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1. Introduction 
Pain is the most common cause for patients seeking medical attendance [1]. It is estimated that 

approximately 19% of adults in Europe suffer from chronic pain, which has major impact on quality 

of life for the patients and economical consequences for the society. However, pain treatment is a 

major challenge in the clinic, and nearly half of the patients are influenced by inadequate treatment 

[2]. The challenge to treat patients is among other factors caused by lack of indebt knowledge of 

pain and analgesic mechanisms in individual patients. To gain such knowledge, improved methods to 

identify biomarkers for the mechanisms on a single subject basis are warranted. 

 

1.1. Clinical pain 

Pain is a multi-dimensional and highly individual perception comprised of sensory-discriminative, 

affective-motivational, and cognitive-evaluative factors [3]. Furthermore, pain can be generated in 

multiple ways at different levels of the neuraxis coexisting to the overall pain perception, which 

makes identification of pain mechanisms difficult in clinical settings [4]. Especially in visceral pain, 

clinicians are often limited to base pain treatment on a simple trial-and-error principle depending on 

the symptoms reported by the patient. However, the symptoms and subjective pain description does 

not identify the underlying mechanisms of the abnormal pain processing, as well as the perception is 

not always confirmed by pathological investigation of the diseased organs [5]. Furthermore, patients 

diagnosed with the same disease experience different efficacy of the same compounds, often due to 

multiple mechanisms contributing to the pathogenesis of pain [6].  

 

Pain mechanisms 

The general understanding of pain is associated with an intense noxious peripheral stimulus 

conducted to the brain via spinal cord neurons. However, in most chronic pain patients, pain often 

arises either as spontaneous pain in the absence of any peripheral input or in response to an 

innocuous stimulus [7]. These pain states are mediated by various input channels including 

modulation in the spinal cord, and although previous studies have identified which mechanisms are 

sufficient to produce chronic pain, the challenge is to identify which mechanisms are present in each 

individual patient. 

     Some of the pain mechanisms which can lead to painful sensations are: 1) nociceptive pain; 2) 

peripheral sensitization; 3) peripheral nerve injury; 4) central sensitization; 5) synaptic 

reorganization; 6) disinhibition; and 7) spontaneous activity in the central neurons [7]. 

     One mechanism of utmost importance in visceral pain is central sensitization (III and IV), which 

arises when the central nervous system (CNS) is triggered by a nociceptive input, and the neural 

hyperexcitability persists after the input diminishes or disappears [8]. Consequently, pain perception 

of a subsequent innocuous stimulus is perceived as painful (allodynia), while a painful stimulus is 

amplified to increased intensity (hyperalgesia). 

 

 



9 
 

Analgesic mechanisms 

To target the different underlying pain mechanisms, several types of analgesics have been 

developed. The analgesic effect is often obtained by activation or blocking of specific receptors 

within the CNS or reduction in the release of neurotransmitters [9-12]. For patients who exhibit 

central sensitization, typical prescribed analgesics include opioids such as morphine and adjuvant 

drugs such as gabapentinoids. 

     Morphine (I and II) is a strong analgesic used to treat moderate to severe pain with the effect 

related to binding to the µ-receptors in the CNS [13]. Although morphine is a strong opioid, the 

efficacy of the drug is highly individual with major variation in adverse effects, and it is estimated 

that on average only 30% of patients exhibit adequate pain relief [14;15]. To improve pain 

treatment, several attempts have been made to predict the responsiveness of morphine, which has 

included assessment of genetic and immunological factors for subjects exposed to different 

modalities of painful stimulations [16]. However, at the time being no reliably methods have been 

developed for clinical use. 

     A gabapentinoid which has recently been validated to be effective for patients who exhibit central 

sensitization is pregabalin (IV) [17]. Pregabalin exerts its main analgesic effect by selectively 

binding to the alpha-2-delta subunit of voltage-dependent calcium channels. This blocks the calcium 

influx into the presynaptic nerve terminals, and hence reduces the pool of excitatory 

neurotransmitters such as glutamate, noradrenalin and substance P [11;18]. As the efficacy of 

pregabalin is also highly individual, biomarkers to predict and monitor the clinical pain relief are 

sought. 

 

1.2. Experimental pain 

As clinical pain is biased by cognitive and emotional factors and coexisting pain mechanisms, 

assessment of basic pain manifestations in chronic pain patients is complicated. To overcome this 

issue, experimental pain evoked in healthy volunteers establishes a platform to study pain 

processing in a standardized manner with reproducible results (Figure 1) [19]. In these models 

acute painful stimuli are controlled precisely with respect to localization, intensity, duration and 

modality [20]. To mimic clinical pain, long-lasting painful sensations can be applied by infusion of 

chemicals to initiate some of the inflammatory processes seen in chronic pain patients [21-23]. The 

pain and analgesic mechanisms may then be assessed by subjective or objective scores. 

 

 

 

 

 

 

 

 
 

Figure 1. Schematic overview of experimental

pain models. The pain system is considered a

black box, which can be activated by a controlled

stimulus or chemicals to mimic clinical pain.

Furthermore, administration of analgesics enables

studies of the analgesic effect of various

compounds. The output reflects the pain response

in a standardized and reproducible manner. 
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1.3. Objective pain measurements 

As typical pain mechanisms cannot be assessed by questionnaires and subjective pain symptoms 

reported by the patient, objective methods assessing the central nervous system response are 

needed. To base the analysis for this thesis on the most suitable technology, which is also feasible in 

clinical setups, we carefully considered the neuro-imaging methods and published our 

recommendations in a review [24]. In brief, the methods can be split into electroencephalography 

(EEG), magnetoencephalography (MEG), magnetic resonance imaging (MRI), positron emission 

tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, pain 

assessment can be based on nociceptive withdrawal reflex responses and autonomic parameters 

such as heart rate variability (HRV) etc. 

     EEG (I, II, III, and IV) is used to image the electrical activity in the brain generated by neuronal 

firing between various brain centers. The firing is usually randomly distributed in time when a 

person is in resting state, but the neural networks can be synchronized and activated sequentially 

and in parallel as a response to an external stimulus. The resting state EEG has been used to reflect 

the pathophysiology of pain in chronic pain patients and alterations in the CNS during 

pharmacological intervention [25;26]. In contrary, the evoked brain potentials (EPs) following an 

external painful stimulus has been used to study the nociceptive response to acute pain in patients 

or after modulation of the CNS by drugs or chemicals [23;27-29]. EEG has the advantage of high 

temporal resolution, relatively low-cost and feasibility in clinical settings, which were the main 

reasons to choose this method for all four studies in the present thesis. In contrary, the most 

important limitation of EEG is the relatively poor spatial resolution in respect to identification of 

activated brain centers. However, as source localization was not expected to be the main feature in 

describing pain and analgesic mechanisms, this limitation was not considered important. 

     MEG is used to image the magnetic fields produced by the electrical activity in the brain. MEG 

and EEG share many common features with regard to recording and analysis techniques, although 

MEG has mainly been applied in studies of association between pain and cortical reorganization in 

somatic and neuropathic pain studies [30]. MEG has the advantage of high spatial resolution and 

minimum distortion of the signals. On the other hand, MEG is limited by its incapability to record 

magnetic fields from deep brain structures due to shielding of the magnetic fields by volume 

currents. As the deep brain structures play a key role in brain processing of pain, MEG was not 

considered suitable for the study of pain and analgesic mechanisms. 

     MRI is used to image brain structures, which enables analysis of diffusion tensor imaging (DTI) 

including tractography, volumetry of brain structures and measurement of grey matter density. 

These features give valuable information about neural structures and connections between brain 

centers involved in pain processing [31;32]. Furthermore, MRI can be used to measure the 

functional brain activity (fMRI) by quantification of changes in local blood flow due to neural activity 

[33]. The advantage of MRI is its excellent spatial resolution, and the non-invasive and non-

radioactive properties of the recording technique. However, MRI is highly limited by poor temporal 

resolution in the range of seconds, which to some extend discards important information on how 
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brain centers interact by various oscillations. Furthermore, MRI is expensive and not suitable in 

general clinical settings such as outpatients visits. 

     PET and SPECT images radiolabeled molecules injected into the blood stream, which can be used 

to gain further knowledge of organization of functional networks in the brain, receptor sites and 

enzyme function [34]. The main advantages of PET are the spatial resolution and the ability to study 

receptor distribution. The main advantage of SPECT is the utilization of isotopes with a long half life, 

which enables imaging several hours or even days after administration of pharmacological drugs. 

The limitations of both PET and SPECT are mainly that subjects receive a considerable dose of 

radiation, which makes it less suitable for continuous monitoring of progression of pain mechanisms 

and how these are targeted by analgesics. Furthermore, the temporal resolution is in general poor 

and group analysis involving several subjects are typically needed to obtain meaningful results. 

     Nociceptive withdrawal reflexes mainly measure how a nociceptive input is processed in the 

spinal cord. The reflex is typically evoked by stimulation of the sural nerve at the ankle, and 

recorded by electromyography (EMG) at the tibial or biceps muscle. The reflex threshold and 

velocity provides the output measurement [35]. These features have been correlated to the 

stimulus-response curves for pain intensity, and provide a robust measure for small sample sizes 

influenced by confounding parameters. In contrary, the reflexes only represent a part of the 

complex sensory and affective experience of pain, which invalids them to stand alone as output 

measurements [36]. 

     Autonomic parameters provide a measure of the physiological stress response during pain, which 

affects the autonomic nervous system by increased sympathetic activity and decreased 

parasympathetic activity. Consequently, the blood pressure and HRV are increased, which have been 

correlated to the presence of pain, and hence provide an output measurement which is easy and 

inexpensive to obtain [37-39]. On the other hand, the measurements are limited as they only reflect 

if pain is present without identifying which mechanisms contribute to the subjective pain experience. 

 

1.4. Extraction and classification of EEG 

Experimental pain models based on objective EEG outputs have been used in several previous pain 

studies. The EEG signals may be assessed in many different ways depending on the type of 

recording and which aspects of the CNS are addressed. Resting EEG is typically assessed by 

frequency analysis, and presented by features such as power distribution in predefined frequency 

bands, peak frequency, mean dominant frequency, and spectral edge frequency [40]. For example 

Sarnthein et al. did a study on chronic pain patients with neurogenic pain, and found that patients 

were characterized by increased frequency oscillations in the theta band (4 – 9 Hz), and that this 

characteristic was reversible 12 month after a therapeutic lesion in the thalamus [41]. EPs are 

typical analyzed with respect to amplitude and latency of the main peaks, frequency characteristics 

and location of the dipolar sources [29;42-44]. However, all these studies on both resting EEG and 

EPs have aimed at describing common alterations in pain patients and after pharmacological 

intervention. This has shed new light over basic mechanisms to develop new drugs and test them, 
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but have minor relevance in the clinic in respect to establishing an approach to obtain individualized 

medicine. 

     In other areas of neuroscience research, biomarkers reflecting various conditions and diseases 

are extracted from the EEG signals and in its infancy to be used to diagnose and optimize treatment 

in clinical practice. These biomarkers are characteristics that are objectively measured and 

evaluated as in indicator of normal or abnormal biologic processes [45]. To detect subjects with 

probable Alzheimer’s disease, power distributions of spectral indices and measures of spatial 

synchronization have been used as input to classification algorithms such as the support vector 

machine (SVM) [46]. EEG features have also been extracted from patients diagnosed with 

schizophrenia to detect neurocognitiv markers of the condition. These features were also classified 

by a SVM, and demonstrated the potential of an algorithm to identify biomarkers independently of 

clinical assessment [47]. Furthermore, features extracted and classification of EEG characteristics 

has been implemented in real-time to monitor incidences of hypoglycemia (blood glucose level below 

3.8) in diabetic patients [48].  

     Feature extraction followed by classification is also commonly used to develop applications for 

brain-computer interfaces (BCI) [49]. BCI applications provide an alternate communication pathway 

for patients with motor dysfunction, and BCI is a research area with highly developed signal 

processing methodologies. In BCI research, the feature selection has been demonstrated to be of 

utmost importance, and extraction of time-frequency coefficients by an algorithm adapted to the 

actual data has been proposed [50]. Furthermore, Bai et al. did a study where they compared the 

computational methods for classification of single sweeps of the EPs, and found the SVM to be 

superior to other classifiers [51]. 

 

1.5. Hypothesis 

To develop a system to identify biomarkers for the underlying pain and analgesic mechanisms in 

individual patients, several methods needs to be developed and validated. To identify pain 

mechanisms, the first approach could be to classify EEG alterations after sensitization of the nervous 

system in healthy volunteers (III). This would mimic clinical pain due to central sensitization but 

bypasses the possibility of other pain mechanisms contribution to the pain experience, as well as 

confounding psychological factors would be avoided. After establishing this model, the robustness 

should be tested in patients with chronic pain (ongoing study).  

     Likewise, to assess the analgesic mechanisms and pain relief after pharmaceutical intervention, 

the methods could be developed by first classifying the EEG alterations after drug administration in 

healthy volunteers. This could be achieved by first performing a group analysis to validate whether 

the EEG reflects measurable changes (I), followed by an individual analysis to assess the level of 

alteration (II). 

     To validate the developed methods and their usability in clinical settings, the system should be 

applied to chronic pain patients treated with analgesics (IV). 
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     Based on this possible workflow, we hypothesized that abnormal visceral pain processing and the 

altered pain processing after administration of CNS active analgesics would be identifiable by 

classification of EEG responses in individual subjects.  

     This would be a major step towards mechanisms-based pain diagnosis and treatment, where 

pain mechanisms are identified and used to select appropriate treatment, followed by a measure of 

the analgesic efficacy (Figure 2) [7]. This approach includes the possibility that a single etiological 

factor may induce pain by diverse serial and parallel mechanisms. 

 

 

 

 

1.6. Aims 

To test the hypothesis that classification of EEG features can be used to identify biomarkers for 

abnormal visceral pain processing due to central sensitization and chronic pain, and that the pain 

relief from analgesics can be monitored by EEG, the aims of the project were: 

 

1) To optimize EEG recording techniques for visceral pain studies, including both resting EEG 

and EPs obtained during electrical stimulation of the oesophagus and rectosigmoid colon. 

 

2) To develop methods to classify EEG from healthy volunteers on a group level to identify both 

pain and analgesic mechanisms. 

 

3) To develop methods to classify EEG from healthy volunteers on a single subject basis to 

assess the individual alteration of the CNS response to pain after treatment with analgesics. 

 

4) To verify the developed methods by monitoring the analgesic effect in patients with chronic 

pain by classification of the altered EEG response before and after treatment. 

  

Figure 2. The ultimate goal in mechanisms-based pain treatment

is to develop a reliable system to identify the underlying pain

mechanisms in each individual patient, as this enables selection

of appropriate treatment. To further optimize the pain

treatment, the analgesic effect should be monitored to adjust

doses or analgesic compound to obtain maximum analgesic

effect with minimum dose of drug.    
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2. Pain physiology 
According to the International Association for the Study of Pain (IASP), pain is defined as “an 

unpleasant sensory and emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage”. As pain involves both sensory and emotional experiences, 

several components are involved in a complex network of neurons within the CNS, which can be split 

into peripheral afferents, the spinal cord, and the supra-spinal level (Figure 3). 

 

 

 

2.1. Peripheral afferents 

Peripheral afferents (also termed first-order neurons) respond to different types of noxious and 

sensory stimuli, and transmit the information to the dorsal horn of the spinal cord. The afferents can 

be split into three main types of nerve fibers with different properties in respect to type of stimuli 

they respond to and nerve conduction velocity [52]: 

• Aβ-fibers are thick myelinated fibers responding to light touch and convey tactile information. 

They conduct the information from the periphery to the CNS quickly. 

• Aδ-fibers are thin myelinated fibers responding to noxious mechanical, thermal or chemical 

stimuli. They conduct the information from the periphery to the CNS with medium speed. 

• C-fibers are thin non-myelinated fibers, and respond to the same type of stimuli as Aδ-fibers 

but with slower conduction properties. 

 

Hence, painful responses are mediated by activation of Aδ- and C-fibers with the information 

conducted by action potentials reflecting the stimulus intensity [53]. The communication between 

nerve fibers takes place via release of neurotransmitters, which can either facilitate or inhibit the 

neuronal activity [54]. Among these neurotransmitters are glutamate, noradrenalin, and substance 

P, which are all facilitating synaptic activity (IV).  

Figure 3. The pain system, which can be

divided into peripheral afferents, the spinal

cord and the supra-spinal (brain) level. 
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2.2. Spinal cord pain processing 

The peripheral afferents terminate primarily at the dorsal horn of the spinal cord through the dorsal 

root ganglion. For most tissue the Aδ fibers projects to both superficial layers (laminae I-II) and 

deeper layers (lamina V), while C—fibers terminate only at superficial layers, and the information is 

then conveyed by interneurons to deeper layers. From lamina V, the neurons mainly project to the 

thalamus (forming the spinothalamic tract). 

     In the spinal cord, the transmission of the incoming sensory and nociceptive input may undergo 

modulation to enhance or reduce the signal intensity transmitted to the brain [52]. One possible 

modulation to reduce pain intensity by pharmacological intervention is by blocking the N-methyl-D-

aspartate (NMDA) receptor, as this receptor has been shown to play a key role in developing central 

sensitization [52;55]. As the spinal cord activity plays a vital role in analgesic intervention, imaging 

the spinal activity before and after drug administration would be of great interest. However, at the 

moment no reliable model has been established although several attempts have been tried for both 

fMRI and EEG. In a pilot study we tested a new model based on one patient with chronic pain due to 

irritated bowel syndrome. This patient had an epidural electrode implemented in the spinal cord for 

electrical stimulation as pain relief, and with the connecting wires available from the skin (Figure 

4a). By stimulation of the tibial nerve, we recorded the action potential at T12, and were able to 

record trustful evoked potentials (Figure 4b). This approach have some limitations due to the fact 

that only chronic pain patients with the device implanted for clinical purposes can be enrolled in 

studies recording the spinal activation before and after drug administration. However, even with this 

limitation further development of the system would be a major step towards developing the ultimate 

pain model, which could be used to identify underlying analgesic mechanisms at the spinal cord 

level. 

 

a)  

 

b)  

 

Figure 4. Recording of spinal 
evoked potential in a patient with 
chronic pain. a) The epidural  
electrode was placed at T12, and 
the wires were accessible from the 
skin due to a temporary 
placement of the electrodes. b) 
Spinal evoked potential averaged 
over 1000 sweeps. 

 

 

2.3. Supra-spinal pain processing 

The output from the dorsal horn of the spinal cord is transmitted to the brain by spinal projection 

neurons along ascending pathways [52]. It has been shown that cells in lamina I project to 

thalamus, the pariaqueductal grey (PAG), and parabrachial area (PB) in the brain [56;57]. In 

contrary, the lamina V neurons mainly innervate the thalamus which activates the higher cortical 

centers such as primary and secondary somatosensory cortex, insula, anterior cingulate cortex, and 

prefrontal cortex (Figure 5). 
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Primary and secondary somatosensory cortices 

The primary and secondary somatosensory cortices (SI and SII, respectively) receive nociceptive 

input from the thalamus to encode the sensory-discriminative aspect of pain. Hence, both SI and SII 

are involved in recognition, learning and memory of painful experiences [58].  

 

Insula 

The insula receives projections from SII and thalamus, and has been shown to be activated by 

visceral stimulations [59]. The insula is thought to be involved in generating the multidimensional 

experience of pain, since it receives direct input from affective and sensory centers [60]. However, it 

should be noted that in clinical pain (which has a greater affective component), the rostral anterior 

insula is activated more often than the caudal anterior insula mostly activated in experimental pain 

[61]. 

 

Cingulate cortex 

The cingulate cortex is involved in processing of both visceral and somatic sensation, with the 

anterior midcingulate cortex involved in behavioural responses and attention to the pain perception. 

In contrary, the perigenual part of the cingulate cortex is connected to the brainstem and involved in 

visceromotor control and modulation of the autonomic and emotional responses to the external 

stimuli [62;63]. Furthermore, the cingulate cortex is involved in the affective-motivational aspects of 

pain processing [64;65]. An alteration of the pain processing in the cingulate cortex has been 

observed due to visceral hypersensitivity manifested as a shift in the dipolar source localization [23]. 

This shift may represent a change in the pain experience after sensitization, as the dipole moved to 

the posterior region of the cingulate cortex, which is believed to encode pain unpleasantness and 

cognitive processes [66]. Furthermore, in a study of the dipole sources of the EPs from study I and 

II, we found a shift in the brain activity in the anterior cingulate cortex [29]. 

 

Figure 5. Schematic representation of 

the brain and the centers involved in 

pain processing: thalamus, insula, 

amygdale, prefrontal cortex (PFC), 

anterior cingulate cortex (ACC), primary 

and secondary somatosensory cortices 

(SI and SII, respectively), parabrachial 

area (PB), periaqueductal gray (PAG), 

and rostral ventromedial medulla (RVM). 

 



17 
 

Prefrontal cortex 

The prefrontal cortex is activated in response to somatic and visceral sensation in interaction with 

the cingulate cortex. The prefrontal cortex is believed to be responsible for cognitive evaluation, 

self-awareness, attention and behavioral control [67]. Furthermore, the prefrontal cortex plays a 

key role in the pain inhibitory matrix by among other factors endogenous opioids [68;69].  

 

2.4. Visceral pain 

To base the studies in the healthy volunteers on pain sensations frequently reported by patients, all 

studies in healthy volunteers were based on visceral pain (I, II, III). The visceral pain system shares 

many mechanisms with somatic pain, although there are also differences in the way pain is 

mediated. The visceral afferents can be split into low- and high-threshold fibers. The low-threshold 

afferents respond to sensory levels of stimuli, while the high-threshold afferents respond to a higher 

level of stimuli in the noxious range [70]. The gastrointestinal tract also contain a type of receptors 

termed “silent nociceptors”, which do not respond to normal stimulus, but may become activated if 

the intestine is injured or inflamed [71]. Furthermore, the anal canal is innervated with nociceptors 

comprising of both Aδ and C visceral fibers and somatic Aβ fibers. 

     At the supra-spinal level, it has been demonstrated that the brain sources activated are different 

during visceral pain compared to somatic pain [20]. The activated brain areas in visceral pain are 

mainly secondary (SII) somatosensory cortex, the motor and frontal cortices, the insula, cingulate 

cortex, thalamus and the cerebellum [72]. Especially the insula has been identified to have a pivotal 

role in regulation and sensation of painful visceral input, and studies have demonstrated direct inter-

connections between the insula and the thalamus, prefrontal cortex, cingulate cortex, and primary 

and secondary somatosensory cortices [72;73]. However, it should be noted that the site of 

stimulation does also influence the brain sources activated [74;75]. 

 

2.5. Facilitory and inhibitory pain mechanisms 

The spinal cord and the brain together control a complex network of sensation and pain signaling. 

The pain control involves both inhibitory and facilitating phenomena in a dynamic balance of 

bidirectional pain-control mechanisms (Table 1). 
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Table 1. Inhibitory and facilitating mechanisms in pain perception. 

Phenomena Pain 
intensity 

Description 

Central sensitization [76] 
(III and IV) 

↑ 
 
 

Central sensitization is characterized by an 
increased firing frequency and decreased activation 
threshold of the dorsal horn neurons. This may lead 
to allodynia and hyperalgesia. See also section 
below. 

Wind-up [77] ↑ Wind-up is characterized by an increase in action 
potentials firing in the dorsal horn neurons during 
repeated stimulation with the same intensity, and 
has mainly been demonstrated in animal studies. 
The phenomenon arises due to repeated stimulation 
of C-fibers. 

Long term potentiation [78] 
 

↑ Long term potentiation is characterized by a 
persistent increase in synaptic efficacy, which may 
occur after a brief high frequency input stimulus. 

Temporal summation [79;80] ↑ Temporal summation is characterized by increased 
pain perception to repeated stimulations with a low 
inter-stimulus interval [81]. The phenomenon is 
thought to be the human correlate to the early 
phase of wind-up and sensitization in chronic pain 
patients. 

Spatial summation [82] ↑ Spatial summation is characterized by increased 
pain perception and decreased pain threshold 
obtained by converging signals from several 
nociceptors from an increased site of stimulation 
area. 

Gate control [83] ↓ The gate control theory of pain is based on the 
theory that large myelinated non-nociceptive Aβ-
fibers actives inhibitory interneurons, which 
stabilizes the nociceptor and prolongs the period for 
depolarization of the pain-coding afferents. 

Conditioned pain modulation 
[84] 

↓ Conditioned pain modulation (previously termed 
diffuse noxious inhibitory control – DNIC), is 
suppression of pain perception due to a 
counterirritating noxious (conditioning) stimuli at a 
distant part of the body. The effect is obtained by 
inhibition of some of the neurons in the dorsal horn 
due to the conditioning stimulus, and the pain relief 
of a following test stimulus is sometimes preserved 
several minutes after the conditioning stimulus is 
stopped. 

Habituation [85] ↓ Habituation is an antinociceptive mechanism, which 
causes a decrease in pain and pain-related 
responses to continuous or repeated stimuli with a 
low inter-stimulus interval. 

Endogenous opioids [86] ↓ The endogenous opioid system is involved in the 
regulation of the experience of pain and analgesic 
opioate drugs. The endogenous opioids interact with 
a number of cortical and subcortical regions [84]. 
Furthermore, endogenous opioids are believed to be 
involved in the placebo effect. 

 

 

 

 



19 
 

Central sensitization 

Central sensitization alters the pain processing in such a way, that the intensity, duration and spatial 

perception does no longer present the specific qualities of the stimulus, but rather represents the 

particular functional state of the CNS [8]. This phenomenon occurs when incoming visceral nerve 

afferents converge with spinal neurons, and the increased synaptic efficacy activates pain circuits 

normally transmitting innocuous stimuli (allodynia) or by amplification of the pain response to a 

noxious stimulus (hyperalgesia) – Figure 6. The increased synaptic efficacy is obtained by increased 

release of neurotransmitters such as aspartate, glutamate, and substance P [87]. These 

neurotransmitters cause the NMDA receptor to open and close quickly, and hence are responsible for 

fast excitatory synaptic transmission in the spine [52]. 

a) b) 

 
 
 
Figure 6. Normal and abnormal pain processing in the central nervous system. a) In normal pain processing, an innocuous 
stimulus is perceived as touch (top), and a noxious stimulus is perceived as pain (bottom). b) Abnormal pain processing due 
to central sensitization, where an innocuous stimulus is perceived as painful (top), and a painful stimulus is perceived as 
extra painful (bottom). 
 

One instance of central sensitization is viscero-visceral hyperalgesia (VVH), where activation of the 

pain system affects sensitivity in a remote and otherwise healthy organ. To study VVH (III), we 

recorded EPs following electrical stimulations in the rectosigmoid colon before and after sensitization 

of the oesophagus with a perfusion of acid and capsaicin. In comparison to placebo, central 

sensitization induced an alteration in the EEG manifested as an increase in the delta (0.5 – 4 Hz), 

theta (4 – 8 Hz), and alpha (8 – 12 Hz) frequency bands. Furthermore, the individual alteration of 

the EEG was correlated to the individual subjective perception of hyperalgesia (percentage change in 

current to inflict moderate pain before and after perfusion). Hence, biomarkers reflecting underlying 

pain mechanisms can be extracted from the EEG, which might in the current form be applied to 

secure enriched enrollment of study subjects in pharmacology testing [88;89].  
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2.6. Pain disorders 

The study of pain mechanisms may initially be based on healthy volunteers, where the CNS is 

modulated to study analgesic intervention (I and II) or mimic pain conditions (III). However, to 

validate the obtained results, the methods and finding must be confirmed in the environment where 

they are sought to have practical implications – in chronic pain patients (IV). To perform this 

validation, we investigated two distinct patient groups with chronic pain. In one study (IV) we 

investigated patients with chronic pancreatitis, which is a patient group who often exhibit central 

sensitization, and in another study (ongoing) we analyzed a patient group with neuropathic pain due 

to diabetes mellitus.  

 

Chronic pancreatitis 

Chronic pancreatitis (IV) is a disease characterized by chronic pain possibly arising from several 

mechanisms acting in symphony to cause pain in the individual patient [90]. The disease is 

characterized by inflammation and progressive destruction of the pancreatic gland, which may arise 

from damage of the pancreatic nerves along with peripheral and central sensitization. Most patients 

require analgesic treatment, as for example medication with anti-epileptic effects such as 

gabapentin and pregabalin [8;91].  

     To test if EEG was a suitable neurophysiological method to monitor the analgesic effect of 

pregabalin in chronic pain patients, we first investigated if the patients had altered brain activity in 

resting condition compared to healthy controls [25]. In this initial study, we saw an increase in the 

delta, theta, and alpha bands similar to what we observed in study III, and hence the alteration of 

brain oscillations was detectable in the EEG.  

 

Diabetes mellitus 

Diabetes mellitus is a disease with increasing prevalence in the global population [92]. A cardinal 

symptom is dysfunction of the autonomic nervous system which affects the gastrointestinal tract 

causing nausea, vomiting, bloating, diarrhea, and abdominal pain. Chronic pain is not a cardinal 

symptom in this patient group, but a portion of the patients develop diabetic autonomic neuropathy 

leading to progression of the dysfunction and abnormal pain processing [93;94]. To gain further 

knowledge of alteration of central mechanisms in diabetic patients, EEG recorded as EPs following 

electrical gut stimulation have been utilized previously [95-97]. 
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3. Pain treatment 
As pain is a common cause for patients seeking medical attendance, the World Health Organization 

(WHO) has provided a standard guideline for analgesic therapy, which follows the principles of the 

“pain refief ladder” (Figure 7) [98]. The principle of the ladder is to base pain treatment on the 

analgesic with lowest possible potency titrated to the lowest possible dose until sufficient pain relief 

is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first step of the ladder is treatment with adjuvant analgesics, which are medication developed 

for other purposes than pain relief, but have demonstrated analgesic efficacy in chronic pain patients 

[99]. The drugs include the following group of analgesics: benzodiazepines (anxiolytic effect), 

antidepressants (antidepressive effects), alpha-2-delta ligands (antiepileptic effects). The alpha-2-

delta ligands include the analgesics gabapentin and pregabalin (IV).  

     The second step of the ladder is treatment with weak opioids such as codeine and tramadol. If 

these opioids do not lead to sufficient pain relief, treatment is continued to step 3, which includes 

strong opioids. One such strong opioid is morphine (I and II), which is the gold standard in clinical 

use. 

 

3.1. Opioids 

Opioids, such as morphine, exert their main effect in the CNS by bindings to one or more of the 

opioid-receptors (µ, δ, and κ) [100]. Morphine primarily activates the µ-receptors, and is therefore 

considered a µ-agonist [101]. The receptors are widely spread throughout the CNS at the periphery 

and supra-spinal level. The analgesic contribution from the brain is believed to be due to attenuation 

of the affective component of pain, which means that it is expected to influence the anterior 

cingulate cortex, insula and amygdale [102]. To verify this assumption, we did a study of brain 
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± Non-opioid 
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Figure 7. WHO’s pain relief ladder. 

The ladder is followed with serial 

introduction of analgesics until 

sufficient pain relief is obtained. 
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source localization prior to study I and II, and found an effect of morphine on the activity in the area 

of the anterior cingulate gyrus [29]. 

     As morphine is known to exert its effect in the CNS and has been demonstrated to alter the EEG 

response, this compound was use to develop the classification system proposed in this thesis. In 

study I, we explored the alteration in frequency content between recordings at study start and 

recordings 90 minutes after morphine administration. The alterations were extracted from EPs 

following painful electrical oesophageal stimulation and investigated at a group level (aim 2). This 

analysis showed that the parietal region of the scalp had the highest degree of alteration between 

the conditions. Furthermore, when all electrodes were taking into consideration, two subjects were 

misclassified, and by further analysis these two subjects had none or only minor effect of morphine 

compared to the remaining subjects. However, the frequency alterations for the subjects classified 

correctly were not correlated to the analgesic effect. As the identification of the non-responders was 

a promising result, we continued to apply the method on single-sweeps to obtain a scenario where 

the alteration was assessed on a single subject basis (aim 3). However, applying the methodology 

on the single-sweeps did not give satisfactory results (see section 7.2 for further explanation of 

limitations of the methods). Hence, a new methodology was developed which enabled single subject 

analysis of single-sweeps. This analysis (study II) showed a correlation between the degree of 

alteration in the EEG and the analgesic effect on a single subject level. 

     Furthermore, we have in a different study explored how well spectral indices in the resting EEG 

reflect the plasma concentration and analgesic effect in two other opioids – buprenorphine and 

fentanyl. Buprenorphine (partial µ-agonist and κ-antagonist with high affinity, and δ-antagonist with 

low affinity) is an analgesic 25-100 times more potent than morphine [103]. Fentanyl (mainly µ-

agonist) is an analgesic 75-100 times as potent as morphine [101]. In this study we recorded the 

resting EEG from 19 healthy volunteers, took blood samples and assessed the analgesic effect at 

study start and 4, 24, 48, 72, and 144 hours after a transdermal patch was applied to the subject in 

a placebo-controlled setup. When an EEG index was introduced (summation of normalized marginal 

frequency distribution below 10 Hz divided by frequency distribution from 10 to 32 Hz), the index 

followed the plasma concentration and pain scores for buprenorphine, and the pain scores for 

fentanyl (figure 8) [unpublished data; manuscript under preparation].  

 

  

Figure 8. EEG 
spectral index (ratio 
between normalized 
frequency distribution 
below 10 Hz divided 
by distribution from 
10 to 32 Hz) 
compared to plasma 
concentration and 
pain scores. All 
values are baseline 
corrected and the y-
axis is scaled to have 
comparable levels. 
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3.2. Pregabalin 

Pregabalin is an alpha-2-delta ligand, which is believed to exert its effect by modulation of the spinal 

cord neural activity by reducing the release of glutamate (and hereby also indirectly reduce the 

NMDA activity) [11]. Pregabalin is gaining focus in the treatment of underlying pain mechanisms 

such as central sensitization and neuropathic pain [104]. To verify the clinical efficacy of the 

analgesic in the study population in study IV, a clinical study was performed only based on 

subjective pain scores before and after three weeks of treatment with pregabalin in comparison to a 

control group treated with placebo in a double-blinded setup [17]. This analysis demonstrated 

significant clinical pain relief in the patients treated with pregabalin. Furthermore, before treatment 

we verified that the patients had altered resting state EEG compared to healthy volunteers, evident 

as increased delta, theta and alpha activity [25]. 

     To study the effect of pregabalin in the CNS, a group analysis was performed to explore the 

spectral alterations before and after pregabalin in comparison to alterations in a placebo treated 

group (IV). This analysis showed an increase in the theta band comparable to alterations previously 

reported due to ketamine treatment [52;105]. The analysis was then expanded to include 

classification of each individual patient by applying the SVM in regression mode, which besides from 

the categorical output also outputs an estimate of the level of alteration for each patient. This 

regression value representing the overall alteration of the EEG was positively correlated to the 

analgesic effect of the compound (aim 4). 

     Additionally, we have in parallel to study IV analyzed the analgesic effect of pregabalin during 

experimental pain inflicted by electrical stimulation of the rectosigmoid colon [106]. This study 

showed an effect of pregabalin on the evoked pain by a reduction in pain threshold, although the 

EPs following the electrical stimulation remained unchanged and hence no shift in dipole localization 

was observed. 

    Brought together, the results suggest that pregabalin has an effect on chronic pain patients with 

alterations comparable to central sensitization, and the analgesic effect of the chronic pain can be  

monitor by alterations of the EEG, while the underlying mechanisms during acute pain may be a 

predominant spinal effect by reduction of the excitatory spinal neurotransmitters [107].  
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4. Electroencephalography 
EEG is a technique used to record the electrical activity in the brain generated by firing between 

neurons. The main advantage of EEG is the high temporal resolution, which makes sampling rates 

up to 20 kHz and more possible. For the EPs, this enables analysis of which brain centers are 

activated sequentially and in parallel within the first 500 ms after the stimulus onset (pain specific 

response) and how they interact. In contrary, the spatial resolution of the EEG is in general poor in 

respect to precisely locating the activated brain sources. However, as the location of the brain 

sources may be less relevant than highly accurate frequency measurement in order to identify the 

underlying characteristics of chronic pain and pharmacological intervention, EEG was the method of 

choice for this thesis. Furthermore, the method is well established in pain and pharmacology 

research, and has several advantages in respect to developing a clinical feasible bed-site system 

[108-110]. 

 

4.1. EEG recordings in visceral pain studies 

Recording of EPs in visceral pain studies may require extra attention. When painful electrical 

stimulations are inflicted in the oesophagus, the artifact is transmitted to the surface of the scalp by 

volume conduction, which results in a large stimulus artifact with the same shape as the applied 

stimulus. The applied stimulus is sought to be as short as possible to activate the nerve 

momentarily, which may be obtained by a short mono-polar square-wave. However, to compensate 

for the noise induced by the electrical power supply, a notch filter has to be applied to filter out the 

50 Hz noise. This notch filter is a bandstop filter with very narrow cut-off frequencies of for example 

49 to 51 Hz.  

     When the short square-wave is filtered by the default notch filter in the software (Neuroscan 

4.3.1, Compumedics, El Paso, Texas, USA), it results in an EEG trace with large 50 Hz ringings 

(Figure 9a). This showed up to be caused by the analog filter in Neuroscan, which does not have a 

constant group delay for all frequencies [111-113]. To overcome this problem, several attempts 

were tested including hardware deblocking of the sample-and-hold device in the Neuroscan 

recording system, which however did not solve the problem to a sufficient degree. Consequently, the 

applied stimulus was switched to consist of 5 square-pulses of 1 ms duration with a frequency of 

200 Hz, which was still perceived as one single stimulus. As this stimulus artifact does not mimic a 

dirac delta function, the notch filter does not induce ringings (Figure 9b). Due to this phenomenon, 

we used a 5 pulse stimulation paradigm when recording data for study I and II, and also in several 

other previous studies [23;74;114]. However, another workaround to avoid ringings is to apply a 

notch filter based on the zerophase shift technique. This filter has a constant group delay for all 

frequencies, which is advantageous not only to avoid ringings but also to reduce distortion due to 

filtering [112]. When this technique was up and running, we used it for study III (figure 9c), and 

also another study in parallel to study IV [106]. 

     Based on the experiences from the various studies, the optimal recording setup with the 

Neuroscan equipment has now been determined to be: Recording in AC mode, no online notch filter 
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4.3. Frequency characteristics 

The recorded EEG data may be analyzed in several ways. The resting EEG has traditionally been 

analyzed in terms of frequency characteristics, where basic parameters such as relative delta power, 

peak frequency, mean dominant frequency, median frequency and spectral edge frequencies have 

been used to describe the frequency content [40]. In contrary, the EPs have traditionally been 

analyzed with respect to amplitudes and latencies of the main peaks in the average traces [22;42]. 

However, this approach has several limitations, since it only includes the main peaks of the signals 

while important information may be present during the entire time interval of interest. To improve 

the analysis, the EEG traces may be decomposed into time-frequency parameters extracted from the 

entire epoch as we did in study I, II, and III, which has also been done in other previous studies 

[43;124;125]. 

     The analysis of EEG traces in this thesis is based on frequency analysis described by the 

following standard bands: delta (0.5 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 32 Hz), 

and gamma (32 – 80 Hz). These bands have previously been used to describe characteristics in pain 

and pharmacology studies which are presented in table 2 and 3, respectively. 

 

Table 2. Typical frequency characteristics reported in pain studies. 

Frequency 
bands 

Observation References 

Delta Increased after tonic painful heat stimulus (resting) 
Increased in diabetic patients with high HbA1c level (resting) 

[126] 
[127;128] 

Theta Increased in neurogenic pain patients (resting) 
Increased in patients with chronic pancreatitis (resting and EPs) 
Increased in diabetic patients with severe hypoglycaemia (resting) 
Increased during hypersensitivity in healthy controls (EPs) 

[41;129] 
[25;43] 
[127;130] 
[131] 

Alpha Decreased by tonic painful cold stimulus (resting) 
Decreased in patients with irritable bowel syndrome (resting) 
Correlated to subjective pain perception (resting) 

[132] 
[133] 
[134] 

Beta Increased in neurogenic pain patients (resting) 
Increased in thalamocortical dysrhythmia (resting) 

[41] 
[129] 

Gamma Increased during attention to painful stimulus (EPs) 
Increased by increasing painful stimulus (EPs) 

[135-137] 
[138] 

 

Table 3. Typical frequency characteristics reported in pharmacology studies. 

Frequency 
bands 

Observation References 

Delta Increased after opioid administration (resting and EPs) [124;139] 
Theta Increased after ketamine (resting and EPs) 

Increased after adjuvants such as clozapine (resting) 
[105;140;141] 
[142] 

Alpha Increased after opioids such as morphine (resting) 
Decreased after anxiolytics such as alpidem (resting) 
Decreased after benzodiazepines such as diazepam (resting) 

[143] 
[144] 
[145;146] 

Beta Increased after anxiolytics such as alpidem (resting) 
Increased after benzodiazepines (resting) 
Increased after opioids such as morphine (resting) 

[144] 
[146] 
[147;148] 

Gamma Typically not assessed in pharmaco-EEG studies  
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5. Feature extraction 
To extract the frequency characteristics from both resting EEG and EPs, a number of methods are 

available. Several previous BCI applications and studies on data from patients diagnosed with 

psychiatric disorders have shown that the feature extraction is of utmost importance in comparison 

to the selection of the classifier [50;149-151]. Hence, the selection of time-frequency algorithm was 

carefully considered for each study and further discussed in section 7.2.  

 

5.1. Time-frequency algorithms 

The most commonly used frequency analysis is the Fourier Transform (FT), which was used for the 

first time in 1932 to estimate the frequency content in EEG signals [152]. Due to its fast 

computational speed, the FT is still widely used in real-time implementations to monitor the debt of 

anesthesia, although the method has several limitations [40]. First, the algorithm assumes 

stationarity, which is not fulfilled as EEG data are non-stationary stochastic signals containing both 

oscillatory and transient characteristics [153;154]. Secondly, the algorithm requires relatively long 

epochs in order to provide satisfactory frequency resolution, which means it is not suitable for the 

short epochs used in study I, II and III [154]. To overcome the shortcomings of the FT, several 

time-frequency algorithms have been proposed in the literature, each having specific advantages 

and disadvantages, and with different approached to adapt to the Heisenberg uncertainty principle. 

The most commonly used algorithms are presented in table 4. 

 

Table 4. Overview of some commonly used time-frequency algorithms. 

Algorithm Description Advantages Disadvantages 
Short-time Fourier 
transform (STFT) 
[155] 

The STFT is a FT applied in 
consecutive time windows  

• Fast computational 
speed 

• Fixed time-
frequency 
resolution 

• Not capable to 
detect frequency 
bursts 

Wigner-Ville 
Distribution 
(WVD) [156] 

The WVD is the simplest 
instance of Cohen’s class, 
with the kernel set to 1 

• High temporal 
resolution 

• Performs well for 
nonstationary 
multicomponent 
signals 

• Largely influenced 
by cross-term 
interference 

• Density estimate 
contain negative 
values 

Wavelets 
[153;157-159] 

The wavelet transform is a 
multi resolution analysis 
(MRA). The method can be 
split into: continuous 
wavelet transform (CWT), 
and discrete wavelet 
transform (DWT) 

• The MRA 
decomposition 
reflects EEG signal 
properties 

• DWT: High 
computational 
speed 

• Selection of mother 
wavelet function 
(MWF) based on a 
priori assumptions 

• Same MWF used 
for all frequencies 

Matching pursuit 
(MP) [160-162] 

MP decomposes a signal 
into a sparse representation 
of atoms taken from a large 
and redundant dictionary 

• Optimal time-
frequency 
resolution adapted 
to the signal 

• Not all frequencies 
are necessarily 
represented, which 
makes comparisons 
to previous studies 
complicated 
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5.2. Wavelet transform 

The wavelet transform is a multi resolution analysis (MRA), which has several advantages over 

methods such as the short-time Fourier transform (STFT) and Wigner-Ville distribution (WVD) [163-

165]. The basic idea of the algorithm is to decompose the signal into time-frequency coefficients 

obtained by projection into subspaces by a mother wavelet function (MWF). The MWF can be 

selected from a dictionary of infinite number of waveforms, which are characterized by having zero 

mean value, finite energy over its time course, and relatively little low frequency content compared 

to the high frequency energy [153]. The MWF is scaled and translated to obtain the coefficients, and 

hence the same MWF is used to calculate the frequency content for all frequencies. The resulting 

MRA has the property of maximum frequency resolution at low frequencies, and maximum time 

resolution at high frequencies, which mimics properties of the EEG well (Figure 11) [165]. 

 

 

 

The wavelet transform can in general be calculated as either a continuous  wavelet transform (CWT) 

or a discrete wavelet transform (DWT) depending of the requirement for resolution and 

computational time available. 

 

Continuous wavelet transform (CWT) 

The idea behind the CWT is to scale and translate the MWF by infinitively small steps in order to 

calculate the time-frequency coefficients by convolution of the MWF and EEG signal. For each of the 

scaled MWF this gives an estimate of the center frequency at each time point (Figure 12). As seen 

from Figure 12a, when the wavelet is dilated it has long time duration, but also a narrow frequency 

distribution in contradiction to the small scale wavelet in Figure 12c, where the wavelet has a short 

time duration but a much wider frequency distribution. 

Figure 11. Schematic illustration of the basic idea of the multi resolution 

analysis (MRA). Due to the properties of the scaling and translation of the 

mother wavelet function (MWF), low frequencies are presented with high 

frequency resolution but low time resolution, while high frequencies are 

described by low frequency resolution and high temporal resolution.   
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The CWT was used to extract the frequency distribution in study IV, and the MWF was chosen to be 

a complex Morlet wavelet since this wavelet has an optimal time-frequency distribution, and has 

been used in several previous studies by other research groups [125;161;166;167]. 

     Furthermore, we have previously used the CWT with the complex Morlet wavelet function to 

describe the abnormalities in spectral indices in the patient group analyzed in study IV [25]. In this 

preceding study, we demonstrated that the method was useful to obtain a biomarker for the 

abnormal pain processing in comparison to age and gender matched healthy volunteers. 

Additionally, we have used the same methodology in a study of hepatic encephalopathy patients. 

These patients were also compared to healthy controls, and the method detected a slowing of the 

EEG rhythmicity and increased variability in the alpha and beta bands (dynamic shifts in spectral 

indices) in the patients, which was correlated to clinical scores [168]. Furthermore, the method has 

been used to study the slowing of brain oscillations as a correlate to plasma concentration and 

analgesic effect of the two opioids buprenorphine and fentanyl (Figure 8), which is now being 

analyzed in respect to PK-PD modeling [unpublished data; manuscript under preparation]. 

 

Discrete wavelet transform (DWT) 

Contrary to the continuous convolution process for the CWT, the DWT is calculated as a convolution 

of the scaled wavelet in discrete steps to cover the entire time-interval without overlap [153;169]. 

By this procedure, a non-redundant highly efficient representation of the signal is calculated, 

consisting of as many coefficients as present in the input signal and with a bandwidth set to half of 

the sampling rate. As a convolution in the time domain corresponds to multiplication in the 

frequency domain, the algorithm may be considered as a filtering task (Figure 13). The filters are 

represented by the MWF, and the calculation of the coefficients is based on orthogonal wavelets to 

ensure that the scaled and translated wavelets are not correlated [153;158;169]. 

 

 

 

 

Figure 12. The basic principle of the 

continuous wavelet transform is to scale and 

translate a wavelet function to obtain a multi 

resolution analysis. The large scale wavelet 

has a wide time distribution, but is narrow in 

its frequency representation. In contrary, the 

small scale wavelet is narrow in time 

distribution but has high frequency 

distribution. However, as the slow wave 

oscillations in the EEG are more stationary 

than high frequency burst, this resolution 

mimics EEG data well. 



31 
 

 

 

 

The DWT was used to extract the time-frequency coefficients in study I and III, and since the 

selection of the filters is crucial to obtain high classification accuracy, 30 different wavelets were 

tested in each of the studies. The optimal MWF was determined as the solution leading to the 

highest classification accuracy. This approach corresponds to pattern recognition widely used in BCI  

applications [50;149].  

 

5.3. Matching pursuit 

Matching pursuit is an iterative process to decompose a signal into a set of basic components 

(termed atoms) taken from a large and redundant dictionary [156;160]. The algorithm starts by 

searching the dictionary to find the atom with the highest similarity to the input. When the optimal 

atom has been determined, it is subtracted from the signal segment to obtain the first order 

residuum. In the consecutive iteration, this residuum is used as input signal, and the best matching 

atom is found. The algorithm continuous until a maximum number of iterations have been 

performed or a residuum less than a certain value of the original input energy is obtained (Figure 

14) [154;156;160;162].  

 

 

 

By this procedure, the signal is described by sparse atoms which are not restricted to any resolution 

properties in the time-frequency plane, except they have to conform to the Heisenberg uncertainty 

principle. Hence, low frequency oscillations can be described in short time windows (as for example 

Figure 13. The basic principle of the discrete 

wavelet transform is to scale and translate a 

wavelet function to obtain a multi resolution 

analysis. The input signal s is filtered by a lowpass 

filter H to obtain the approximation coefficients and 

a highpass filter G to obtain the detail coefficients. 

The approximation coefficients are used as input to 

the consecutive filtering, and the algorithm 

continues until only one coefficient represents the 

final approximation. This coefficient and all the 

detailed coefficients represent the wavelet 

decomposition. 

Figure 14. Decomposition by matching 

pursuit of a single sweep recorded in 

study I and II. The first iteration uses the 

single sweep as input to determine the 

best matching atom. The atom is 

subtracted from the sweep to obtain the 

first order residuum. This residuum is 

used as input in the next iteration. The 

algorithm stops when the residuum is 

less than a certain portion of the sweep 

to be decomposed. 
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atom 1 in Figure 14), while consistent high frequency oscillations can be described with high 

frequency resolution by only one coefficient even if they occur during the entire epoch. To have the 

most optimal time-frequency resolution, the dictionary we used was build on Gabor atoms, which 

are sinusoids modulated by Gaussians [154].  

     In order to be able to classify features extracted from the MP algorithm, the features from the 

conditions to be discriminated needs to be extracted from the same atoms. To accomplish such a 

setup, an enhanced implementation of the MP can be used, which includes multivariate matching 

pursuit (MMP) and temporal matching pursuit (TMP) [156;170].  

 

Multivariate matching pursuit (MMP) 

MMP is the most straightforward extension of the MP algorithm in respect to decomposing multiple 

traces simultaneously. The extracted atom in each iteration is found as the component with the 

highest simultaneously similarity to all input EEG traces, with the constraint to have constant phase 

across traces. This means, that the extracted atom is the one who is characterized by having its 

signal shape occurring with constant latency in several traces. Hence, the atom for all traces will 

have the same temporal occurrence but with different amplitudes (Figure 15) [170].  

    This approach has been used by Sieluzyckiet el. to describe a habituation phenomenon in single-

sweep auditory evoked potentials, where only a few atoms were necessary to mimic the sweeps 

based on visual judgment [171]. Sieluzycki concluded in his study, that MMP could be a future 

methodology to describe single-sweep EPs, as it only extracts the common waveforms which are 

believed to reflect the evoked response, while the background EEG activity and noise are more 

randomly distributed. He also concluded that although classification of single-sweeps is an 

interesting topic, ideas on how to classify data across conditions were still to emerge. In study II we 

proposed such a methodology, by suggesting the MMP should be applied to all sweeps across 

conditions. By applying MMP across conditions, we were able to discriminate single-sweeps before 

and after morphine administration with an accuracy correlated to the individual analgesic effect for 

each subject (aim 3). As this is a new approach to apply pattern recognition on single-sweep EPs, 

we initially published a pilot study on the methodology applied to one of the volunteers from study 

III [131].  
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Temporal matching pursuit (TMP) 

The TMP algorithm is similar to the MMP algorithm with the only exception that the extracted atom 

in each iteration is determined independent of phase alignment over the input traces. Hence, the 

estimated atom is the one who has its signal content present over several traces at random time 

instances. Consequently, each trace is described by its amplitude and phase (Figure 16).  

Figure 15. Schematic overview of the MMP algorithm illustrated by single-sweeps from a representative subject in study II. 

For illustration purposes, three random sweeps are highlighted. In each iteration the optimal atom is found in the dictionary, 

and the amplitude for each sweep is calculated to form the approximation and the residuum. The residuum is used as input to 

the consecutive iteration. For demonstrational purposes, the reconstruction of the original signal is also included. This 

reconstruction is calculated as the sum of all previous approximations. 
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The TMP algorithm may be applied to classify single-sweeps where a phase shift is expected 

between conditions, which can occur during visceral hypersensitivity or after pharmaceutical 

intervention [23;172]. Furthermore, the algorithm may be applied to classify subjects at a group 

level as shown in Figure 16 (see also ongoing studies on the group analysis of patients with diabetes 

mellitus). By the TMP procedure, the same atoms are extracted for all subjects which enables a 

direct comparison of the amplitude and phase differences. The suggestion to include traces from 

several subjects in the same iteration is to our knowledge a new approach, and may provide a useful 

tool to classify subjects on a group level where a latency shift needs to be included in the analysis. 

This approach also provides a solution to an issue raised by Sieluzycki et al., who stated that an 

imminent step to be pursued in respect to MP features is the application to a population of subjects, 

as this step would addresses the complex question on how to draw statistical conclusions from MP 

results with different Gabor functions derived for different subjects [171]. 

  

Figure 16. First iteration in a TMP decomposition of the average 

vertex traces recorded in patients with diabetic mellitus and age and 

gender matched healthy volunteers. For illustrational purposes, one 

of the patients is highlighted in red, and one of the healthy 

volunteers is highlighted in green. a) The average traces from 14 

patients and 15 healthy volunteers. b) The first atom extracted 

when all traces are used as simultaneous input. The same atom is 

extracted for all subjects, but with varying amplitude and phase.  
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6. Classification 
The second part of the pattern recognition procedure is to classify the EEG features. Classification 

can basically be split into two major groups: supervised and un-supervised classification. As the 

purposes of our studies were to see how well 2 pre-defined groups could be separated with an 

estimate of how well each subject belonged to the group, we focused on supervised learning. In 

supervised learning, input features for the classes are given to the classifier with a label indicating 

the class they belong to. Based on this information the classifier calculates a decision rule specifying 

how any new unknown sample should be assigned to the estimated class. Hence, an important task 

in classification is to calculate a decision rule to obtain good generalization, which means that 

unlabeled inputs with high probability are assigned to the correct class. 

  

6.1. Classification algorithms 

Several supervised classification algorithms exist, with some of the most commonly ones presented 

in table 5.  

 

Table 5. Overview of some commonly used classification algorithms [173]. 

Algorithm Description Advantages Disadvantages 
Linear discriminant 
analysis (LDA) 
[174;175] 

LDA calculates a hyperplane 
to separate data by 
maximizing the distance 
between the two classes 
means and minimizing the 
interclass variance 

• Low computational 
requirement 

• Simple to use and 
gives in general 
good results 

• Linearity, which 
may provide poor 
results on complex 
nonlinear data 

• Based on the 
assumption that 
data is normal 
distributed 

Neural networks 
(NN) [176;177] 

NN assembles several 
artificial neurons  to 
produce a nonlinear 
decision boundary 

• Flexible and can 
adapt to a variety 
of conditions 

• Sensitive to 
overtraining 

Bayesian classifiers 
(BC) 
[174;175;178;179] 

BC learns the class models, 
and classify samples by 
computing the likelihood of 
each class and assign the 
sample to the one with 
highest probability 

• Slow computational 
speed 

• Good dynamic 
classifiers in the 
time-domain 

Nearest Neighbor 
classifiers (NNC) 
[174;180;181] 

NNC assigns a feature 
vector to a class according 
to the nearest neighbor(s) 
by either a number of 
nearest neighbors or a class 
prototype of a distance 

• Relatively simple 
• High computational 

speed 

• Very sensitive to 
dimensionality of 
the features 

Support vector 
machine (SVM) 
[182-185] 

SVM calculates a 
hyperplane to separate data 
by maximizing the margins. 
In case of non-separable 
data a kernel function may 
be applied. 
 
 

• Good 
generalization 
capabilities due to 
regularization 
properties 

• May be utilized by 
a kernel function 

• May be applied in 
regression mode 

• High computational 
requirement and 
low speed of 
execution 
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As the ultimate requirement in our studies was high classification accuracy with the possibility to get 

an estimate of how well each individual subject belonged to the group (regression), the SVM was 

chosen as the preferable classification algorithm. This was further supported by the fact that the 

SVM has shown superior performance in several previous studies aiming at comparing classification 

methods [186;187]. 

 

6.2. Support vector machine 

The SVM is based on ideas from statistical learning, and was first introduced by Vapnik and Lerner in 

1963 [188]. The basic idea is to calculate a hyperplane to discriminate features from the classes in 

the most optimal way (Figure 17). As seen from Figure 17a, the hyperplane is linear and there are 

several solutions to discriminate the data. However, there is only one optimal solution, which has 

the maximum distance to all data points indicated by the bold green line in Figure 17a. This optimal 

solution is further illustrated in Figure 17b, where the data points contributing to defining the 

separating hyperplane are highlighted. These data points are termed the support vectors [182].    

 

a) b) Figure 17. The basic idea of the 
support vector machine is to define 
an optimal linear separating 
hyperplane. a) Example with 2 
classes (red and blue) each defined 
by 2 features. There are several 
possibilities to discriminate the 
data, although one solution has the 
maximum distance to data points 
from both classes (green). b) The 
optimal hyperplane and the 
corresponding support vectors 
indicated by green highlights.  
 

  
 

In Figure 17a it is assumed that data can be perfectly separated by a linear hyperplane. However, 

this is not the case in most practical schemes. To overcome the issue of non-separable data, Cortes 

et al. proposed an implementation of the SVM with soft-margins [189]. In the soft-margin version a 

positive slack variable ξ is defined, which is a measure of the misclassification error. The summation 

of the misclassified trials may be considered as a penalty function which sets an upper bound for the 

number of errors [183]. Furthermore, a variable C is introduced to control the tradeoff between the 

margin and the misclassification error. This parameter is directly related to regularization of the 

SVM, which serves to control the complexity of the classifier to prevent overtraining [173;183]. 

Furthermore, regularized classifiers in general have good generalization performance and are robust 

to outliers [174;184]. The optimization of ξ and C is a non-trivial task, and were in all four studies 

optimized by 3-fold cross-validation during training of the classifier to minimize the probability of 

error estimated from the training set.   
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Kernel methods 

Although the soft-bound implementation does overcome the challenge with a few outliers, it does 

not take into consideration that the data points might not be outliers but rather may contribute to 

describe a non-linear separable pattern as illustrated in Figure 18. To improve the performance in 

case of a non-linear distribution of the data, the accuracy can in most cases be improved by 

introducing a kernel function [190;191]. The kernel function maps the input data to a higher 

dimensional feature space which can be obtained by polynomial and Gaussian kernels etc. After 

mapping the data into a higher dimensional space, it may become linear separable as illustrated by 

a simple example with a polynomial kernel in Figure 19. In general, the kernel function which has 

demonstrated the best performance in many applications is the Gaussian Radial Basis Function 

(RBF), which are Gaussian shapes centered around each support vector [182;183;192;193]. We 

used this Gaussian RBF kernel function in study I and II to obtain satisfactory results. However, it 

should be noted that utilizing a kernel in pain and pharmacology research requires extra attention, 

since the scope of the studies is not to find differences, but to find physiological meaningful 

differences serving as a biomarker for disease or analgesic effect. Furthermore, it is recommended 

to start with the linear kernel, since it makes interpretation of results and extraction of biomarkers 

easier. 

 

 

 

 

a) b) Figure 19. Example of how the 
kernel function (in this case a 
simple polynomial function) can 
transform a) linear non-separable 
data with a complex discrimination 
pattern into b) a linear separable 
scenario.  
 

 

 

Figure 18. Data is in most applications not linear separable, but may 
be separated by a complex decision rule indicated by the green curve.  
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6.3. Support vector machine regression 

In most pattern recognition applications, the overall purpose is to assess how well two groups can 

be discriminated [149;150]. This approach may be used to evaluate which subjects have different 

responses than common responses seen in the majority of subjects in a group analysis. We used 

this information in study I, where we found two subjects being misclassified after morphine 

administration, which were also the subjects demonstrating the lowest response to morphine 

treatment. These two subjects had an increase of +5% and -7% in current intensity to evoke slight 

pain, which we considered as being non-responders to treatment. 

     However, considering subjects as either responders or non-responders is a crude approximation 

when discussing the efficacy to treatment or pain mechanisms. A more correct approach may be to 

consider efficacy or sensitization as a score on a continuous scale. This however raises the question 

how to assess the EEG alterations on a continuous scale rather than as a categorical output as 

illustrated in Figure 17a (red or blue). In study I we tried to correlate the alteration in the delta 

frequency band to the analgesic effect, which however did not reveal a statistical significant pattern.  

     A completely different approach would be to apply the SVM in regression mode, where the 

output is a scalar on a continuous scale (Figure 20) [183;185].    

 

 

 

Applying SVM in regression mode to EEG data has to our knowledge only been used in a few 

previous studies primarily for BCI applications [194]. However, based on the results we have 

obtained in study III and IV, the approach may seem to be a way forward to assess the overall 

alterations of the CNS. This is based on the fact that we obtained correlations to pain mechanisms 

(III) and analgesic effect (IV) in our studies when using the regression value as a biomarker of the 

overall alteration of the EEG. Furthermore, in study III we saw a significant difference in spread of 

the regression value after sensitization (mean±SD 4.05±3.11) in comparison to after placebo 

treatment (mean±SD 1.48±1.30) (P=0.02, Student’s t-Test). One could of course speculate if more 

basic measures could have given the same result, as for example an integral of the frequency bands 

which were statistical significant increased after sensitization. To investigate this further, we 

correlated the individual integral values of the delta, theta and alpha bands after sensitization with 

the subjective pain scores (Figure 21), which however did not give significant results (R=-0.165, 

P=0.61). 

Figure 20. Applying SVM in regression mode enables an output on a 

continuous scale describing the distance to the separating hyperplane 

indicated by arrow 1 and 2. The rationale for using the regression value 

is based on the assumption that although the data points corresponding 

to 1 and 2 are assigned to the same class, they display different levels of 

alterations in the EEG response.    



 

Fur

ana

ind

app

act

rthermore, 

algesic effec

ex of norm

plying SVM 

tivity, which

 

in study IV

ct. However

alized theta

 in regressi

 should be c

 we also inv

r, although

a/beta contr

on mode is

considered 

 

 

vestigated 

 we tested 

ribution we 

s more sens

as an intera

if more sim

all bands i

did not obt

sitive to de

action betwe

Figure 21

sensitizati

subjective

induced h

variables. 

mple scores 

ndividually 

ain significa

scribe the o

een several 

. Correlation o

on in individu

e change in p

hyperalgesia. N

  

could be us

followed by

ant results (

overall alte

 frequency b

of the integra

ual subjects 

pain score ref

No correlation

sed to mon

y a test of 

(all P>0.3).

ration of th

bands. 

al power incre

in study III 

flecting the d

n is seen for 

39 

itor the 

an EEG 

 Hence, 

he brain 

ase after 

and the 

degree of 

 the two 



40 
 

7. System development 
To develop a system to identify biomarkers for the underlying pain and analgesic mechanisms in 

healthy volunteers and chronic pain patients, several methodological aspects had to be considered 

and tested in order to find the optimal approach for each study. 

 

7.1. Single-channel versus multi-channel recording 

The first aspect to be considered during project planning is the number of channels in the EEG 

setup. As the electrical activity in the brain may be generated at multiple sites simultaneously, the 

registration of the brain activity can be improved by recording from multiple electrodes on the scalp. 

In such a multi-channel setup, the positions of the electrodes are typically mounted according to the 

extended 10-20 system [195].  

     In study I, II, and IV we recorded EEG signals from 62 surface electrodes, and used a pattern 

recognition method to determine the electrode with the highest discriminative capacity between 

conditions. In study I we found the P4 electrode to be the most discriminative electrode, and when 

the 10 most discriminative features from the 6 best performing channels were included, a multi-

channel accuracy of 92.4% was obtained. Furthermore, in the multi-channel classification we found 

that two subjects were misclassified in the group analysis. These two subjects were both categorized 

as non-responders to morphine and had an increase in the delta band in contradiction to the 

remaining subjects, which all displayed decreased power in the delta band. However, the decrease 

in the delta band for the responders was not correlated to the analgesic effect, and to investigate 

the individual analgesic effect in further detail, we did a single-sweep analysis in study II. Hence, in 

this study we used the same data, and found a positive correlation between classification accuracy 

and analgesic effect when taking all channels into consideration in the analysis by appending 

features from the channels. In study IV we found the P1 electrode to be the most discriminative 

channel to discriminate the alterations after pregabalin treatment from the alterations after placebo. 

For this channel we found that the overall alteration of the EEG was correlated to the analgesic 

effect in chronic pain patients.  

     In contrast, we only recorded EEG traces from the vertex (Cz) electrode in study III. This design 

was chosen for several reasons: 1) we did not consider a multi-channel setup as an attractive 

solution to develop an application to improve enriched enrollment in clinical trial units, which was 

one of the proposed applications for the methodology; 2) a single-channel setup is preferable to 

develop a bed-site application to identify underlying mechanisms of abnormal pain processing due to 

central sensitization; 3) the EEG recordings were only a part of a very comprehensive setup 

investigating many aspects of pain processing, and requiring the subject to have a multi-channel cap 

mounted for several hours during the other tests was not considered an option; and 4) although a 

multi-channel setup would have enabled additional analysis of topographical distribution of 

frequency alterations including source localization, we have no reason to believe that such a design 

would have influenced the findings obtained in the study. This is supported by a previous publication 

on central sensitization where EEG traces were recorded by 62 surface electrodes [23]. In this 
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study, the alterations of the main peaks and brain sources before and after sensitization of the 

oesophagus with acid were explored. The analysis displayed that the main alterations were obtained 

at central electrodes, and only significant changes in the location of the dipole sources were found in 

the anterior cingulate cortex, which mainly affects the vertex electrode.  

    To further test the latter argument and provide deeper insight into the issue, we analyzed EEG 

traces from an ongoing study on central sensitization in healthy volunteers. This study is based on a 

62 channel setup to enable source localization, and consists of pre-treatment recordings followed by 

recordings 60 minutes after acid perfusion of the oesophagus. At the time being we have completed 

the study in 5 healthy volunteers, and extracted the power distribution in the frequency bands with 

the same wavelet method as in study III (Figure 22). As seen from figure 22, the power frequency 

distribution appears to be consistent over the scalp, and hence including more channels in the 

analysis is not expected to increase the performance of the pattern recognition method (although 

small improvements may occur).  

 

 Delta Theta Alpha Beta Gamma 
Pre-treatment 

     
Post-treatment 

     
 

Figure 22. Topographical frequency distribution before and after sensitization of the oesophagus with acid in 5 healthy 

volunteers in an ongoing study. The frequency characteristics are extracted by the same wavelet function as in study III. 

Results are normalized and scaled equally at pre- and post-treatment: delta(0 - 50%), theta(0 - 30%), alpha(0 - 30%), beta 

(0 - 15%), and gamma (0 - 10%) 

 

Taken together, we have in three studies recorded data from 62 channels and used this to 

discriminate the analgesic response on a group level and on a single subject level, and seen that the 

alteration of the EEG reflects the efficacy of the compounds in both healthy volunteers and chronic 

pain patients. However, it could be argued that handling of the multi-channel information could be 

improved by a more novel approach, as we in study II appended all features without taking into 

consideration that this would introduce many redundant features to the classifier, and in study IV we 

only used the best performing channel. Hence, improvement of the multi-channel information may 

in the future further improve the methodology. In contrary, we have in one study recorded EEG 

traces from only one electrode and used it to discriminate the pain processing on a group level and 

found that the overall alteration of the vertex electrode reflected the level of induced hyperalgesia.     
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7.2. Selection of feature extraction method 

Extraction of time-frequency features to be classified in pain and pharmacology studies is a non-

trivial challenge. Hence, for each study the method had to be based on an algorithm capable of 

extracting the desired features, which would at the same time lead to physiological meaningful 

results. Hence, the feature extraction had to be evaluated with respect to obtained results after 

classification. 

     As we originally expected to be able to base the pattern recognition on already developed 

methodologies for BCI applications, we used such an established method in study I. In this study, a 

DWT with 30 combinations of the MWF was used to calculate the frequency distribution before and 

after morphine administration. By this procedure we obtained satisfactory classification results for 

the DWT extracted features, as we were able to identify the non-responders to morphine treatment. 

However, the methodology was not sensitive enough to correlate the EEG parameters to the 

analgesic effect in each individual, which lead us to study II. 

     In study II, we assessed the individual alteration of EEG characteristics after morphine and 

placebo treatment compared to the respective pre-treatment recordings. This analysis was based on 

classification of single-sweeps, since we hypothesized that the modulation of the CNS could be 

changes in single-sweep amplitudes and non-phase locked oscillations of the evoked response 

[123]. However, when we applied the methodology from study I on the single-sweeps for each 

individual, several shortcomings of the approach was observed. When we classified the pre- and 

post-treatment responses for both morphine and placebo we obtained high accuracy for all 

individuals with no correlation to the analgesic effect. Consequently, to validate the approach we 

classified the two pre-treatment responses and the two post-treatment responses. These latter two 

classifications also gave high classification accuracies. Hence, the optimized DWT with 30 

combinations of the MWF appeared to be too sensitive when the optimization was limited to choose 

the solution with the highest accuracy without any constrains on how the feature extraction should 

be guided to only extract pain specific responses (Figure 23, left panel). To improve the feature 

extraction to only extract the pain specific responses, we applied the MMP algorithm to all sweeps 

for all four conditions for each subject, and used the atom amplitudes as input to the classifier. By 

this procedure we obtained high classification accuracy when discriminating individual pre- and post-

treatment responses to morphine and placebo and for the classification of the post-treatment 

responses, while the classification accuracy of the two pre-treatment responses was low as expected 

(Figure 23, right panel). 
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used the scaling procedure to calculate the frequency alterations before and after sensitization in 

comparison to placebo, as previous results have demonstrated increased amplitudes after 

sensitization [22;42]. This scaling was necessary to adjust for inter-subject variability and 

differences in signal level between days for the same subject.  

     In study IV we classified resting EEG, and used the CWT approach with the complex Morlet 

wavelet, as this methodology is well established and has given satisfactory results in previous 

studies, where it has demonstrated the ability to provide quantifiable information on static and 

dynamic parameters [25;168]. Hence, we believe the CWT method is the most optimal way to 

extract features from resting EEG. However, in future studies it could be considered to record the 

resting EEG for longer time periods, which would enable extraction of the first artifact free minute 

for analysis to avoid the cleaning procedure we applied. 

 

7.3. Selection of input features to the support vector machine 

The second part of the pattern recognition is classification, and in order to obtain physiological 

meaningful results, the SVM was optimized in regard to the parameters used to calculate the 

separating hyperplane and an appropriate kernel function was chosen. However, an even more 

important issue was to select meaningful input data. In study I we used the normalized marginal 

distribution for all subjects at pre-treatment as one class and the post-treatment responses to 

morphine as the second class. However, we also created three subfiles per subject for each class, 

which meant that during the training session we used some files from the subject under test, which 

is not an optimal solution. Consequently, based on the experiences we have gained from study III 

and IV, the methodology from study I is not recommended for further studies. 

     In study II we used the scaled amplitudes of the atoms on a single subject basis, which enabled 

an analysis of the four scenarios a) pre- versus post-treatment to morphine; b) pre- versus post-

treatment to placebo; c) pre-treatment responses from morphine versus placebo; and d) post-

treatment responses from morphine versus placebo. These four scenarios were tested by a leave-

one-out strategy and only traces from the same subject were discriminated. We consider this scaling 

procedure followed by all four classification scenarios the optimal solution of the single-sweep 

analysis.  

     In study III and IV we used the individual alterations of the EEG response pre- and post-

treatment to sensitization and pregabalin compared to alterations due to placebo as input to the 

classifier. This choice was based on the fact that the inter-individual differences were larger than the 

alteration of the EEG response after modulation of the CNS. Consequently it was not possible to 

discriminate the pre-treatment responses from the post-treatment responses to sensitization or 

pregabalin as we originally planned. An example of this important finding is illustrated in Figure 24 

for the data used in study IV, with the limitation that data is presented as theta and summation of 

beta contribution although the featurespace consisted of seven frequency bands. As can be seen 

from Figure 24a, although most subjects display common alterations, it is not obvious to calculate a 

decision rule to discriminate the pre- and post-treatment responses. However, in Figure 24b the 
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8. Ongoing studies 
To assess the broadness of the developed methods, the pattern recognition methodologies are now 

being applied to a patient group with neuropathic pain due to diabetes mellitus.  

     To study central mechanisms of autonomic neuropathy, we recorded multi-channel EPs following 

painful electrical stimulations of the oesophagus from 14 patients clamped at a blood glucose level 

of 6 and 15 mmol/l and 15 age and gender matched healthy volunteers before and after clamp at 6 

mmol/l. At the time being we have published results from the EEG analysis on basic features such as 

amplitude and latency and source localization of the grand mean traces [27;44;196;197]. One 

analysis compared patients and healthy volunteers (both clamped at 6mmol/l) and revealed that the 

diabetic patients had reduced sensitivity to electrical stimulation, increased latencies and reduced 

amplitude of the EPs. Furthermore, the source analysis revealed that on a group level the 

anatomical location of the dominating sources during acute pain were different in patients compared 

to healthy volunteers [44]. These results could be explained by a decrease in conduction velocity of 

both peripheral and central Aδ-fibers and “deafferentation” of peripheral/spinal fibers being 

damaged. When comparing the recordings for the patients clamped at the two different glucose 

levels, no difference in sensitivity, latencies and amplitudes of the EPs were observed [27]. 

Furthermore, we have compared how clamp influences healthy volunteers, and found no changes in 

the evoked brain potentials in terms of latency and amplitude [197].  

     As the EEG findings of latency and amplitude alteration in patients correlated with the 

gastrointestinal symptoms, further analysis is now in progress at an individual level in terms of 

feature extraction and classification of the EPs and dipole analysis.  

 

8.1. Frequency analysis of diabetes mellitus patients 

To gain further insight into the EEG alterations in patients with diabetes mellitus, we have extracted 

time-frequency features from the average traces from all patients and healthy volunteers. Features 

were extracted by the TMP algorithm to obtain an estimate of both amplitude and phase for the 

same atoms in all subjects. Furthermore, in contradiction to the feature extraction in study II, we 

decomposed all channels simultaneously to have the same atoms extracted for all channels as 

shown in Figure 25. Additionally we investigated the residuum level per iteration to explore how 

traces were approximated as shown in Figure 26. The classification for each channel was run by 

including amplitude and phase features appended for all number of atoms ranging from 1 to 10 as 

shown in Figure 27, where the residuum level is also displayed. As seen from these results, the 

classification performance is increased with increasing number of atoms.  

     These results indicate that feature extraction by TMP may be a way forward to discriminate 

chronic pain patients from healthy volunteers. 
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Figure 25. 
Decomposition of 
average traces from 
patients with diabetes 
mellitus and healthy 
volunteers. Traces 
from all channels and 
all subjects were used 
as simultaneously 
input to the algorithm. 
In the top row, an 
example of the traces 
from a representative 
patient (black) and a 
healthy volunteer 
(grey) is displayed. In 
the bottom two rows, 
the approximation by 
the first four atoms are 
presented for all 
channels for the 
patient (DM) and 
healthy volunteer 
(HV). As seen from 
these rows, the same 
atom is extracted for 
both subjects, but with 
different properties in 
respect to amplitude 
and phase 
characteristics. These 
characteristics were 
used as input to the 
SVM. 

 

 

 

Figure 26. Residuum 
level for all subjects 
and all channels as a 
function of number of 
iterations. 
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Figure 27. Classification performance when discriminating patients with diabetes mellitus from age and gender matched 

healthy volunteers. The classification is performed for each channel individually and with increasing number of atoms included 

in the analysis. Features for both amplitude and phase are given in the input vector to the support vector machine. The value 

in percentage indicate the residuum level. Results are presented on a scale from 80 to 100%. 

 

 

8.2. Source localization in diabetes mellitus patients 

Based on the promising results from classification of the TMP extracted features, the dataset was 

further analyzed to understand the pain mechanisms in individual patients. This was performed by 

source localization using the commercial software packet BESA® (BESA 5.3, MEGIS Software GmbH, 

82166 Graefelfing, Germany). In this software, a model was established based on 5 sources 

consisting of the anterior cingulate cortex, left and right insula, left and right somatosensory cortex 

(Figure 28). These sources were based on the grand mean traces to obtain a residual variance less 

than 10%.  
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9. Conclusions 
In conclusion, we have demonstrated that it is possible to identify biomarkers for abnormal visceral 

pain processing as well as for altered pain processing after administration of analgesics by 

classification of EEG responses in individual subjects.  

     This was obtained by first optimizing the EEG recording techniques to be able to record resting 

EEG and EPs with optimal signal-to-noise ratio and minimum distortion of signals due to necessary 

filtering of the traces. This was obtained by recording data in raw format without any unnecessary 

filtering, followed by post-processing with zero-phase filters in order to have constant group delay 

for all frequencies. 

     Secondly, we developed methods to classify healthy volunteers and patients on a group level by 

modification of some of the methodologies from BCI applications. During the development of the 

methods we observed several important aspects when applying pattern recognition to pain and 

pharmacological studies. First, in general when classifying subjects in a group analysis, the design 

should take into consideration that the inter-subject variability is larger than the alterations of the 

CNS response due to altered pain processing or pharmacological intervention. Secondly, when 

classifying resting EEG, the data should be normalized in order to be able to compare alterations 

between subjects. Third, when classifying EPs, the data should be scaled to adjust for variability in 

signal level between subjects and days. By this procedure the ratio between recordings before and 

after modulation of the CNS is preserved, and assessment of individual alterations is comparable to 

other subjects. Fourth, evaluation of results from the SVM should include both assessment of 

misclassified subjects as well as a correlation of the regression value and clinical pain scores, as this 

latter analysis gives an estimate of the complex interaction between brain oscillations. After realizing 

the importance of these recommendations, we were able to identify biomarkers for induced 

hyperalgesia in healthy volunteers, combine feature from source localization to classify patients with 

diabetes mellitus from healthy volunteers, and monitor the analgesic effect of pregabalin in chronic 

pain patients.  

     Third, we developed a method to classify healthy volunteers on a single subject basis by 

classification of single-sweep EPs. During development of this method we observed that due to the 

low signal-to-noise ratio in the single-sweeps, the feature extraction was of utmost importance, and 

should to a very high degree be restricted to only extract pain specific information. To fulfill this 

requirement, a new methodology was developed based on a combination of MMP and SVM. By 

applying this new approach, where the morphology of the single-sweeps were considered without 

directly classifying the latency information, we were able to discriminate the pre- and post-

treatment responses to morphine and placebo, and validated the method by obtaining high 

classification accuracy when discriminating the post-treatment responses while the accuracy was low 

when discriminating the pre-treatment responses. Interestingly, we were also able to correlate the 

individual classification accuracy for the morphine response to the analgesic effect on a single 

subject level.  
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     Finally, we brought the gained experiences and methodologies from the classification of healthy 

volunteers together to validate the methodologies by monitoring the analgesic effect of pregabalin in 

patients with chronic pain. By classifying the resting EEG alterations caused by pregabalin from the 

alterations observed in placebo treated patients, we were able to monitor the analgesic effect in the 

pregabalin treated patients. 

     Brought together, the results obtained in this Ph.D. thesis indicate that classification of EEG 

responses may provide an important future perspective to develop methodologies to identify 

biomarkers for pain and analgesic mechanisms in individual patients, which is an important step 

towards mechanisms-based pain diagnosis and treatment in clinical settings. 
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11. Danish summary 
Smerteudredning og efterfølgende behandling er en omfattende udfordring i sundhedssektoren på 

verdensplan. Udfordringerne i forhold til smerteudredning skyldes blandt andet at mange af de 

underliggende smertemekanismer endnu ikke er klart afdækket, samtidig med at der er et 

presserende behov for nye metoder til at klarlægge hvilke mekanismer der optræder i den enkelte 

patient. Da patienter kan have smerter fra flere smertemekanismer, er der yderligere behov for 

metoder til at monitorere hvorledes smertestillende medikamenter påvirker lige netop den eller de 

smertemekanismer de er tiltænkt.  

     Vigtigheden af at løse disse problemstillinger skal ses i lyset af at det er estimeret at 19% af den 

europæiske befolkning lider af kroniske smerter, og at under halvdelen har tilfredsstillende effekt af 

den udskrevne smertemedicin. Dette medfører store personlige og samfundsmæssige udfordringer 

med forringet livskvalitetet for patienterne og økonomiske konsekvenser for samfundet. 

     Da typiske smertemekanismer som for eksempel hypersensibilitet hidrører fra 

centralnervesystemet, er en mulig målemetode af smerter at anvende elektroencephalografi (EEG), 

der måler den elektriske aktivitet i hjernen som følge af kommunikation mellem forskellige 

hjernecentre. Denne aktivitet kan måles i hvile, hvilket afspejler den spontane hjerneaktivitet under 

kroniske smerter, samt under fremkaldte akutte smerter (”evokerede hjernepotentialer”), hvilket 

kan bruges til at afspejle den sekventielle og paralelle aktivering af hjernecentrene. Disse EEG 

målinger kan efterfølgende analyseres og ved hjælp af avancerede matematiske modeller kan 

karakteristika der beskriver hjernebølgernes frekvensegenskaber bestemmes. 

     De beregnede karakteristika kan herefter klassificeres hvilket giver et udtryk for forskellen 

mellem patienter og raske kontroller samt de ændringer der sker i centralnervesystemet efter 

indtagelse af smertestillende lægemidler. Ved at anvende metoder baseret på optimal adskillelse af 

grupperne ud fra en matematisk model (”support vector maskine”), kan man desuden opnå en 

individuel kvantificering af i hvor høj grad det enkelte individ er karakteriseret af en bestemt 

smertemekanisme samt hvorledes et bestemt lægemiddel ændrer individets EEG respons. 

     Ved at anvende avancerede modeller til at udtrække frekvenskarakteristika fra EEG signalet på 

individniveau efterfulgt af klassifikation af disse parametre, har vi identificeret markører for øget 

følsomhed fra de indre organer induceret i raske frivillige samt for følger efter nervebetændelse hos 

patienter med type-1 diabetes. Derudover har vi udviklet et system til at monitorere den 

smertestillende effekt efter en enkelt-dosis morfin i raske frivillige samt den smertestillende effekt 

efter tre ugers smertebehandling med pregabalin hos patienter med kroniske mavesmerter på grund 

af kronisk betændelse i bugspytskirtlen.  

     Disse resultater indikerer at klassifikation af EEG signaler er en mulig vej frem i forhold til at 

opnå bedre mekanistisk-baseret smertebehandling på individniveau, samt et værktøj til at vurdere 

de mekanistiske ændringer i centralnervesystemet ved behandling med smertestillende medicin. 
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