinary Modelling Guidelines

10.4.1 CT Constructs

To give a detailed specification of the internals of the helicopter block, an In-
ternal Block Diagram (IBD) was created (Guideline multi 5). The five child-
blocks and their interconnections were described. In addition, other child-
blocks like the missile airframe and flare were added to give a complete
description of the helicopter. The IBD diagram can be seen in Figure 10.4.

ibd [block] Helicopter

ecap : ECAP

dispenseDelay : s

dispenseDir : vector3

threatTrigger : boolean

threatType : missileType

threatAngle : Real

heliRoll : Real

heliPitch : Real

heliYaw : Real

heliVleocity : vector3

imu : IMU

heliRotation : quaternion

heliPosition : vector3

heliVelocity : vector3

roll : Real

pitch : Real

yaw : Real

velocity : vector3

dss : DSS

dispenseDir : vector3

dispenseDelay : s

dispenseForce : N

sensor : MWS

trigger : boolean

type : missileType

angle : Real

missilePosition : vector3

missileVelocity : m/s

airframe : Helicopter
Airframe

rotation : quaternion

position : vector3

velocity : vector3

[Flares] : Flares

dispenseForce : N

[Missile Airframe] :
Missile Airframe

position : vector3

velocity : m/s

InternalBlockDiagram - [block] Helicopter

NH90

Page 1 of 1

Figure 10.4 Internal block diagram specifying the internals of the helicopter.

An IBD of the missile was also created in order to specify the internals of
this block. This diagram can be seen in Figure 10.5.

ibd [block] Missile

sensor : IR sensor

targetPosition : vector3

targetIrIntensity : Real

flarePositions : vector3[]

visibleTargetsIrIntensity : Real[]

visibleTargetsPosition : vector3[]

flareIntensities : Real[]

airframe : Missile Airframe

position : vector3

rotation : quaternion

velocity : m/s

newRotation : quaternion

newVelocity : m/s

controller : Guidance Controller

missilePos : vector3

missileRot : quaternion

missileVel : m/s

newRotation : quaternion

newVelocity : m/s

targetsIrIntensity : Real[]

targetsPositions : vector3[]

Helicopter.airframe : Helicopter
Airframe

irIntensity : Real

position : vector3

[Flares] : Flares

position : vector3

irIntensity : Real

InternalBlockDiagram - [block] Missile

NH90

Page 1 of 1

Figure 10.5 Internal block diagram specifying the internals of the Missile.

10.4 System Decomposition 139

Instead of modelling the IR signatures of the flares and the helicopter
as IR images, they were modelled as vectors describing their position on
3D space as well as a real valued variable describing the IR intensity. This
abstract representation is sufficient for modelling first to third generation mis-
sile guidance. Accurate information on how fourth generation IR guidance
actually works is extremely hard to obtain. Adding a highly abstract model
of modern missile guidance could introduce uncertainty and reduce accuracy
of the model, so it was decided to not include this in the model. Instead,
visual analysis of the generated flare patterns would be used to validate the
effectiveness of the countermeasures against fourth generation missiles.

Since the modelling of the flares was of utmost importance, a constraint
diagram was created which describes the constraints on the physical flare
parameters (Guideline multi 6). This diagram can be seen in Figure 10.6.

bdd [Package] FlareConstraints

«constraint»

constraints
{pos=initPos+int(vel)}

parameters
pos : m
initPos : m
vel : m/s

PositionConstraint

«block»

Flares

«constraint»

constraints
{vel=initVel+int(acc)}

parameters
vel : m/s
initVel : m/s
acc : m/s^2

VelocityConstraint

«constraint»

constraints
{acc=totalForce/mass}

parameters
acc : m/s^2
totalForce : N
mass : kg

AccelerationConstraint

«constraint»

constraints
{totalForce=gravityForce+dispense-
Force+dragForce}

parameters
totalForce : N
gravityForce : N
dispenseForce : N
dragForce : N

TotalForceConstraint

«constraint»

constraints
{gravityForce=9.81*mass*vector3_down}

parameters
gravityForce : N
mass : kg

GravityForceConstraint

«constraint»

constraints
{dragForce=0.5*1.269*velocity^2*Cd*area}

parameters
dragForce : N
velocity : m/s
area : m^2

DragForceConstraint

1

1

1 1

1

1

1

1

1

1

11

BlockDefinitionDiagram - [Package] FlareConstraints

NH90

Page 1 of 1

Figure 10.6 Constraint diagram specifying constraints on the flare parameters.

The model continuously calculates the 3D position of the flare. This was
done by integrating over the velocity and adding the initial position of the
flare. In order to calculate the velocity, the acceleration of the flare was in-
tegrated and added to the initial velocity of the flare. The acceleration of
the flare was calculated using Newton’s second law: dividing the total force
acting on the flare by the mass of the flare. In this model, the gravity, drag
and dispense forces were included in this calculation.

It was decided to use a causal equation-based CT model of the flares, so
to specify the causality of the constraints a parametric diagram was created
— this can be seen in Figure 10.7.

140 10 Evaluation of Multi-Disciplinary Modelling Guidelines

par [block] FlaresParameters

[PositionConstraint] :
PositionConstraint

constraints
{pos=initPos+int(vel)}

initPos : m

pos : m

vel : m/s[VelocityConstraint] :
VelocityConstraint

constraints
{vel=initVel+int(acc)}

acc : m/s^2
initVel : m/s

vel : m/s

initPos : vector3

[AccelerationConstraint] :
AccelerationConstraint

constraints
{acc=totalForce/mass}

acc : m/s^2
mass : kg

totalForce : N

mass : kg

[TotalForceConstraint] : TotalForceConstraint

constraints
{totalForce=gravityForce+dispenseForce+dragForce}

dispenseForce : N

dragForce : N

gravityForce : N

totalForce : N

[GravityForceConstraint] :
GravityForceConstraint

constraints
{gravityForce=9.81*mass*vector3_down}

gravityForce : N

mass : kg

[DragForceConstraint] :
DragForceConstraint

constraints
{dragForce=0.5*1.269*velocity^2*Cd*area}

area : m^2

dragForce : N

velocity : m/s

frontalArea : m^2

initVel : m/s

Dispense Force : N

ParametricDiagram - [block] FlaresParameters

NH90

Page 1 of 1

Figure 10.7 Parametric diagram specifying the use and interrelation of flare parameter
constraints.

Each of the six constraint blocks from Figure 10.6 have been added, and
the individual parameters have been connected. The diagram clearly shows
the causal dependencies of the flare model, and precisely specify the differ-
ential equations to be continuously evaluated in the CT model.

If even more detail should be added to the model (change the mass of
the flare over time) this can easily be added as well. A new constraint block
must be added to the diagram in Figure 10.6 describing the physical con-
straints on the mass, and the calculated mass can then be connected to the
AccelerationConstraint and GravityForceConstraint con-
straints in Figure 10.7.

10.4.2 DE Constructs

The only elements of the co-model to be modelled in the DE domain was
the missile guidance controller. In order to add a more detailed specification
of the structure of this software controller a UML class diagram was created
(Guideline multi 7) which can be seen in Figure 10.8.

Interface classes were added towards the IMU, IR sensor and steering
blocks of the missile. These interfaces contain attributes for each of the ports
towards these blocks as specified in the IBD in Figure 10.5. In addition get
and set operations were added, so the controller can access the monitored

10.4 System Decomposition 141

MissileController

PN : Real#

DeadlyEnvolopeRange : Real#

ViewAngle : Real#

MainTarget : vector3#

MissilePosition : vector3#

MissileRotation : quaternion#

MissileVelocity : Real#

UpdateSensorValues ()-

FilterViewableTargets ()-

PeriodicOp ()-

DetermineMainTarget ()-

CalculateNewRotation () : quaternion-

CalculateNewVelocity () : Real-

GenOneController

MaxIntensity : Real-

DetermineMainTarget () : vector3-

GenTwoController

TargetDivisor : Real-

DetermineMainTarget () : vector3-

MissileIrSensorInterface

Position : vector3-

IrIntensity : Real-

GetTargetsPositions () : vector3+

GetTargetsIrIntensity () : Real+

PeriodicOp ()-

MissileImuInterface

Position : vector3-

Rotation : quaternion-

Velocity : Real-

GetPosition () : vector3+

GetRotation () : quaternion+

GetVelocity () : Real+

PeriodicOp ()-

SteeringInterface

TargetRotation : quaternion

TargetVelocity : Real

SetNewRotation (in quaternion)

SetNewVelocity (in Real)

PeriodicOp ()

Vector3math

Add (in a : vector3, in b : vector3) : vector3

Subtracts (in a : vector3, in b : vector3) : vector3

ScalarMultiply (in a : vector3, in scalar : Real) : vector3

ScalarDivide (in a : vector3, in scalar : Real) : vector3

CrossProduct (in a : vector3, in b : vector3) : vector3

DotProduct (in a : vector3, in b : vector3) : Real

VectorLength (in a : vector3) : Real

Normalize (in a : vector3) : vector3

AngleBetween (in a : vector3, in b : vector3) : Real

11

11

11

11

Class Diagram - MissileControllerClasses

NH90

Page 1 of 1

Figure 10.8 UML class diagram specifying the object-oriented structure of the missile
controller.

variables and set the controlled variables. A 3D vector math helper-class was
also added, which is used by the target seeking and guidance of the controller.

The missile controller was created as a superclass with subclasses for each
of the two generation guidance controllers which needed to be modelled. The
behaviour of the missile controller class was described in a separate sequence
diagram (Guideline multi 8) which can be seen in Figure 10.9.

Description ctrl

:GenOneController

sensor

:MissileIrSensorInterface

imu

:MissileImuInterface

steer

:SteeringInterface

seq
PeriodicOp

seq
UpdateSensorValues

seq GetTargetsIrIntensity
seq

seq GetTargetsPositions
seq

seq GetPosition
seq

seq GetRotation
seq

seq GetVelocity
seq

seq
FilterViewableTargets

seq
DetermineMainTarget

seq SetNewRotation

seq

seq SetNewVelocity

seq

OSD [Package] MissileController_PeriodicOp

Sequence Diagram - [Package] MissileController_PeriodicOp

NH90

Page 1 of 1

Figure 10.9 Sequence diagram specifying the behaviour and inter-object communication of
the main loop in the missile controller.

142 10 Evaluation of Multi-Disciplinary Modelling Guidelines

In the periodically invoked PeriodicOp operation of the missile con-
troller, all sensor values are initially updated in the UpdateSensorValues
operation. Following this, the controller filters the targets within its field of
view and from this set of possible targets determines the main target to steer
towards. Finally, the steering commands are sent via the steering interface to
the missile airframe block.

10.4.3 Co-Simulation Contract

The initial co-simulation contract was derived directly from the IBD of the
missile from Figure 10.5 (Guideline multi 9) — a closeup of the missile
guidance controller can be seen in Figure 10.10.

Figure 10.10 The missile guidance controller used for defining the co-simulation contract.

The DE controller must monitor the position, rotation and velocity of the
CT missile airframe, as well as the IR intensity and position of the helicopter
airframe and all deployed flares. The controller must also be able to control
the desired rotation and velocity of the missile airframe in order to steer the
missile towards the calculated main target.

In the initial version of the collaborative model, all the blocks in the he-
licopter IBD were modelled in the CT domain. At a later iterations of the
co-model development the model of ECAP from Chapter 6 would be added
as a DE component. The interface between ECAP and MWS, IMU, and DSS
must then be added to the current co-simulation contract.

10.5 System Modelling

One of the main goals of the co-model was to precisely model the trajectory
of the flares after they were dispensed from the helicopter. Modelling the rigid
body dynamics of the flares was done in the CT domain in order to obtain an

10.5 System Modelling 143

adequate level of fidelity, so it was chosen to use a CT-first approach in the
first iteration of model development (Guideline multi 10). A submodel of the
flare dynamics of a single flare was created to enable isolated analysis of this
part of the model (Guideline multi 16).

Initially, the mass and radius of the flare were kept constant through a co-
simulation run to simplify the model (Guideline multi 13). From analysing
the constraint equations from the parametric diagram in Figure 10.7 the drag
coefficient of the flare was deemed significant since it directly affects the
drag force acting upon the flare. Another significant parameter is the dispense
force acting on the flare when it is dispensed from the helicopter. These two
parameters were added to the co-simulation contract as shared design param-
eters enabling parameter sweeps using the Automated Co-model Analysis
functionality of the DESTECS tool (Guideline multi 15).

Once the flare submodel was analysed with satisfactory results, the initial
co-model was created in the second iteration of model development. The
main blocks (helicopter, missile and flares) were created with all of their inter-
nal child-blocks (Guideline multi 11). The interface of the children as defined
in the IBD in Figure 10.4 and Figure 10.5 were also added. The top-level view
of the co-model inside the 20-sim editor can be seen in Figure 10.11.

Figure 10.11 Top level view of the DESTECS continuous-time model shown inside the 20-
sim editor. The arrows indicate the causality of the submodels.

Figure 10.11 shows that a deliberate abstraction was made — the missile
warner sensor (MWS) of the helicopter is not associated with the missile,

144 10 Evaluation of Multi-Disciplinary Modelling Guidelines

meaning it cannot read the position and velocity of the missile. This was done
in order to reduce the complexity of the countermeasure system (ECAP) on-
board the helicopter in the initial version of the co-model. Instead, the MWS
issues a static missile warning message at a given point in time, and ECAP
reacts to this.

Only the GuidanceController of the missile was modelled in VDM.
The object-oriented structure of the controller and utility classes had already
been specified in a UML class diagram in Figure 10.8 and the behaviour of
the main loop of the controller in the sequence diagram in Figure 10.9. These
diagrams formed the basis of the initial DE model. As an example of the DE
controller, the FilterViewableTargets operation of the Missile-
Controller class mentioned in Section 10.4.2 is shown below:�
class MissileController is subclass of Types

values
VIEW_ANGLE : real = 0.0175; -- one degree in radians

instance variables
targetsPos : seq of Vector3D;
targetsInt : seq of real;
missilePos : Vector3D;
missileVel : Vector3D;
viewableTargets : seq of Vector3D;

operations

private FilterViewableTargets : () ==> ()
FilterViewableTargets () ==
(viewableTargets := []; -- Reset sequence

for all i in set inds targetsPos
do
(dcl toTarget : Vector3D := VectorMath‘Subtract(targetsPos(i),

missilePos),
angle : real := VectorMath‘AngleBetween(missileVel, toTarget);

if(angle) < VIEW_ANGLE)
then viewableTargets := viewableTargets ˆ [targetsPos(i)];
);

);

end MissileController
� �

10.7 Case Study Results 145

The MissileController generates a 3D vector from the missile to
the target for each target in the electronic warfare scenario. The angle be-
tween this vector and the velocity vector of the missile is calculated in the
AngleBetween operation of the VectorMath helper-class. The angle
is determined by calculating the inverse cosine of the dot product of the
two vectors. Since the diagonal field-of-view of the missile is 2 degrees, if
the angle is below one degree (0.0175 radians) the target is added to the
viewableTargets instance variable. All viewable targets are evaluated
in the DetermineMainTarget operation of the MissileController
class.

10.6 System Analysis

For the initial modelling of the flare submodel, visual validation (Guideline
multi 19) was used. A simple 3D object of a spherical flare was dispensed
from a representation of the helicopter. The helicopter was moved and ro-
tated to resemble the 6 degrees of freedom of a helicopter. Visual validation
ensured that the flare inherited the velocity and rotation of the helicopter, so
if the helicopter was in a roll, the flare was dispensed accordingly.

The real system was not easily accessible for measurement, but Guideline
multi 20 was still followed. Comparing the trajectory of the flares in the 3D
animation with high-speed camera footage of real flares being dispensed gave
confidence in the fidelity of the model of the flares. The force with which
the flares were dispensed as well as the drag coefficient of the flares were
tweaked until the modelled trajectory resembled the real footage. Making
these parameters more realistic was made easier by using the Automated Co-
model Analysis for sweeping these two shared design parameters.

Visual validation was also used later in the modelling process after several
iterations of the system modelling phase. A much more elaborate 3D environ-
ment was built inside the 20-sim 3D animator. A camera was placed in the
nose of the missile, enabling a missile point-of-view in order to validate the
guidance controller. Another camera was placed close to the helicopter giving
a good view of the dispensed flare patterns. Screenshots from these cameras
can be seen in Figure 10.12.

As mentioned, the high fidelity model of ECAP described in Chapter 6,
could be added as a DE model in a future addition to the co-model presented
in this chapter. As described in Chapter 6, three different domain-specific
analysis techniques were used to validate this DE model of ECAP (Guideline
multi 18) — see Section 6.3.5 for details.

146 10 Evaluation of Multi-Disciplinary Modelling Guidelines

Figure 10.12 Screenshots from the 3D simulation plot from inside the 20-sim editor. On the
left the scenario is seen from the missile point of view and on the right the helicopter is seen
from the side.

10.7 Case Study Results

The main purpose of the electronic warfare case study was to analyse how ef-
fectively flares patterns are as countermeasures against different generations
of IR guided missiles. The missile guidance controller of the co-model could
use either first or second generation guidance strategies. Co-simulation of
the model showed that existing countermeasure strategies work very robustly
against these older IR guidance systems. The co-model enabled analysis of
how long the flares stayed inside the point-of-view of the missile, and hence
were effective as countermeasures. By changing the dispense angles of the
flares it was possible to analyse if this could be optimised — this is a very
concrete example of effective model-based design space exploration.

A proposed countermeasure strategy against fourth generation IR guid-
ance systems was to use flare patterns to generate a well resembling IR image
of the helicopter. As described in Section 10.4.1 detailed information regard-
ing the most recent generations of IR guidance is not publicly available, and
hence was not included in the co-model to avoid reducing the accuracy of the
model. Instead, visual validation of the countermeasure strategy was used.
After analysing multiple co-simulations it was concluded that it was not pos-
sible to create an IR image resembling a helicopter using flares, and hence
another countermeasure strategy was needed.

As described in Section 2.7 modern missiles make use of electronic pro-
tective measures (EPM) to reduce the effect of countermeasures deployed
by the target. One such EPM used by modern missiles is to analyse the
movement of all IR sources. If a new IR source moves in a radical direc-

10.8 Additional Evaluation of the Guidelines 147

tion compared to the current target the missile identifies this as being a flare
dispensed from the target, and hence it is not considered as a possible tar-
get. In other words: for flares to be the most effective they must follow the
movement of the helicopter and only slowly leading the missile away. The
co-model enabled analysis of the rate of separation of the flares from the
helicopter seen from the point-of-view of the missile. In Figure 10.13 below,
the helicopter flies in a positive x-direction and dispenses a flare directly to its
right in a negative y-direction. Missiles are placed all around the helicopter
to monitor the rate of separation of the flare seen from different angles.

Figure 10.13 Experiment analysing the rate of separation of flares dispensed from a
helicopter.

Countermeasures can be a combination of flare patterns and helicopter
maneuvers. The results of the co-simulation can be used to optimise counter-
measures: changing the heading of the helicopter slightly before dispensing
flares can result in lowering the rate of separation seen from the point-of-view
of the missile. By having a system-level overview of the entire encounter, it
is possible to optimise the performance of the countermeasure system.

The electronic warfare case study has shown the industrial partner that
there are completely new approaches to system development. Models enable
the exploration of a huge design space and analysis of key system parameters.
In addition to the added analytical power offered by models, the 3D anima-
tions have been a great aid in communicating complex systems operating in
3D space to non-technical stakeholders and customers. Recently, a variant of
the co-model was used in the education of Norwegian fighter pilots. Using
a 3D model to explain countermeasure concepts and ECAP functionality
proved invaluable and the feedback from the pilots was very positive.

148 10 Evaluation of Multi-Disciplinary Modelling Guidelines

10.8 Additional Evaluation of the Guidelines

An M.Sc. project [106] has been conducted to further evaluate the usefulness
of the guidelines. The electronic warfare case study presented in this chapter
was also modelled in the game engine Unity described in Section 7.3.8. The
guidelines were followed to determine if they are applicable to tools other
than DESTECS.

10.8.1 M.Sc. Project Evaluating the Guidelines

In the M.Sc. project a software engineering student (representing the DE
expert) and a robotics engineering student (representing the CT expert) de-
veloped a co-model of an autonomous robot by following the methodolog-
ical guidelines. The two engineers followed the guidelines through all four
phases: model purpose, system decomposition and the first iteration of system
modelling and analysis. This ensured that all guidelines were applied in a
collaborative process between two engineers with different backgrounds.

The use of SysML as a common notation for decomposing the system
was well received by both project participants. Defining the interface adding
both type/unit and direction helped clarify the intended use of the individ-
ual domain-specific blocks, and helped removing potential cross-disciplinary
errors. The importance of sensor placement (position and rotation) was dis-
cussed during the process of defining the interfaces. As a result, the software
engineer got a much deeper understanding of the physical properties he had
to monitor and control in the DE model he was creating.

The use cases and actors identified during use case modelling, were used
for constructing the BDD. The fact that a block of the BDD corresponds to
an actor of the use case diagram contributes positively to the traceability of
the system description.

The description of the DE constructs enabled easy transitioning from
SysML to VDM, since both support object-oriented concepts, and almost
every modelling construct of UML has a VDM equivalent. When transi-
tioning from the SysML descriptions to 20-sim, the guidelines provided a
natural way of structuring the resulting CT-model into submodels. In general
these intermediate SysML descriptions enable a systematic approach for the
construction of the two domain models.

The usefulness of the constraint and parametric diagrams was questioned,
though. An attempt was made to describe constraints on the individual wheels
as well as the rigid body of the robot using these types of diagrams. It was
found that the causality of these elements was too strong, and the many in-

10.8 Additional Evaluation of the Guidelines 149

terrelations made it infeasible to document using the suggested diagrams.
Instead, informal sketches and mechanical drawings were used for defining
the causality constraints of the robot. It was concluded, however, that for
some physical systems, the benefits of using constraint and parametric dia-
grams was clearer — the flare dynamics described earlier in this chapter is a
good example of this.

Capturing the essence of the methodology in the form of small statements
or guidelines, allowed for easy reference throughout development. During the
M.Sc. project the guidelines served well as input for the development work,
since the enforcement of this kind of structure helps ensuring that important
system aspects are dealt with in a timely manner.

10.8.2 Evaluation of Alternative Tool

To further evaluate the guidelines they were applied to the electronic warfare
case study described in this chapter using an alternative tool: the Unity game
engine. To evaluate the level of fidelity Unity could achieve, a small test was
conducted. A spring-damper system was built in both 20-sim and Unity, and
the position of a mass was monitored — see Figure 10.14.

Figure 10.14 Comparing 20-sim with Unity monitoring the position of a mass in a spring-
damper system.

150 10 Evaluation of Multi-Disciplinary Modelling Guidelines

The physics engine of Unity over-shoots by 3.5% compared to 20-sim.
The important thing to note is that the error does not accumulate over time.
This shows that PhysX is slightly inaccurate in the extremes, but over the
course of the entire simulation the error goes towards zero.

The electronic warfare case study presented previously in this chapter was
developed in Unity, resulting in a simulator called Virtual Electronic Warfare
Simulator (ViEWS). A screenshot from ViEWS can be seen in Figure 10.15.

Figure 10.15 Screenshot from the ViEWS simulator.

In Unity, several cameras can be rendered simultaneously. In the upper-
left corner of Figure 10.15, the view of the missile is shown — in the screen-
shot the missile is very close to the missile, so it only sees the flare. Fig-
ure 10.16 shows the 64-by-64 pixel resolution missile point-of-view from a
greater distance.

In addition, a camera can be panned around the helicopter at run-time,
to view the simulation from different angles. The simulation happens real-
time, but it is possible to scale time down enabling better analysis of the
simulation. This, along with the better rendering capabilities of Unity, makes
ViEWS a good tool for showing the capabilities of the self-defense system to
non-technical stakeholders.

10.8 Additional Evaluation of the Guidelines 151

Figure 10.16 Screenshot from the ViEWS simulator, showing the missile point-of-view.

The guidelines supported the development of ViEWS with only minor al-
terations needed. The model purpose and system decomposition were reused,
so all the guidelines were applicable. Since no co-simulation contract is need-
ed in Unity, Guideline 9 and 15 were not applied. No automated tools exist
for sweeping parameters, so Guideline 14 had to be done manually. Since 3D
visualisation is such an integrated part of Unity, Guideline 19 was applied
extensively.

Part IV

Evaluation, Discussion and
Conclusion

153

11
Conclusion

This chapter concludes on the results achieved in this thesis. The objectives
of the thesis defined in Chapter 1 are related to the modelling guidelines
described in Chapters 4 and 9 and the combination of formal and agile
methods described in Chapter 5. These methodological guidelines for creat-
ing models of heterogeneous embedded systems at various levels of fidelity,
using either mono- or multi-disciplinary modelling approaches, comprise
the results of this thesis.

11.1 Introduction

This thesis provides methodological guidelines for developing models of em-
bedded systems of various levels of fidelity. The guidelines fit into one of two
general approaches: modelling the entire system and environment dynamics
using a single formalism, or creating separate models for the discrete-event
(DE) controller and continuous-time (CT) dynamics of the environment, and
analysing them collaboratively using co-simulation.

The purpose of this chapter is to evaluate the outcome of the thesis, and to
assess to what extent the objectives have been met. Section 11.2 summarises
the research contribution made. Section 11.3 evaluates to which extent the
research contribution meets the objectives of the thesis defined in Chapter 1.
Future work is identified and presented in Section 11.4, and an outlook of
the use of modelling in the development of embedded systems is given in
Section 11.5.

11.2 Research Contribution

Modelling Guidelines

The main contribution of the PhD thesis, is a collection of lightweight method-
ological guidelines supporting the modelling of heterogeneous embedded

155

156 11 Conclusion

systems. Chapter 4 describes guidelines supporting a stepwise approach to
VDM-RT model construction, where both the embedded controller and its
environment are described using a single DE formalism. Adding concurrent
behaviour to a sequential model, was a generally well known technique,
but adding the real-time behaviour and distributed architecture was the real
contribution of the work.

To add further detail to the model, the environment is modelled using
a CT formalism which is combined with the DE model of the controller
to create a collaborative model. The creation of co-models is supported by
twenty methodological guidelines described in Chapter 9. These guidelines
describe a pragmatic approach to: model purpose and requirements mod-
elling, system decomposition, system modelling, and system analysis. Since
co-modelling requires a more holistic system-level approach, SysML was
chosen as a domain-independent notation supporting these phases of model
construction. This ensures that conceptual discussions are not hindered by
domain-specific notations, not understood by all of the disciplines involved.

The various guidelines have been applied to two case studies. In Chap-
ter 6 a DE model of a countermeasure system is created. Only the first two
phases of the stepwise process were applied, showing that the guidelines can
be adapted to support the level of modelling fidelity needed. In Chapter 10
the model is extended with a CT model of the physical dynamics of the
environment.

Tool Independent Guidelines

To ensure that the modelling guidelines support a certain degree of tool in-
dependence, two tools using different approaches to collaborative modelling
are compared in Chapter 8. In addition, the electronic warfare case study
presented in Chapter 10 was modelled using a real-time rigid body simula-
tion approach. Applying subsets of the guidelines to case studies modelled in
various simulation tools shows that with minor modifications the guidelines
are applicable to a range of tools.

Agile Model Development

To support the project management aspect of using a modelling approach
to embedded systems development, the integration of formal modelling into
agile methods has been researched. Chapter 5 discussed to which extent for-
mal and agile methods can be combined and benefit from each other. It is

11.3 Evaluation of the Guidelines 157

concluded that combining these seemingly orthogonal approaches should not
be done lightly, without proper methodological guidelines.

A concrete example of such guidelines is also provided in Chapter 5 that
illustrates the combination of formal methods and the agile project manage-
ment framework Scrum. The roles of the project participants are described as
are the activities and artifacts produced throughout the project.

The agile approach to model construction has been applied to the ECAP
case study in Chapter 6 and to a lesser extent to the electronic warfare case
study presented in Chapter 10.

11.3 Evaluation of the Guidelines

In this section, we evaluate to which extent the guidelines described in Chap-
ters 4 and 9 provide for the properties listed in Section 1.6. It is challenging
to evaluate the guidelines in isolation though, because a modelling approach
consists of several things: the capabilities of the available tools, the methods
and guidelines describing how to exploit the possibilities provided by those
tools, and the experience with which the guidelines are applied. This section
evaluates the combined modelling approach, thereby indirectly evaluating the
guidelines. When individual guidelines have helped directly in achieving one
of the properties, these will be mentioned.

The limited number of case studies means that no statistical significance
can be attached to the results. Further, these are not controlled trials like those
carried out in the ConForm project mentioned in Section 3.3.4. However,
based on the experiences gained in the context of this Industrial PhD thesis,
we conclude the following.

11.3.1 Prediction of System Behaviour

In both case studies it was possible to predict system behaviour before the
systems were fully developed. In one case the feasibility of a change in the
design was validated using a DE model, and in the other case a novel idea to
countering state-of-the-art missiles was abandoned based on the simulation
of the co-model.

The mono-disciplinary ECAP case study presented in Chapter 6 validated
the redesign of the new interpretation of messages passed between ECAP
and AS. Using the model it was possible to predict system behaviour prior to
software implementation and before test rigs were available.

158 11 Conclusion

The multi-disciplinary electronic warfare case study presented in Chap-
ter 10 created visual representations of the resulting IR image created by
a combination of dispensed flares and helicopter maneuvers. Initially, this
model was created to predict how effective different countermeasures were
against missiles using early generation IR-based target seeking. It was pos-
sible to analyse which dispense angles ensured that the flares stayed in the
field-of-view of the missile the longest, and hence were the most effective.
The model also enabled the analysis of the precision of which IR images
could be generated using readily available flare technologies. If it would
be possible to generate an IR image resembling a helicopter, even fourth
generation missiles could be countered effectively. Using the model, it was
concluded that it was not possible to generate a well resembling IR image of
the helicopter using flares, and hence another strategy is needed to counter
missiles using state-of-the-art IR target seeking.

In the M.Sc. project described in Section 10.8.1, a co-model of an au-
tonomous robot was created. Following guideline multi 20 the fidelity of this
co-model was increased by calibrating the model parameters until the co-
model performed similar to a physical prototype that was also developed.
Calibration was done iteratively until the co-model performed within an error
margin of 15% of the physical prototype. The co-model was then used to
predict the duration of course completion of several other tracks. The pre-
dictions were within the same error margin as the initial test. We believe
that by further increasing the fidelity of the co-model, the precision of these
predictions would increase as well.

11.3.2 Cross-Disciplinary Collaboration

The case studies show that the guidelines and modelling approach strengthen
collaboration across technical boundaries, but also between technical project
participants and non-technical stakeholders.

Several initiatives were made to ensure better collaboration with the cus-
tomer and systems engineers in the ECAP case study presented in Chapter 6.
The model was created in such a way that the output generated by the model
when evaluating different scenarios was directly readable by the customer. In
addition, all state changes of ECAP and the AS sub-system were printed in
a format that the customer could read and understand without further trans-
lation needed. This ensured that the results of the scenarios could be sent
unaltered to the customer. This was a key ingredient in ensuring collaboration
with the non-technical stakeholders of the project.

11.3 Evaluation of the Guidelines 159

Making extensive use of 3D animations in the electronic warfare case
study presented in Chapter 10 helped strengthen communication with non-
technical stakeholders. The visual feedback of changes in the model enabled
electronic warfare domain experts to provide input to the model. Having a
graphical interface to the model, helps demystifying the model and enables a
wider range of stakeholders to actively use it.

The use of SysML in the M.Sc. project described in Section 10.8.1 en-
hanced the communication across the disciplinary boundaries of the software
and robotics engineering students participating in the project. Discussing the
importance of sensor placement and orientation was augmented by using the
high-level, discipline-neutral, yet standardised modelling language SysML.

11.3.3 Understanding System-Level Impact of Design Decisions

The case studies presented in this thesis show that even abstract models,
where only parts of the entire system are modelled, can be used to analyse
system-level implications of design decisions.

When making small local updates to a large system it is important to
ensure the absence of system-level side-effects. In the ECAP case study in
Chapter 6, only ECAP, AS and the communication between the two systems
were modelled. In addition, the model was created in such a way that ECAP
could be fed threat messages from other sensor-systems. This enables the
analysis of system-level properties like threat priority, ensuring that ECAP
still treated threat messages with different priorities appropriately.

The co-model created in the electronic warfare case study presented in
Chapter 10 included parameters like: timing of the dispense of individual
flares, dispense angles used, orientation of the helicopter, and rigid body
physics of the flares. By including all these different types of elements it was
possible to analyse the system-level impact of changes to the individual pa-
rameters. As an example, it was tested if the timing of the dispensing of flares
could be changed dynamically based on the orientation of the helicopter to
better control the IR image created. The conclusion was that while the timing
had an impact, it was not enough to fully control the resulting IR image.

11.3.4 Industry-Ready

The guidelines advocate the use of an iterative approach to model develop-
ment which eased the integration with the existing processes used by the

160 11 Conclusion

industrial partner. Chapter 6 acts as empirical evidence of the benefits a mod-
elling approach can bring to embedded systems development.

Since agile principles are used by the industrial partner in the daily de-
velopment of systems, a combination of modelling and agile system devel-
opment was made. Presenting the use of formal modelling incorporated into
well-known development methods increases the likelihood of wider indus-
trial acceptance. For the same reason, the collaborative modelling guidelines
presented in Chapter 9 are put into context of the well-known spiral model.

To show examples of the benefits modelling can bring, different case
studies within the area of electronic warfare have been conducted showing
the applicability of the methods and guidelines in an industrial setting. These
case studies have largely been a success: the model of the ECAP system
presented in Chapter 6 helped solving a month long dispute with a cus-
tomer, clearly convincing him of the feasibility of a proposed communication
protocol design change.

The success of the ECAP case study presented in Chapter 6 has shown
the industrial partner some of the benefits of a modelling approach to sys-
tems development. The electronic warfare case study from Chapter 10 has
generated some interest at Terma — not only in the analytical power of co-
modelling, but also as a sales tool explaining potential costumers how the
system operates. Having a model with a graphical interface has been a great
aid in describing complex system behaviour to customers.

The industrial partner is planning to run a follow-up project as a continu-
ation of the industrial PhD presented in this thesis. In this project a model of
a surveillance system for perimeter protection of airports, power plants and
similar critical parts of the infrastructure will be developed. The model will
be used to analyse the effect of different sensor data correlation algorithms,
supporting the design of the real system.

11.4 Future Work

In this section, some possible directions for future work are given. Just like
the guidelines in Chapter 9, the suggested future work mainly accompanies
the DESTECS tool.

11.4.1 Process for Modelling Embedded Systems

Instead of having separate processes for developing mono- and multi-disci-
plinary models of embedded systems, a process combining the mono- and

11.4 Future Work 161

multi-disciplinary guidelines is suggested here. An outline of the process can
be seen in Figure 11.1. The process is based on the phases defined in the
spiral process described in Section 9.3.

Having a combined process will make it clearer when the individual guide-
lines should be applied, and how the mono- and multi-disciplinary guidelines
can coexist. The system boundary definition phase of the mono-disciplinary
model development process is supported by only a single guideline. In the
combined process described below the analogue phases are supported by nine
guidelines which will ensure a much better structure of the mono- as well as
the multi-disciplinary models produced by following this process.

Figure 11.1 Outline of process combining the mono- and multi-disciplinary guidelines.

The phases of the process as well as the use of the guidelines is described
in the following:

1. Model Purpose and Requirements
In this phase Guidelines Multi 1 to Multi 3 as well as Mono 1 should be ap-
plied. The guidelines stress the importance of documenting the assumptions
made, the purpose of the model, and the requirements that must be met.

2. System Decomposition
In this phase Guidelines Multi 4 to Multi 9 should be applied. The results of
this phase are:

• specification of the main system parts (SysML BDD);
• interface specification (SysML IBDs);

162 11 Conclusion

• specification of the dynamics of physical parts of the system and causal-
ity between these parts (SysML constraint and parametric diagrams);

• architecture specification of the embedded controller (UML class dia-
grams);

• behaviour of the embedded controller (UML activity, sequence or state
charts); and

• description of interface between software controller and physical parts
of the system.

The system decomposition is an enabler for choosing the correct mod-
elling approach. Following Guideline Multi 10, either a CT-first (outside the
scope of this thesis), DE-first (right branch of Figure 11.1), or contract-first
(left branch of Figure 11.1) modelling approach is chosen.

Mono 3. System Modelling
In this phase Guidelines Mono 2 to Mono 14 should be applied. Each of the
three tiers of models (sequential VDM++, concurrent VDM++, and VDM-
RT) should be developed in separate iterations.

Mono 4. System Analysis
In this phase Guidelines Mono 15 and Mono 16 should be applied. For each
iteration of model analysis there are three possible outcome:

1. A competent model has been created, and the desired analysis have been
carried out. There is no need to continue modelling.

2. A more accurate model is needed. It is still believed that a competent
model can be developed using a mono-disciplinary approach, so the next
tier model is planned for the following iteration.

3. A more accurate model is needed. In order to achieve this, a more accu-
rate model of the dynamics of the physical parts of the embedded system
is needed, so a multi-disciplinary model is planned for the next iteration.

Multi 3. System Modelling
In this phase Guidelines Multi 11 to Multi 17 should be applied. In each
iteration details will be added to the different parts of the model.

Multi 4. System Analysis
In this phase Guidelines Multi 18 to Multi 20 should be applied. For each
iteration of model analysis there are two possible outcome:

11.4 Future Work 163

1. A competent model has been created, and the desired analysis have been
carried out. There is no need to continue modelling.

2. A more accurate model is needed. Details to be added in the following
iteration are planned.

Due to its iterative nature, the process fits into an agile setting as described
in Chapter 5. In that case, each iteration of the process must fit into a single
Scrum sprint.

The existing case studies must be reevaluated using the suggested com-
bined process: The ECAP case study presented in Chapter 6 should follow the
right branch of Figure 11.1 for several iterations until a VDM-RT model of
the ECAP system has been developed. Once this is achieved, the continuous
dynamics of the system can be added following the left branch of Figure 11.1
resulting in a co-model of the entire electronic warfare case study presented
in Chapter 10.

11.4.2 Modelling of Multiple Embedded Systems

The tools supporting collaborative modelling of multi-disciplinary systems
are mainly focused on developing models of a single system. An important
issue, not yet addressed, is how to model several systems in such a way
that they are separate but can still interact. In the electronic warfare case
study presented in Chapter 10, the co-model should ideally be separated into
individual models of the DE controllers and CT dynamics of the missile,
helicopter and flares, all sharing a common environment model. Since this is
currently not possible in the DESTECS tool, the dynamics of all three systems
were described in a single 20-sim CT model, while both the missile guidance
controller and ECAP were created in a single DE model. Given the tools
supporting co-simulation of more than a single DE and a single CT model
would also require an update to the guidelines presented in Chapter 9. As with
the currently available tools, the guidelines mainly support system decom-
position of a single system, and distribution of system elements to a single
co-model. Additional guidelines are needed to guide the creation of multi-
disciplinary models with multi-party integration, where a single co-models
must be decomposed and distributed to multiple CT/DE models.

11.4.3 Tool Extension

It was carefully considered how the SysML constructs would map to the cor-
responding parts of the co-model. Section 10.4.1 describes how the SysML

164 11 Conclusion

internal blocks map to submodels in 20-sim and how the SysML atomic ports
and bi-directional ports map to 20-sim signals and power ports respectively.
The Overture tool contains a UML transformation tool [128] that imports
UML class diagrams in XMI format and create the class skeleton in VDM.
The translation from the SysML diagrams to the initial co-model structure
is currently done manually, but given the mapping rules described above
it would be possible to automate parts of the process similar to the UML
transformation already supported.

11.4.4 More Elaborate Case Studies

The importance of industrial acceptance and adoption of the modelling tech-
niques described has been emphasised in this thesis. Various case studies have
been conducted, all with the author as one of only a few people involved (if
not the only one). Conducting a case study with multiple groups of engineers
with different backgrounds, following the guidelines described in this work,
would help evaluating the usefulness of the guidelines. The M.Sc. project
described in Section 10.8.1 was initiated to ensure that other people than the
author had followed the guidelines, resulting in a more objective evaluation.

11.5 Outlook

In academia, there is a great interest in moving from expensive and time con-
suming testing of physical prototypes to large scale design space exploration
of computerised models. Industry is equally interested, but few companies
are willing to accept the risk involved in changing the way embedded systems
are developed. Projects, like the one presented in this thesis, where industry
and academia collaborate on a government supported project, are important
to develop mature methods and tools that support modelling of embedded
systems. An existing compendium of case studies where the method was
successfully applied will help industry trust in the technology. This will in
turn increase the likelihood of more companies moving towards a modelling
approach to embedded systems development.

Part V

Appendices

165

A
Glossary

Advanced Sensor (AS): A subsystem which contains the combined func-
tionality of a MWS and ECAP.
(p. 68)

Anti-lock Braking Systems (ABS): An automobile safety system that al-
lows the wheels to maintain tractive contact with the road while braking
preventing the wheels from locking up (ceasing rotation) and avoiding
uncontrolled skidding.
(p. 4)

Automated Co-model Analysis (ACA): Part of the DESTECS toolchain. En-
ables parameter sweeps on multiple parameters from the entire co-model.
(p. 94)

Block Definition Diagram (BDD): SysML diagram type used for defining
the main entities of a system and their relations.
(p. 120)

Chaff: Dispensable decoy used as ECM against radar-guided threats. When
dispensed, chaff creates a cloud reflecting radar signals.
(p. 22)

Co-model: Short for collaborative model. Consists of two component mod-
els (one DE and one CT) and a contract used to link the two models
together.
(p. 88)

Collaborative modelling: The development of a co-model
(p. 87)

Co-simulation: The simulation of a co-model.
(p. 7, p. 89)

167

168 A Glossary

Co-simulation engine: Supervising the co-simulation, and managed the syn-
chronisation of time and shared variable values of a co-model.
(p. 89)

Competent model: A model is competent for a given analysis if it contains
sufficient detail to permit that analysis, and the results are truthful with
respect to reality.
(p. 6)

Continuous-Ttime (CT): A type of formalism where a physical system is
represented as a set of equations (typically involving differential equa-
tions) that are continuously evaluated.
(p. 7)

DESTECS Command Language (DCL): A scripting language –part of the
DESTECS toolchain– used to simulate user input and activate faults.
(p. 93)

Design parameter: A property of a model that affects its behaviour, but
which remains constant during a given simulation.
(p. 88)

Design Space Exploration (DSE): The task of exploring alternative designs
in order to find the optimal solution.
(p. 27)

Digital Sequencer Switch (DSS): A subsystem that administers the correctly
timed dispensing of chaff or flares.
(p. 68)

Discrete-Eevent (DE): A type of formalism where the system is represented
as a chronological sequence of events, which happen in discrete points
in time.
(p. 7)

Electronic Combat Adaptive Processor (ECAP): A programmable system
that calculates the optimal countermeasure to any given threat scenario.
(p. 67)

Electronic Countermeasure (ECM): Used to suppress the enemy use of
ESM. Examples are flares that are operating in the infrared frequency
band.
(p. 15)

169

Electronic Protective Measures (EPM): Used to counter the enemy use of
ECM, hence also called Electronic counter-countermeasures.
(p. 15)

Electronic Support Measures (ESM): Used to gain knowledge of the ad-
versary using sensors operating in the electromagnetic spectrum.
(p. 15)

Electronic Warfare (EW): Military forces taking actions to dominate the
electromagnetic spectrum, to find, track, target, engange and assess the
adversary, while denying that adversary the same ability.
(p. 15)

Embedded system: A single-purpose computing system characterised by be-
ing integral to and wholly encapsulated by the system it controls.
(p. 3)

Event: The changing of the logical value of a predicate. Defined in a co-
model contract.
(p. 89)

Flare: Dispensable decoy used as ECM against IR-guided threats. When dis-
pensed, flares radiate energy in the IR frequency band.
(p. 23)

Graphical User Interface (GUI): A type of user interface that allows users
to interact with the system using images rather than text commands.
(p. 50)

Integrated Development Environment (IDE): A software application that
provides facilities to computer programmers for software development.
An IDE normally consists of a source code editor, build automation tools
and a debugger.
(p. 111)

Internal Block Diagram (IBD): SysML diagram type used for defining the
internal structure of a block.
(p. 120)

Inertial Measurement Unit (IMU): A device that measures and reports on
the velocity, orientation, and gravitational forces imposed on a vehicle.
(p. 74, p. 136)

170 A Glossary

Infrared (IR): Electromagnetic radiation with longer wavelengths than those
of visible light. This range of wavelengths includes most of the thermal
radiation emitted by objects near room temperature.
(p. 15)

Launch configuration: Defines the entry point of a co-simulation, sets to-
tal simulation time, sets shared design parameter values, and other co-
simulation settings.
(p. 93)

Model: A more or less abstract representation of a system or component.
(p. 6, p. 88)

Modelling: The process of creating a model.
(p. 6)

Model of Computation (MoC): The definition of the set of allowable oper-
ations used in computation of a certain model. Examples are: DE, CT,
and synchronous data flow.
(p. 98)

Missile Warner System (MWS): Sensor system monitoring the IR frequen-
cy band of the surroundings to detect the exhaust plume of missile being
fired towards it.
(p. 21)

Ordinary Differential Equation (ODE): An equation containing a function
of one independent variable and its derivatives. Used to describe dy-
namic physical behaviour.
(p. 90)

Parameter sweep: A functionality of the tool 20-sim where one or more
parameters are given a range of values, and simulations using all permu-
tations of parameter values are automatically performed.
(p. 91)

Personal Computer (PC): A general-purpose computer is intended to be
operated directly by the end-user with no intervening computer operator.
(p. 4)

Quaternion: A four-dimensional structure used to describe rotations in three-
dimensional space.
(p. 24)

171

Radar: Short for RAdio Detection And Ranging. A radar system contin-
uously transmit waves of short bursts of electromagnetic energy that
bounces off objects. Parts of the transmitted signal is returned to the
radar, and is used to determine the range and direction of the object.
(p. 16)

Radar-Cross-Section (RCS): A measure of how detectable an object is with
a radar. The RCS value of an object can rely on the angle of which the
object is being observed.
(p. 17)

Radar Warning Receiver (RWR): Sensor system used to warn of incoming
radar guided threats by detecting the transmitted radar signal.
(p. 20)

Radio Frequency (RF): The frequency band of the electromagnetic spec-
trum in which radars operate.
(p. 16)

Scrum: An agile project management method, which focusses on short feed-
back loops in system development. Scrum is a structured method, where
roles, responsibilities, activities and artifacts are defined.
(p. 13, p. 60)

Shared variable: Defined in a co-model contract. A variable that appears in
and can be accessed from both component models.
(p. 89)

Simulation: A test run of a model. The model receives input, and the gener-
ated output is compared to the expected results.
(p. 6, p. 88)

Test-Driven Development (TDD): An agile method, where initially a test
case is described, followed by the creation of the minimum required
code to satisfy the test case.
(p. 36)

Unified Modelling Language (UML): A standardized general-purpose mod-
eling language in the field of object-oriented software engineering. It is
managed by the Object Management Group.
(p. 34)

172 A Glossary

Vienna Development Method (VDM): A collection of formal techniques to
specify and develop software. It consists of a formally defined language,
as well as strategies for abstract descriptions of software systems.
(p. 28, p. 30)

B
Overview of VDM Operators

The Boolean Type
Operator Name Signature
not b Negation bool→ bool
a and b Conjunction bool * bool→ bool
a or b Disjunction bool * bool→ bool
a => b Implication bool * bool→ bool
a <=> b Biimplication bool * bool→ bool
a = b Equality bool * bool→ bool
a <> b Inequality bool * bool→ bool

The Numeric Types
Operator Name Signature
-x Unary minus real→ real
abs x Absolute value real→ real
floor x Floor real→ int
x + y Sum real * real→ real
x - y Difference real * real→ real
x * y Product real * real→ real
x / y Division real * real→ real
x div y Integer division int * int→ int
x rem y Remainder int * int→ int
x mod y Modulus int * int→ int
x**y Power real * real→ real
x < y Less than real * real→ bool
x > y Greater than real * real→ bool
x <= y Less or equal real * real→ bool
x >= y Greater or equal real * real→ bool
x = y Equal real * real→ bool
x <> y Not equal real * real→ bool

The Character, Quote and Token Types
Operator Name Signature
c1 = c2 Equal char * char→ bool
c1 <> c2 Not equal char * char→ bool

173

174 B Overview of VDM Operators

Tuple Types
Operator Name Signature
t1 = t2 Equality T * T → bool
t1 <> t2 Inequality T * T → bool

Record Types
Operator Name Signature
r.i Field select A * Id → Ai
r1 = r2 Equality A * A → bool
r1 <> r2 Inequality A * A → bool
is A(r1) Is Id * MasterA→ bool

Union and Optional Types
Operator Name Signature
t1 = t2 Equality A * A → bool
t1 <> t2 Inequality A * A → bool

Set Types
Operator Name Signature
e in set s1 Membership A * set of A → bool
e not in set s1 Not membership A * set of A → bool
s1 union s2 Union set of A * set of A → set of A
s1 inter s2 Intersection set of A * set of A → set of A
s1 \ s2 Difference set of A * set of A → set of A
s1 subset s2 Subset set of A * set of A → bool
s1 psubset s2 Proper subset set of A * set of A → bool
s1 = s2 Equality set of A * set of A → bool
s1 <> s2 Inequality set of A * set of A → bool
card s1 Cardinality set of A → nat
dunion ss Distributed union set of set of A → set of A
dinter ss Distributed intersection set of set of A → set of A
power ss Finite power set set of A → set of set of A

Sequence Types
Operator Name Signature
hd l Head seq1 of A → A
tl l Tail seq1 of A → seq of A
len l Length seq of A → nat
elems l Elements seq of A → set of A
inds l Indices seq of A → set of nat1
l1 ˆ l2 Concatenation (seq of A) * (seq of A) → seq of A
reverse l Reverse seq of A → seq of A
conc ll Distributed concatenation seq of seq of A → seq of A
l ++ m Sequence modification seq of A * map nat to A → seq of A
l(i) Sequence index seq of A * nat1→ A
l1 = l2 Equality (seq of A) * (seq of A) → bool
l1 <> l2 Inequality (seq of A) * (seq of A) → bool

175

Mapping Types
Operator Name Signature
dom m Domain (map A to B) → set of A
rng m Range (map A to B) → set of B
m1 munion m2 Map union (map A to B) * (map A to B) → map A to B
m1 ++ m2 Override (map A to B) * (map A to B) → map A to B
merge ms Distributed merge set of (map A to B) → map A to B
s <: m Domain restrict to (set of A) * (map A to B) → map A to B
s <-: m Domain restrict by (set of A) * (map A to B) → map A to B
m :> s Range restrict to (map A to B) * (set of B) → map A to B
m :-> s Range restrict by (map A to B) * (set of B) → map A to B
m(d) Mapping apply (map A to B) * A → B
inverse m Map inverse inmap A to B → inmap B to A
m1 = m2 Equality (map A to B) * (map A to B) → bool
m1 <> m2 Inequality (map A to B) * (map A to B) → bool

General Examples

if predicate then Expression else Expression

cases expression:
(pattern list 1)-> Expression 1,
(pattern list 2),
(pattern list 3)-> Expression 2,
others -> Expression 3
end;

for all value in set setOfValues
do Expression

dcl variable : type := Variable creation ;

let variable : type = Variable creation in Expression

let variable in set setOfValues be st pred(variable) in Expression

Comprehensions (Structure to Structure)�
{element(var) | var in set setexpr & pred(var)}

[element(i) | i in set numsetexpr & pred(i)]
� �

176 B Overview of VDM Operators

From Structure to Arbitrary Value�
Select: set of nat -> nat
Select(s) ==
let e in set s
in
e

pre s <> {}
� �
From Structure to Single Value�
SumSet: set of nat -> nat
SumSet(s) ==
if s = {}
then 0
else let e in set s

in
e + SumSet(s\{e})

measure Card
� �
From Structure to Single Boolean�
forall p in set setOfP & pred(p)

exists p in set setOfP & pred(p)

exists1 p in set setOfP & pred(p)
� �

177

VDM++ Class Example�
class Person

types
public String = seq of char;

values
protected Name : seq of char = "Peter";

instance variables
public nationality : seq of char:="Danish";
yearOfBirth : int;
sex : Male | Female;
friends : map String to Person;

operations
public Person: int * (Male | Female) ==> Person
Person(pYear,pSex) ==
(yearOfBirth := pYear;
sex := pSex);

public GetAge : int ==> int
GetAge(year) == CalculateAge(year,yearOfBirth)
pre pre_CalculateYear(year,yearOfBirth);

functions
public CalculateAge : int * int -> int
CalculateAge (year,bornInYear) == year-bornInYear
pre year >= bornInYear
post RESULT + bornInYear = year;

thread
while true do
skip;

traces
Mytrace: --regular expression with operation calls

end Person

class Male is subclass of Person
end Male
� �

C
Related Projects

ADVANCE [28] aims to develop a unified tool-based framework for auto-
mated formal verification and simulation-based validation of embedded
systems. The project is developing methods and tools for construction,
refinement, composition and proof of formal models.

AVACS [25] investigates automatic verification and analysis of complex sys-
tems in particular embedded systems, using model checking.

CESAR [82] develops multi-viewpoint based development processes to im-
prove requirements engineering and component-based engineering. A
“Reference Technology Platform” has been developed making it possi-
ble to integrate or interoperate existing or emerging available technolo-
gies.

COCONUT [50] addresses the design and verification of modern embed-
ded platforms by focusing on the formal specification of software and
compilation, formal refinement and formal proof.

COMPASS [52] focuses on modelling and formal analysis systems of sys-
tems using varied techniques like simulation, proof and automated test-
ing.

CREDO [58] focuses on the development and application of an integrated
suite of tools for compositional modelling, testing, and validation of
software for evolving networks of dynamically reconfigurable compo-
nents.

DEPLOY [170] addresses the industrial deployment of formal methods for
fault tolerant (DE) computing systems.

DESTECS [43] developed methods and tools that combine CT system mod-
els with DE controller models through co-simulation to allow multi-

179

180 C Related Projects

disciplinary modelling, including modelling of faults and fault tolerance
mechanisms.

INTERESTED [68] focuses on creating an interoperable, open, reference
toolchain for embedded systems. The project’s main focus is on DE tools
for graphical overview and code generation.

MEDEIA [178] aims to bridge the gap between engineering disciplines in
the discrete engineering domain, by using containers that contain design
models from various disciplines that can be seamlessly interconnected.
Like the INTERESTED project, MEDEIA aims to connect tools in the
DE domain.

Modelica [79] is a non-proprietary, object-oriented, equation-based language
to conveniently model complex physical systems.

MODELISAR [76] has developed an open co-simulation interface for cou-
pling models called the Functional Mock-up Interface (FMI).

MOGENTES [142] aims to significantly enhance testing and verification of
dependable embedded systems by means of automated generation of
efficient test cases.

PREDATOR [162] aims to advance the state of the art in the development
of safety-critical embedded systems focusing on timing aspects.

Ptolemy [44] has studied modelling, simulation and design of concurrent,
real-time embedded system, using a heterogeneous mixture of models
of computation using an actor-oriented modelling approach.

QUASIMODO [165] aims to develop techniques and tools for model-driven
design, analysis, testing and code-generation for embedded systems. A
central problem is ensuring quantitative bounds on resource consump-
tion. It focuses on formal notations for timed, probabilistic and hybrid
systems that can be subjected to exhaustive state space analysis tech-
niques such as model checking.

SPEEDS [157] have defined a semantic-based modelling method that sup-
ports the construction of complex embedded systems by composing het-
erogeneous subsystems, and which enables the sound integration of ex-
isting and new tools. The heterogeneous subsystem models are exported
to a standard format to form the composed system, which can be simu-
lated by a single simulation tool.

181

VERTIGO [190] aims to develop a systematic methodology to enhance mod-
elling, integration and verification of architectures targeting embedded
systems. It will use a co-simulation strategy that allows the correctness
of the interaction between HW and SW to be assessed by simulation and
assertion checking.

Bibliography

[1] 20-sim product homepage, 2012. http://www.20sim.com/.
[2] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile software

development methods Review and analysis. Technical Report 478, VTT Technical
Research Centre of Finland, 2002.

[3] Jean-Raymond Abrial. The B Book – Assigning Programs to Meanings. Cambridge
University Press, August 1996.

[4] Jean-Raymond Abrial. Formal methods in industry: achievements, problems, future.
In ICSE ’06: Proceeding of the 28th international conference on Software engineering,
pages 761–768, New York, NY, USA, 2006. ACM Press.

[5] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[6] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in
Event-B. STTT, 12(6):447–466, 2010.

[7] Sten Agerholm. Translating Specifications in VDM-SL to PVS. In J. von Wright,
J. Grundy, and J. Harrison, editors, Proceedings of the 9th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’96), volume 1125 of Lecture Notes
of Computer Science. Springer-Verlag, 1996.

[8] Sten Agerholm and Jacob Frost. Towards an Integrated CASE and Theorem Prov-
ing Tool for VDM-SL. In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors,
FME’97: Industrial Applications and Strengthened Foundations of Formal Methods
(Proc. 4th Intl. Symposium of Formal Methods Europe, Graz, Austria, September 1997),
volume 1313 of Lecture Notes in Computer Science, pages 278–297. Springer-Verlag,
September 1997. ISBN 3-540-63533-5.

[9] Sten Agerholm and Peter Gorm Larsen. Modeling and Validating SAFER in VDM-SL.
In Michael Holloway, editor, Fourth NASA Langley Formal Methods Workshop. NASA,
September 1997.

[10] Manifesto for Agile Software Development, 2012. http://agilemanifesto.
org/.

[11] Principles behind the Agile Manifesto, 2012. http://agilemanifesto.org/
principles.html.

[12] Rajeev Alur, Costas A Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger,
PeiHsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.
The algorithmic analysis of hybrid systems. THEORETICAL COMPUTER SCIENCE,
138:3–34, 1995.

[13] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verification
of embedded systems. IEEE Transactions on Software Engineering, 22:181–201, 1996.

183

http://www.20sim.com/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

184 Bibliography

[14] Michael Andersen, René Elmstrøm, Poul Bøgh Lassen, and Peter Gorm Larsen.
Making Specifications Executable – Using IPTES Meta-IV. Microprocessing and
Microprogramming, 35(1-5):521–528, September 1992.

[15] June Andronick, Ross Jeffery, Gerwin Klein, Rafal Kolanski, Mark Staples, He Zhang,
and Liming Zhu. Large-scale formal verification in practice: A process perspective.
In Proceedings of the 34th International Conference on Software Engineering (ISCE
2012), pages 1002–1011, June 2012.

[16] ANSI/ISA-84.01-1996. Application of safety instrumented systems for the process
industries.

[17] Farhad Arbab. Reo: a Channel-Based Coordination Model for Component Composi-
tion. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[18] Ralph-Johan Back and Joakim Wright. Refinement Calculus: A Systematic Introduc-
tion. Springer, 1998.

[19] Frédéric Badeau and Arnaud Amelot. Using B as a High Level Programming Language
in an Industrial Project: Roissy VAL. In Z to B Conference / Nantes, pages 334–354,
2005.

[20] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008.

[21] Shahid Baqar. Low-Cost PC-Based Hight-Fidelity Infrared Signature Modelling and
Simulation. PhD thesis, Cranfield University, Defence College of Management and
Technology. Department of Aerospace, Power and Sensors, United Kingdom, July
2007.

[22] Luciano Baresi, Gianni Ferretti, Alberto Leva, and Matteo Rossi. Flexible logic-based
co-simulation of modelica models. In Industrial Informatics (INDIN), 2012 10th IEEE
International Conference on, pages 635 –640, july 2012.

[23] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfgang
Schulte, and Herman Venter. Specification and Verification: The Spec# Experience.
Communications of the ACM, 54(6):81–91, June 2011.

[24] Building Controls Virtual Test Bed (BCVTB), 2012. https://
simulationresearch.lbl.gov/bcvtb.

[25] Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog, Andreas Podel-
ski, and Reinhard Wilhelm. SFB/TR 14 AVACS – automatic verification and analysis
of complex systems. it – Information Technology, 49(2):118–126, 2007.

[26] Patrick Behm, Paul Benoit, Alain Faivre, and Jean marc Meynadier. METEOR : A
successful application of B in a large project. In J.M. Wing, J. Woodcock, and J. Davies,
editors, Proceedings of FM’99 – Formal Methods, World Congress on Formal Methods
in the Development of Computing Systems, Toulouse, France, September 1999, volume
1709 of Lecture Notes in Computer Science, pages 369–387. Springer, 1999.

[27] Hans Bekić, Dines Bjørner, Wolfgang Henhapl, Cliff B. Jones, and Peter Lucas. A
Formal Definition of a PL/I Subset. Technical Report 25.139, IBM Laboratory, Vienna,
December 1974.

[28] Jens Bendisposto, Joy Clarke, John Colley, Andy Edmunds, Lukas Ladenberger,
Michael Leuschel, Vitaly Savicks, and Harald Wiegard. D4.2 – Methods and Tools
for Simulation and Testing I. Technical report, ADVANCE, FP7 project, 287563,
September 2012.

https://simulationresearch.lbl.gov/bcvtb
https://simulationresearch.lbl.gov/bcvtb

Bibliography 185

[29] Bernhard K. Aichernig and Peter Gorm Larsen. A Proof Obligation Generator for
VDM-SL. In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97: In-
dustrial Applications and Strengthened Foundations of Formal Methods (Proc. 4th Intl.
Symposium of Formal Methods Europe, Graz, Austria, September 1997), volume 1313
of Lecture Notes in Computer Science, pages 338–357. Springer-Verlag, September
1997. ISBN 3-540-63533-5.

[30] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie.
Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-
19813-X.

[31] Dines Bjørner. From domain engineering via requirements to software. formal speci-
fication and design calculi. Technical report, Department of Information Technology,
Software Systems Section, Technical University of Denmark, DK-2800 Lyngby, Den-
mark, 1997. Paper published in SOFSEM’97 Proceedings, Springer-Verlag, Lecture
Notes in Computer Science. http://www.it.dtu.dk/˜db/sofsem/sofsem.ps.

[32] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[33] Sue Black, Paul P. Boca, Jonathan P. Bowen, Jason Gorman, and Mike Hinchey. Formal
versus agile: Survival of the fittest? IEEE Computer, 42(9):37–45, September 2009.

[34] Blender open-source 3D content creation suite, 2012. http://www.blender.
org/.

[35] Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, Christoph Clauss,
Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. The Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simulation Models. In Proceedings of
the 9th International Modelica Conference, Munich, Germany, September 2012.

[36] Barry W. Boehm and Victor R. Basili. Software defect reduction top 10 list. Computer,
34(1):135–137, January 2001.

[37] Barry W. Boehm and Philip N. Papaccio. Understanding and Controlling Software
Costs. IEEE Transactions on Software Engineering, 14(10):1462–1477, October 1988.

[38] Michelle Boucher and David Houlihan. System design: New product development for
mechatronics, January 2008.

[39] Felix Breitenecker, Niki Popper, Günther Zauner, Michaek Landsiedl, Matthias Rößler,
Bernhard Heinzl, and Andreas Körner. Simulators For Physical Modelling - Classifica-
tion and Comparison of Features /Revision 2010. In M. Snorek, Z. Buk, M. Cepek, and
J. Drchal, editors, Proceedings of EUROSIM 2010 - 7th Congress on Modelling and
Simulation, volume 2, pages 1051–1061, September 2010.

[40] Felix Breitenecker, Siegfried Wassertheurer, Nikolas Popper, and Gunter Zauner.
Benchmarking of Simulation Systems–The ARGESIM Comparisons. In Proceedings
of the First Asia International Conference on Modelling & Simulation, AMS ’07, pages
568–573, Washington, DC, USA, 2007. IEEE Computer Society.

[41] Jan F. Broenink. Computer-aided physical-systems modeling and simulation: a bond-
graph approach. PhD thesis, Faculty of Electrical Engineering, University of Twente,
Enschede, Netherlands, 1990.

[42] Jan F. Broenink. Modelling, Simulation and Analysis with 20-Sim. Journal A Special
Issue CACSD, 38(3):22–25, 1997.

http://www.blender.org/
http://www.blender.org/

186 Bibliography

[43] Jan F. Broenink, Peter Gorm Larsen, Marcel Verhoef, Christian Kleijn, Dusko Jo-
vanovic, Ken Pierce, and Frederik Wouters. Design Support and Tooling for De-
pendable Embedded Control Software. In Proceedings of Serene 2010 International
Workshop on Software Engineering for Resilient Systems, pages 77–82. ACM, April
2010.

[44] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous System. In Int. Journal of
Computer Simulation, 1994.

[45] Bullet Physics Library, 2012. http://bulletphysics.org/wordpress/.
[46] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling. Incremental

Design and Formal Verification with UML/RT in the FUJABA Real-Time Tool Suite.
In Proceedings of the International Workshop on Specification and validation of UML
models for Real Time and embedded Systems, SVERTS2004. UML2004, 2004.

[47] Eliza S. F. Cardozo, J. Benito F. Araujo Neto, Alexandre Barza, A. Cesar C. Franca,
and Fabio Q. B. da Silva. SCRUM and Productivity in Software Projects: A Systematic
Literature Review. In Proceedings of the 14th International Conference on Evaluation
and Assessment in Software Engineering (EASE). Keele University, UK, 2010.

[48] Luca Carloni, Maria D. Di Benedetto, Alessandro Pinot, and Alberto Sangiovanni-
Vincentelli. Modeling techniques, programming languages, design toolsets and in-
terchange formats for hybrid systems. Deliverable DHS3, Project IST-2001-38314
COLUMBUS project - Design of Embedded Controllers for Safety Critical Systems,
March 2004.

[49] Yoonsik Cheon and Gary T. Leavens. A Simple and Practical Approach to Unit Testing:
The JML and JUnit Way. In ECOOP 2002, volume 2374 of LNCS, pages 231–255.
Springer, 2002.

[50] Project presentation and COCONUT web site. Deliverable D6.1. Techni-
cal report, April 2008. http://coconut-project.edalab.it/files/
FP7-2007-IST-1-217069-Coconut-D6.1.pdf.

[51] Joey W. Coleman, Kenneth G. Lausdahl, and Peter Gorm Larsen. Deliverable D3.4b:
Co-simulation Semantics. Available online from http://www.destecs.org/
deliverables.html, 2012.

[52] COMPASS: Comprehensive Modelling for Advanced Systems of Systems, 2011.
http://www.compass-research.eu/.

[53] Rational S. Corporation. Rational Unified Process - Best Practices for Software
Development Teams, 1998.

[54] Jeff Craighead, Jenny Burke, and Robin Murphy. Using the Unity Game Engine to De-
velop SARGE: A Case Study. In Proceedings of the 2008 Simulation Workshop at the
International Conference on Intelligent Robots and Systems (IROS 2008), September
2008.

[55] CSK. Development Guidelines for Real Time Systems using VDMTools. Technical
report, CSK Systems, 2008.

[56] John Davis, Mudit Goel, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu,
Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, John Reekie, Neil Smyth, Jeff Tsay,
and Y. Xiong. Ptolemy-II: Heterogeneous concurrent modeling and design in Java.
Technical Memorandum UCB/ERL No. M99/40, University of California at Berkeley,
July 1999.

http://bulletphysics.org/wordpress/
http://coconut-project.edalab.it/files/FP7-2007-IST-1-217069-Coconut-D6.1.pdf
http://coconut-project.edalab.it/files/FP7-2007-IST-1-217069-Coconut-D6.1.pdf
http://www.destecs.org/deliverables.html
http://www.destecs.org/deliverables.html
http://www.compass-research.eu/

Bibliography 187

[57] Timothy G. Davis. Aircraft fuel system simulation. In Aerospace and Electronics
Conference, 1990. NAECON 1990., Proceedings of the IEEE 1990 National, pages 905
–911 vol.2, may 1990.

[58] Frank de Boer. CREDO: Modeling and Analysis of Evolutionary Structures for
Distributed Services, 2007. http://www.cwi.nl/projects/credo/.

[59] Gjalt de Jong. A UML-Based Design Methodology for Real-Time and Embedded Sys-
tems. In Proceedings of the 2002 Design, Automation and Test in Europe Conference
and Exhibition (DATE.02). IEEE, 2002.

[60] Vieri del Bianco, Dragan Stosic, and Joe Kiniry. Agile Formality: A “Mole” of Soft-
ware Engineering Practices. In Stefan Gruner and Bernhard Rumpe, editors, Proc.
AM+FM’2010, Lecture Notes in Informatics. Gesellschaft für Informatik, 2010. To
appear.

[61] Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Konrad Slind,
Graham Robinson, Mike Gordon, and Tom Melham. The PROSPER Toolkit. In Pro-
ceedings of the 6th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Berlin, Germany, March/April 2000. Springer-Verlag,
Lecture Notes in Computer Science volume 1785.

[62] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni-Vincentelli. Modeling cyber-
physical systems. Proceedings of the IEEE special issue on CPS, December 2011.

[63] Lionel Devauchelle, Peter Gorm Larsen, and Henrik Voss. PICGAL: Lessons Learnt
from a Practical Use of Formal Specification to Develop a High Reliability Software.
In DASIA’97. ESA, May 1997.

[64] Bruce Powel Douglass. Doing Hard Time – Developing Real-Time Systems with UML
Objects, Frameworks, and Patterns. Addison-Wesley, 1999. ISBN 0-201-49837-5.

[65] Bruce Powel Douglass. Real Time UML – Advances in the UML for Real-Time Systems.
Addison-Wesley, third edition, 2004.

[66] George Eleftherakis and Anthony J. Cowling. An agile formal development method-
ology. In Proc. 1st. South-East European Workshop on Formal Methods, SEEFM’03,
pages 36–47. Springer-Verlag, 2003.

[67] René Elmstrøm, Peter Gorm Larsen, and Poul Bøgh Lassen. The IFAD VDM-SL
Toolbox: A Practical Approach to Formal Specifications. ACM Sigplan Notices,
29(9):77–80, September 1994.

[68] Eric Bantegnie. INTERESTED: INTERoperable Embedded Systems Toolchain for
Enhanced Design, prototyping and code generation, March 2011. http://www.
interested-ip.eu/files/INTERESTED-Final-Report.pdf.

[69] John Fitzgerald. The Typed Logic of Partial Functions and the Vienna Development
Method. In D. Bjørner and M. C. Henson, editors, Logics of Specification Languages,
EATCS Monographs in Theoretical Computer Science, pages 427–461. Springer, 2007.

[70] John Fitzgerald and Peter Gorm Larsen. Triumphs and Challenges for the Indus-
trial Application of Model-Oriented Formal Methods. In T. Margaria, A. Philippou,
and B. Steffen, editors, Proc. 2nd Intl. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2007), 2007. Also Technical Report
CS-TR-999, School of Computing Science, Newcastle University.

[71] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, Second edition, 2009. ISBN 0-521-62348-0.

http://www.cwi.nl/projects/credo/
http://www.interested-ip.eu/files/INTERESTED-Final-Report.pdf
http://www.interested-ip.eu/files/INTERESTED-Final-Report.pdf

188 Bibliography

[72] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems. Springer, New York, 2005.

[73] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, and Marcel Verhoef. A Formal
Approach to Collaborative Modelling and Co-simulation for Embedded Systems. To
appear in Mathematical Structures in Computer Science, 2012.

[74] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and Sune Wolff. Col-
laborative Modelling and Co-simulation in the Development of Dependable Embedded
Systems. In D. Méry and S. Merz, editors, IFM 2010, Integrated Formal Methods,
volume 6396 of Lecture Notes in Computer Science, pages 12–26. Springer-Verlag,
October 2010.

[75] John Fitzgerald, Peter Gorm Larsen, and Shin Sahara. VDMTools: Advances in Support
for Formal Modeling in VDM. ACM Sigplan Notices, 43(2):3–11, February 2008.

[76] FMI Development Group. MODELISAR — Functional Mock-up Interface (FMI)
https://www.fmi-standard.org/, October 2012. FMI Specification v2.0
Beta 4.

[77] Shanna-Shaye Forbes. Toward an error handling mechanism for timing errors with Java
Pathfinder and Ptolemy II. Technical Report UCB/EECS-2010-123, EECS Department,
University of California, Berkeley, September 2010.

[78] Sandford Friedenthal, Alan Moore, and Rick Steiner. A Prictical Guide to SysML.
Morgan Kaufman OMG Press, Friendenthal, Sanford, First edition, 2008. ISBN 978-
0-12-374379-4.

[79] Peter Fritzson and Vadim Engelson. Modelica - A Unified Object-Oriented Language
for System Modelling and Simulation. In ECCOP ’98: Proceedings of the 12th Eu-
ropean Conference on Object-Oriented Programming, pages 67–90. Springer-Verlag,
1998.

[80] Brigitte Fröhlich. Towards Executability of Implicit Definitions. PhD thesis, TU Graz,
Institute of Software Technology, September 1998.

[81] Norbert E. Fuchs. Specifications are (preferably) executable. Software Engineering
Journal, pages 323–334, September 1992.

[82] Gerhard Griessnig and Roland Mader and Thomas Peikenkamp and Bernhard Josko and
Martin Törngren and Eric Armengaud. CESAR: Cost-Efficient Methods and Processes
for Safety Relevant Embedded Systems. In Embedded World 2010 - ARTEMIS Session,
2010.

[83] Michael J.C. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification, and
Synthesis. Kluwer Academic Publishers, 1987.

[84] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifica-
tion, Second Edition. The Java Series. Addison Wesley, 2000.

[85] Anthony Hall. Realising the benefits of formal methods. Journal of Universal
Computer Science, 13(5):669–678, 2007.

[86] Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani Gnesi, and
Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of Lecture Notes
in Computer Science, pages 154–169. Springer-Verlag, September 2003.

[87] Ian J. Hayes and Cliff B. Jones. Specifications are not (Necessarily) Executable.
Software Engineering Journal, pages 330–338, November 1989.

https://www.fmi-standard.org/

Bibliography 189

[88] Sharam Hekmatpour and Darrel Ince. Software Prototyping, Formal Methods and
VDM. Addison-Wesley, 1988.

[89] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge.
In FM 2006: Formal Methods, 14th International Symposium on Formal Methods,
Hamilton, Canada, August 21-27, 2006, Proceedings, pages 1–15, 2006.

[90] Thomas A. Henzinger and Joseph Sifakis. The Discipline of Embedded Systems
Design. IEEE Computer, 40(10):32–40, October 2007.

[91] Jon Holt and Simon Perry. SysML for Systems Engineering. IET, 2008.
[92] Jozef Hooman and Marcel Verhoef. Formal Semantics of a VDM Extension for

Distributed Embedded Systems. In Correctness, Concurrency and Compositionality,
LNCS Festscrift Series, 2008. Festscrift to honour professor Willem-Paul de Roever,
Springer.

[93] Watts S. Humphrey. Managing the Software Process. SEI Series in Software
Engineering. Addison-Wesley, Reading, Massachusetts, USA, 1989.

[94] IEC 61508. Functional safety of electrical, electronic, programmable electronic safety-
related systems. (www.iec.ch/zone/fsafety).

[95] IEEE. International Standard ISO/IEC 12207:2008(E), IEEE Std 12207-2008 (Revi-
sion of IEEE/EIA 12207.0-1996) Systems and software engineering — Software life
cycle processes. ISO/IEC and IEEE Computer Society, 2008.

[96] Alexei Iliasov. Refinement Patterns for Rapid Development of Dependable Systems. In
EFTS ’07: Proceedings of the 2007 Workshop on Engineering Fault Tolerant Systems.
ACM, 2007.

[97] ISO/IEC 13817-1: Information technology – Programming languages, their environ-
ments and system software interfaces – Vienna Development Method – Specification
Language – Part 1: Base language, December 1996.

[98] Daniel Jackson and Jeanette Wing. Lightweight Formal Methods. IEEE Computer,
29(4):22–23, April 1996.

[99] Michael Jackson. Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, New York, 2001.

[100] Ryszard Janicki, David Lorge Parnas, and Jeffery Zucker. Tabular representations in
relational documents. In in Relational Methods in Computer Science, pages 184–196.
Springer Verlag, 1997.

[101] Juan F. Jimenez, Jose M. Giron-Sierra, Carlos C. Insaurralde, and Miguel A. Seminario.
A simulation of aircraft fuel management system. Simulation Modelling Practice and
Theory, 15(5):544 – 564, 2007.

[102] Einar Broch Johnsen and Olaf Owe. An Asynchronous Communication Model for
Distributed Concurrent Objects. Software and Systems Modeling, 6(1):39–58, March
2007.

[103] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey, second edition, 1990. ISBN 0-13-880733-7.

[104] Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson. Deriving Specifications for Sys-
tems That Are Connected to the Physical World. In Formal Methods and Hybrid Real-
Time Systems, volume 4700 of Lecture Notes in Computer Science. Springer-Verlag,
2007.

[105] Cliff B. Jones, Kevin Jones, Peter Lindsay, and Richard Moore, editors. mural: A
Formal Development Support System. Springer-Verlag, 1991. ISBN 3-540-19651-X.

www.iec.ch/zone/fsafety

190 Bibliography

[106] Peter W.V. Jørgensen. Evaluation of Development Process and Methodology for co-
models. Master’s thesis, Aarhus University/Engineering College of Aarhus, December
2012.

[107] Dean Karnopp and Ronald C. Rosenberg. Analysis and simulation of multiport systems:
the bond graph approach to physical system dynamic. MIT Press, Cambridge, MA,
USA, 1968.

[108] Richard A. Kemmerer. Integrating Formal Methods into the Development Process.
IEEE Software, pages 37–50, September 1990.

[109] Kepler project. Your Science. Enabled., 2012. https://kepler-project.
org/.

[110] Jeff Kramer. Is Abstraction the Key to Computing? Communications of the ACM,
50(4):37–42, 2007.

[111] Taro Kurita, Miki Chiba, and Yasumasa Nakatsugawa. Application of a Formal Spec-
ification Language in the Development of the “Mobile FeliCa” IC Chip Firmware for
Embedding in Mobile Phone. In J. Cuellar, T. Maibaum, and K. Sere, editors, FM 2008:
Formal Methods, Lecture Notes in Computer Science, pages 425–429. Springer-Verlag,
May 2008.

[112] Taro Kurita and Yasumasa Nakatsugawa. The Application of VDM++ to the Develop-
ment of Firmware for a Smart Card IC Chip. Intl. Journal of Software and Informatics,
3(2-3):343–355, October 2009.

[113] Kevin Lano. Logic Specification of Reactive and Real-time Systems. Journal of Logic
and Computation, 8(5):679–711, 1998.

[114] Peter Gorm Larsen. Towards Proof Rules for VDM-SL. PhD thesis, Technical Univer-
sity of Denmark, Department of Computer Science, March 1995. ID-TR:1995-160.

[115] Peter Gorm Larsen. Ten Years of Historical Development: “Bootstrapping” VDMTools.
Journal of Universal Computer Science, 7(8):692–709, 2001.

[116] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl,
and Marcel Verhoef. The Overture Initiative – Integrating Tools for VDM. ACM
Software Engineering Notes, 35(1), January 2010.

[117] Peter Gorm Larsen and John Fitzgerald. Recent Industrial Applications of Formal
Methods in Japan. In P. Boca and J. P. Bowen, editors, Proc. BCS-FACS Workshop
on Formal Methods in Industry. British Computer Society, 2008.

[118] Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying Formal Specification
in Industry. IEEE Software, 13(3):48–56, May 1996.

[119] Peter Gorm Larsen, John Fitzgerald, and Sune Wolff. Methods for the Development of
Distributed Real-Time Embedded Systems using VDM. Intl. Journal of Software and
Informatics, 3(2-3), October 2009.

[120] Peter Gorm Larsen, John Fitzgerald, and Sune Wolff. Are formal methods ready for
agility? a reality check. In Stefan Gruner and Bernhard Rumpe, editors, 2nd Interna-
tional Workshop on Formal Methods and Agile Methods, pages 13–25. Lecture Notes
in Informatics, September 2010. ISSH 1617-5468.

[121] Peter Gorm Larsen and Bo Stig Hansen. Semantics for underdetermined expressions.
Formal Aspects of Computing, 8(1):47–66, January 1996.

[122] Peter Gorm Larsen and Poul Bøgh Lassen. An Executable Subset of Meta-IV with
Loose Specification. In VDM ’91: Formal Software Development Methods. VDM
Europe, Springer-Verlag, March 1991.

https://kepler-project.org/
https://kepler-project.org/

Bibliography 191

[123] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle. Combinatorial Testing for
VDM. In 8th IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2010, September 2010.

[124] Peter Gorm Larsen, Kenneth Lausdahl, Augusto Ribeiro, Sune Wolff, and Nick Bat-
tle. Overture VDM-10 Tool Support: User Guide. Technical Report TR-2010-02, The
Overture Initiative, www.overturetool.org, May 2010.

[125] Peter Gorm Larsen and Wiesław Pawłowski. The Formal Semantics of ISO VDM-SL.
Computer Standards and Interfaces, 17(5–6):585–602, September 1995.

[126] Peter Gorm Larsen, Sune Wolff, Nick Battle, John Fitzgerald, and Ken Pierce. De-
velopment Process of Distributed Embedded Systems using VDM. Technical Report
TR-2010-02, The Overture Open Source Initiative, April 2010.

[127] Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle. A Deterministic Interpreter
Simulating a Distributed Real Time System using VDM. In ICFEM 2011, October
2011.

[128] Kenneth Lausdahl, Hans Kristian Agerlund Lintrup, and Peter Gorm Larsen. Con-
necting UML and VDM++ with Open Tool Support. In Formal Methods 09.
Springer-Verlag, November 2009. LNCS-5850.

[129] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a
behavioral interface specification language for java. SIGSOFT Softw. Eng. Notes, 31:1–
38, May 2006.

[130] Edward A. Lee, Xiaojun Liu, and Steve Neuendorffer. Classes and inheritance in
actor-oriented design. ACM Transactions on Embedded Computing Systems (TECS),
8(4):29:1–29:26, 2009.

[131] Edward A. Lee and Steve Neuendorffer. MoML - A Modeling Markup Language in
XML - Version 0.4, 2000.

[132] Shaoying Liu. An Approach to Applying SOFL for Agile Process and Its Application
in Developing a Test Support Tool. Innovations in Systems and Software Engineering,
6:137–143, December 2010.

[133] Shaoying Liu and Yong Sun. Structured Methodology + Object-Oriented Methodology
+ Formal Methods: Methodology of SOFL. In Proceedings of First IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pages 137–144, Ft.
Landerdale, Florida, U.S.A., November 1995. IEEE Press.

[134] LMS Engineering Innovation. AMESim: Advanced Modeling Environment for
performing Simulations of engineering systems http://www.lmsintl.com/
imagine-lab-amesim-rev-11, October 2012. AMESim Revision 11 product
home page.

[135] Hugo Daniel Macedo, Peter Gorm Larsen, and John Fitzgerald. Incremental Devel-
opment of a Distributed Real-Time Model of a Cardiac Pacing System using VDM.
In Jorge Cuellar, Tom Maibaum, and Kaisa Sere, editors, FM 2008: Formal Methods,
15th International Symposium on Formal Methods, volume 5014 of Lecture Notes in
Computer Science, pages 181–197. Springer-Verlag, 2008.

[136] Martı́n López-Nores and José J. Pazos-Arias and Jorge Garcı́a-Duque and others.
Bringing the Agile Philosophy to Formal Specification Settings. International Journal
of Software Engineering and Knowledge Engineering, 16(6):951–986, 2006.

[137] MathWorks. MATLAB official website, October 2012. http://www.mathworks.
com.

http://www.lmsintl.com/imagine-lab-amesim-rev-11
http://www.lmsintl.com/imagine-lab-amesim-rev-11
http://www.mathworks.com
http://www.mathworks.com

192 Bibliography

[138] Steven P. Miller, Elise A. Anderson, Lucas G. Wagner, Michael W. Whalen, and
Mats P.E. Heimdahl. Formal Verification of Flight Critical Software. In AIAA Guid-
ance, Navigation and Control Conference and Exhibit, San Francisco, August 2005.
AIAA.

[139] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software model checking
takes off. Commun. ACM, 53:58–64, February 2010.

[140] MIRABILIS design — Simulation Of Electronics, 2012. http://
mirabilisdesign.com.

[141] MLDesign Technologies. MLDesigner, 2012. http://www.mldesigner.com.
[142] MOGENTES: Model-based Generation of Tests for Dependable Embedded Systems,

2012. http://www.mogentes.eu/.
[143] David Holst Møller and Christian Rane Paysen Thillermann. Using Eclipse for

Exploring an Integration Architecture for VDM. Master’s thesis, Aarhus Universi-
ty/Engineering College of Aarhus, June 2009.

[144] Carroll Morgan. Programming from Specifications. Prentice-Hall, London, UK, 1990.
[145] Paul Mukherjee, Fabien Bousquet, Jérôme Delabre, Stephen Paynter, and Peter Gorm

Larsen. Exploring Timing Properties Using VDM++ on an Industrial Application. In
J.C. Bicarregui and J.S. Fitzgerald, editors, Proceedings of the Second VDM Workshop,
September 2000. Available at www.vdmportal.org.

[146] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen. Combining
VDM with Executable Code. In ABZ 2012, LNCS 7316, pages 266–279, Heidelberg,
2012. Springer.

[147] Nan Niu and Steve Easterbrook. On the use of model checking in verification of
evolving agile software frameworks: An exploratory case study. In 3rd International
Workshop on Modelling, Simulation, Verification and Validation of Enterprise Infor-
mation Systems (MSVVEIS 2005), pages 115–117, Miami, Florida, USA, May 2005.
INSTICC Press.

[148] GNU Octave, 2012. http://www.gnu.org/software/octave/.
[149] ODE: Open Dynamics Engine, 2012. http://ode.org/.
[150] OMG. OMG System Modeling Language (SysML) Formal ver. 1.3. http://www.

omg.org/spec/SysML/, June 2012.
[151] Open Source Initiative OSI. The BSD License, 2012. http://www.opensource.

org/licenses/bsd-license.php.
[152] Oracle. Javadoc Tool, 2012. http://www.oracle.com/technetwork/java/

javase/documentation/index-jsp-135444.html.
[153] Jonathan S. Ostroff, David Makalsky, and Richard F. Paige. Agile specification-driven

development. In J. Eckstein and H. Baumeister, editors, XP 2004, volume 3092 of
Lecture Notes in Computer Science, pages 104–112. Springer, 2004.

[154] Overture-Core-Team. Overture Web site. http://www.overturetool.org,
2007.

[155] VDM-RT examples for Overture, 2012. http://overturetool.org/?q=
node/15.

[156] David Lorge Parnas and Jan Madey. Functional documents for computer systems.
Science of Computer Programming, 25:41–61, 1995.

[157] Roberto Passerone, Werner Damm, Imene Ben Hafaiedh, Susanne Graf, Alberto Fer-
rari, Leonardo Mangeruca, Albert Benveniste, Bernhard Josko, Thomas Peikenkamp,

http://mirabilisdesign.com
http://mirabilisdesign.com
http://www.mldesigner.com
http://www.mogentes.eu/
http://www.gnu.org/software/octave/
http://ode.org/
http://www.omg.org/spec/SysML/
http://www.omg.org/spec/SysML/
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.overturetool.org
http://overturetool.org/?q=node/15
http://overturetool.org/?q=node/15

Bibliography 193

Daniela Cancila, Arnaud Cuccuru, Sebastien Gerard, Francois Terrier, and Alberto
Sangiovanni-Vincentelli. Metamodels in europe: Languages, tools, and applications.
Design Test of Computers, IEEE, 26(3):38–53, may–june 2009.

[158] PhysX: nVidia physics engine, 2012. https://developer.nvidia.com/
physx.

[159] Jos Luis Pino, Soonhoi Ha, Edward A. Lee, and Joseph T. Buck. Software Synthesis
for DSP Using Ptolemy. Journal of VLSI Signal Processing, 9:7–21, 1993.

[160] Nico Plat and Peter Gorm Larsen. An Overview of the ISO/VDM-SL Standard. Sigplan
Notices, 27(8):76–82, August 1992.

[161] Player/Stage project, 2012. http://sourceforge.net/projects/
playerstage/.

[162] PREDATOR: Design for predictability and efficiency, 2012. http://www.
predator-project.eu/.

[163] Armand Puccetti and Jean Yves Tixadou. Application of VDM-SL to the Development
of the SPOT4 Programming Messages Generator. In John Fitzgerald and Peter Gorm
Larsen, editors, VDM in Practice, pages 127–137, September 1999.

[164] Junjing Qian. Co-Design of Embedded Systems: an Aircraft Fuel Tank (to appear).
Master’s thesis, Newcastle University, UK, September 2012.

[165] QUASIMODO: Quantitative System Properties in Model-Driven-Design of Embedded
Systems, 2012. http://www.quasimodo.aau.dk/.

[166] Lars Rosenberg Randleff. Decision Support System for Fighter Pilots. PhD thesis,
Technical University of Denmark, Informatics and Mathematical Modelling, Denamrk,
2007. ”IMM-PHD: ISSN 0909-3192”.

[167] Augusto Ribeiro. An Extended Proof Obligation Generator for VDM++/OML. Mas-
ter’s thesis, Minho University with exchange to Engineering College of Arhus, July
2008.

[168] Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen. Run-Time Validation
of Timing Constraints for VDM-RT Models. In 9th Overture Workshop, June 2011,
Limerick, Ireland, 2011.

[169] Erkuden Rios, Teodora Bozheva, Aitor Bediaga, and Nathalie Guilloreau. MDD ma-
turity model: a roadmap for introducing model-driven development. ECMDA-FA’06,
pages 78–89, Berlin, Heidelberg, 2006. Springer-Verlag.

[170] Alexander Romanovsky and Martyn Thomas (Eds.). Industrial deployment of system
engineering methods providing high dependability and productivity. Lecture Notes in
Computer Science. Springer-Verlag, 2012.

[171] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
April 2009.

[172] Hossein Saiedian. An invitation to formal methods. IEEE Computer, 29(4):16–30,
April 1996. Roundtable with contributions from experts.

[173] D. Curtis Schleher. Introduction to Electronic Warfare. Artech House, 685 Canton
Street, Norwood, MA 02062, first edition, 1986.

[174] Ken Schwaber. Agile Project Management with Scrum. Prentice Hall, 2004. ISBN:
073561993X.

https://developer.nvidia.com/physx
https://developer.nvidia.com/physx
http://sourceforge.net/projects/playerstage/
http://sourceforge.net/projects/playerstage/
http://www.predator-project.eu/
http://www.predator-project.eu/
http://www.quasimodo.aau.dk/

194 Bibliography

[175] Paul R. Smith and Peter Gorm Larsen. Applications of VDM in Banknote Processing.
In John S. Fitzgerald and Peter Gorm Larsen, editors, VDM in Practice: Proc. First
VDM Workshop 1999, September 1999. Available at www.vdmportal.org.

[176] Fritz Solms and Dawid Loubser. URDAD as a semi-formal approach to analysis and
design. Innovations in Systems and Software Engineering, 6:155–162, 2010.

[177] Ian Sommerville, Ray Welland, Stuart Potter, and John Smart. The ECLIPSE User
Interface. Software - Practice and Experience, 19(4):371–391, April 1989.

[178] Thomas Strasser, Christoph Sunder, and Antonio Valentini. Model-driven embedded
systems design environment for the industrial automation sector. In Industrial Infor-
matics, 2008. INDIN 2008. 6th IEEE International Conference on, pages 1120–1125,
july 2008.

[179] Tigris Subclipse: Eclipse Team Provider plug-in providing support for Subversion
within the Eclipse IDE, 2012. http://subclipse.tigris.org/.

[180] Syed M. Suhaib, Deepak A. Mathaikutty, Sandeep K. Shukla, and David Berner. XFM:
An Incremental Methodology for Developing Formal Models. ACM Transactions on
Design Automation of Electronic Systems, 10(4):589–609, October 2005.

[181] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Incremental Elaboration of Scenario-
Based Specifications and Behavior Models Using Implied Scenarios. ACM Transac-
tions on Software Engineering and Methodology, 13(1):37–85, January 2004.

[182] Unity Technologies. Unity3D Game Engine, 2012. http://unity3d.com/.
[183] Manuel van den Berg, Marcel Verhoef, and Mark Wigmans. Formal Specification of

an Auctioning System Using VDM++ and UML – an Industrial Usage Report. In John
Fitzgerald and Peter Gorm Larsen, editors, VDM in Practice, pages 85–93, September
1999.

[184] Marcel Verhoef. Modeling and Validating Distributed Embedded Real-Time Control
Systems. PhD thesis, Radboud University Nijmegen, 2009.

[185] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and Validating
Distributed Embedded Real-Time Systems with VDM++. In Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, Lecture Notes in
Computer Science 4085, pages 147–162. Springer-Verlag, 2006.

[186] Marcel Verhoef, Peter Visser, Jozef Hooman, and Jan Broenink. Co-simulation of
Real-time Embedded Control Systems. In Jim Davies and Jeremy Gibbons, editors,
Integrated Formal Methods: Proc. 6th. Intl. Conference, Lecture Notes in Computer
Science 4591, pages 639–658. Springer-Verlag, July 2007.

[187] Rajesh Verma, Ashu Gupta, and Kawaljeet Singh. A Critical Evaluation and Compar-
ison of Four Manufacturing Simulation Softwares. Kathmandu University Journal of
Science, Eengineering and Technology, 5(1):104–120, January 2009.

[188] Sander Vermolen. Automatically Discharging VDM Proof Obligations using HOL.
Master’s thesis, Radboud University Nijmegen, Computer Science Department, August
2007.

[189] Sander Vermolen, Jozef Hooman, and Peter Gorm Larsen. Automating Consistency
Proofs of VDM++ Models using HOL. In Proceedings of the 25th Symposium on
Applied Computing (SAC 2010), Sierre, Switzerland, March 2010. ACM.

[190] VERTIGO: Verification and Validation of Embedded System Design Workbench, 2012.
http://vertigo-project.edalab.it/.

http://subclipse.tigris.org/
http://unity3d.com/
http://vertigo-project.edalab.it/

Bibliography 195

[191] Ana Fernández Vilas, José J. Pazos Arias, Rebeca P. Diaz Redondo, and A. Belén Bar-
ragáns Martinez. Formalizing Incremental Design in Real-time Area: SCTL/MUS-T.
In Proceedings of the 26 th Annual International Computer Software and Applications
Conference (COMPSAC’02). IEEE, 2002.

[192] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model checking
programs. In AUTOMATED SOFTWARE ENGINEERING JOURNAL, pages 3–12,
2000.

[193] Alan Wassyng and Mark Lawford. Lessons learned from a successful implementation
of formal methods in an industrial project. In FME 2003: International Symposium
of Formal Methods Europe Proceedings. Volume 2805 of Lecture Notes in Computer
Science, pages 133–153. Springer-Verlag, 2003.

[194] Alan Wassyng and Mark Lawford. Software tools for safety-critical software develop-
ment. Int. J. Softw. Tools Technol. Transf., 8(4):337–354, August 2006.

[195] Sune Wolff. Formalising Concurrent and Distributed Design Patterns with VDM.
November 2009. The 7th Overture workshop at FM’09.

[196] Sune Wolff. Methodological Guidelines for Collaborative Modelling — Managing
Heterogeneous System Complexity. International Journal of Software and Systems
Modeling - SoSym, 2012. Submitted — under review.

[197] Sune Wolff. Scrum Goes Formal: Agile Methods for Safety-Critical Systems. In
ICSE 2012: Proceedings of the 34th International Conference on Software Engineer-
ing, pages 23–29, June 2012. Workshop on Formal Methods in Software Engineering:
Rigorous and Agile Approaches, FormSERA 2012.

[198] Sune Wolff. Using Formal Methods for Self-defense System for Fighter Aircraft
— An Industrial Experience Report. International Journal of Empirical Software
Engineering, 2012. Submitted — under review.

[199] Sune Wolff, Peter Gorm Larsen, and Tammy Noergaard. Development Process for
Multi-Disciplinary Embedded Control Systems. In EuroSim 2010. EuroSim, September
2010.

[200] Sune Wolff, Ken Pierce, and Patricia Derler. Multi-domain Modelling in DESTECS
and Ptolemy — a Tool Comparison. SIMULATION: Transactions of The Society for
Modeling and Simulation International (journal), 2012. Submitted — under review.

[201] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
Methods: Practice and Experience. ACM Computing Surveys, 41(4):1–36, October
2009.

	Abstract
	Resumé
	Acknowledgements
	I Context
	1 Introduction
	1.1 Embedded Systems Introduction
	1.2 Embedded Systems Design Challenges
	1.3 Modelling of Embedded Systems
	1.4 Scope of the Thesis
	1.5 Objectives of the Thesis
	1.6 Evaluation Criteria
	1.7 Thesis Structure

	2 Application Domain: Electronic Warfare
	2.1 Introduction
	2.2 The Electromagnetic Spectrum
	2.3 Threats
	2.4 Missile Guidance
	2.5 Electronic Support Measures
	2.6 Electronic Countermeasures
	2.7 Electronic Protective Measures
	2.8 Movement and Rotation in 3D Space

	II Mono-Disciplinary Modelling
	3 Formal Methods for Embedded Systems Development
	3.1 Introduction
	3.2 Formal Methods in Industry
	3.3 Formal Modelling in VDM
	3.4 Incremental Formal Methods and Agile Development

	4 Guidelines for Stepwise Development of VDM-RT Models
	4.1 Introduction
	4.2 An Incremental Approach to Model Construction
	4.3 System Boundary Definition
	4.4 Sequential Design Modelling
	4.5 Concurrent Design Modelling
	4.6 Distributed Real-Time Design Modelling
	4.7 Validation Technology
	4.8 Summary

	5 Formal Methods Meet Agile Development
	5.1 Introduction
	5.2 The Agile Manifesto Meets Formal Methods
	5.3 Agile Development — Scrum
	5.4 Formal Methods in a Scrum Setting
	5.5 Summary

	6 Mono-Disciplinary Case Study
	6.1 Introduction
	6.2 Case Study Design
	6.3 Case Description: VDM Model of ECAP
	6.4 Case Study Discussion
	6.5 Lessons Learned
	6.6 Summary

	III Multi-Disciplinary Modelling
	7 Multi-Disciplinary Modelling
	7.1 Introduction to Multi-Disciplinary Modelling
	7.2 Multi-Disciplinary Modelling in DESTECS
	7.3 Alternative Multi-Disciplinary Modelling Approaches

	8 Multi-Disciplinary Modelling Tool Comparison
	8.1 Tool Comparison Introduction
	8.2 Related Comparisons of Simulation Tools
	8.3 Case Study Description
	8.4 Comparison Criteria
	8.5 Results of the Tool Comparison
	8.6 Summary

	9 Collaborative Modelling Guidelines
	9.1 Introduction
	9.2 Overview of the Systems Modelling Language SysML
	9.3 Collaborative Modelling Process Overview
	9.4 Model Purpose and Requirements
	9.5 System Decomposition
	9.6 System Modelling
	9.7 System Analysis
	9.8 Summary

	10 Evaluation of Multi-Disciplinary Modelling Guidelines
	10.1 Introduction
	10.2 Case Study Description
	10.3 Model Purpose and Requirements
	10.4 System Decomposition
	10.5 System Modelling
	10.6 System Analysis
	10.7 Case Study Results
	10.8 Additional Evaluation of the Guidelines

	IV Evaluation, Discussion and Conclusion
	11 Conclusion
	11.1 Introduction
	11.2 Research Contribution
	11.3 Evaluation of the Guidelines
	11.4 Future Work
	11.5 Outlook

	V Appendices
	A Glossary
	B Overview of VDM Operators
	C Related Projects
	Bibliography

