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Abstract 

A brain-computer interface (BCI) is a system that interprets brain signals 
generated by the user, allowing specific commands from the brain to be 
sent to an external device. Such interface enables severely disabled people 
to interact with their environment without the need for any activation of 
their normal pathways involved in motor commands.  The combination of 
rehabilitation paradigms and BCIs, both of which exploit cortical 
plasticity, could help people become “able” once again. For this reason, 
BCI systems appear promising rehabilitation tools. 
The aim of this PhD thesis is to study how a BCI system can be used for 
stroke rehabilitation when it is based on neuromodulation techniques 
using Hebbian plasticity and movement related cortical potentials 
(MRCP) with an optimum number of EEG electrodes. Four studies were 
conducted to achieve this goal: In STUDY I the novel protocol developed 
in Mrachacz-Kersting et al. 2012 had showed improvement in some 
relevant clinical measures used to access functionality of motor tasks in 
stroke population, when applied three times in a week as a training 
paradigm. These encouraging results from our first study alongside the 
Mrachacz-Kersting et al. 2012 study served as the basis for development 
of a self-paced BCI system for induction of plasticity. In STUDY II 
(pseudo online) detector for self-paced BCI system, based on movement 
intention detection from initial negative phase of MRCP, was proposed 
and tested in healthy volunteers and then in STUDY III real online self-
paced BCI system for induction of plasticity was implemented and tested. 
In STUDY IV a subject independent detector (based on STUDY II) was 
developed and compared with individualized detector. The results were 
promising as difference between performances of two approaches was not 
significantly different.  
 





 

Danish Abstract 

Et hjerne-computer interface (BCI) er et system, der fortolker 
hjernesignaler genereret af specielle kommandoer fra hjernen, som bliver 
sendt til et eksternt apparat. Dette interface gør alvorligt skadede personer 
i stand til at interagere med deres omgivelser uden brug af de normale 
nervebaner, der er involveret i motoriske kommandoer. Kombinationen af 
rehabiliteringsparadigmer og BCI, der begge inducerer kortikal plasticitet, 
kan hjælpe personer med at ’blive i stand til’ igen. Derfor lader det til, at 
et BCI-system er et lovende værktøj indenfor rehabilitering. 
Målet med denne PhD-afhandling er at undersøge, hvordan et BCI-system 
kan bruges i rehabilitering af slagtilfælde, når det er baseret på 
neuromodulationsteknikker, der gør brug af Hebbian plasticitet og 
bevægelsesrelaterede kortikale potentialer (MRCP), samt et optimalt antal 
elektroder. Fire studier blev lavet for at opnå dette mål. I STUDIE 1 viste 
anvendelse af en nye TMS-baseret intervention, beskrevet i Mrachacz-
Kersting et al. 2012,  forbedringer i relevante kliniske mål af 
funktionaliteten af motoriske opgaver hos patienter med slagtilfælde, når 
interventionen blev udført tre gange i løbet af en uge som et 
træningsparadigme. Disse opmuntrende resultater fra det første studie 
ledte til udviklingen af et BCI-system, styret i brugerens eget tempo 
(asynkron), til at inducere plasticitet. I STUDIE 2 blev en (pseudo realtid) 
detektor for et asynkront BCI-system, baseret på en bevægelsesintention 
fra den initiale negative fase af MRCP’et, lavet og testet i raske 
forsøgspersoner, og i STUDIE 3 blev et realtid asynkront BCI-system, til 
at inducere plasticitet, implementeret og testet. I STUDIE 4 blev en 
forsøgspersonuafhængig detektor udviklet (baseret på STUDIE 2) og 
sammenlignet med en individualiseret detektor. Resultaterne er lovende, 
da forskellen mellem præstationerne af de to fremgangsmåder ikke var 
signifikant forskellige. 





1. Introduction  
 
 
Stroke is the second leading cause of death and acquired disability in adults 
worldwide, and therefore it also constitutes a major health care cost (Endres et al. 
2011). The world health organization (WHO) estimates that the absolute number of 
first-ever stroke patients in the European Union and selected European Fair Trade 
Association Countries will increase from 1.1 million in 2000 to 1.5 million in 2025, 
if incidence rates remain stable (Truelsen et al. 2006). By 2030, it is estimated that 
almost 23.6 million people will die from cardio vascular diseases (CVD’s), mainly 
comprising heart disease and stroke (WHO 2012). Following a stroke, many 
patients unfortunately suffer an additional stroke. Recurrent strokes account for 
approximately 25% of the total (Burn et al. 1994). The improvement of both 
primary and secondary stroke rehabilitation and prevention is therefore very 
important. The consequences after a stroke can be very limiting for both the 
individual and the family, due to long-term impairments, limited activities 
(disability) and reduced participation (handicap). 

In general, there are two stages of treatment for stroke survivors. These 
are acute/intensive care and post-stroke rehabilitation. In acute stroke treatment, 
the stroke itself needs to be terminated to minimize the damage. Intensive care is 
subsequently required to prevent further damage to the unaffected portions of the 
brain, and to prevent complications (Gillen et al. 2004). In post-stroke 
rehabilitation, the aim is to restore or improve body functions so that the stroke 
survivor becomes as independent as possible, for instance, by motivating the 
patient to relearn basic skills. The primary means of rehabilitation include physical 
therapy, occupational therapy, and speech/audiology therapy. Physical therapy 
helps to restore the physical functioning and skills of the patients, such as walking. 
The major impairments that physical therapy aims to improve include partial or 
one-sided paralysis, faulty balance and foot drop. Occupational therapy involves 
relearning the skills needed for everyday living such as eating, dressing and taking 
care of oneself. In speech and audiology therapy, stroke survivors are assisted in 
problems with communication, swallowing or hearing (Gillen et al. 2004). 

Currently, there is a plethora of intervention strategies being analyzed, 
which are also being used to rehabilitate stroke survivors. Examples include 
pharmacotherapy, physical therapy, functional electrical stimulation and virtual 
reality therapy (Langhorne et al. 2009). The multitude of strategies available, 
coupled with the heterogeneity of stroke types, helps to explain why no single 
intervention has emerged as the most effective. Undoubtedly, as the number of 
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given neurophysiological signals) while their brain activity is being measured and 
processed by the system.  
 
The development of a BCI must follow a closed-loop process, generally composed 
of six parts: brain activity measurement invasively or non-invasively, 
preprocessing, feature extraction from acquired brain signals, 
classification/detection of the user intention, and translation into a command to 
external device and feedback (Figure 1). Traditionally, the different BCI systems 
are divided into several categories. Among these categories are 
dependent/independent BCI, invasive/non-invasive BCI, and synchronous/ 
asynchronous (self-paced) BCI. 

1.2 DEPENDENT VERSUS INDEPENDENT BCI 

 
A BCI system does not send the commands to control a computer through the 
brain's normal output pathways (Cabrera 2009). According to whether or not the 
subject uses muscle or nerve activity to produce brain activity, the BCI system is 
considered either dependent or independent. A dependent BCI requires a certain 
level of motor control from the subject, whereas an independent BCI does not 
require any motor control. In order to assist and help severely disabled people who 
do not have any motor control, a BCI must be independent. However, a dependent 
BCI can be of interest for healthy people, such as for playing video games.  

1.3 INVASIVE VERSUS NON-INVASIVE BCI 

 
A BCI system is classified as an invasive or non-invasive BCI according to the 
way the brain activity is being measured within the BCI (Wolpaw et al. 2002). If 
the sensors used for measurement are placed within the brain, the BCI is said to be 
invasive. On the contrary, if the measurement sensors are placed outside the head, 
on the scalp, the BCI is said to be non-invasive. Invasive recordings either measure 
the brain’s electrical activity on the surface of the cortex (electrocorticography, 
ECoG) or within the cortex (action potentials or local field potentials, LFP). Non-
invasive recordings are obtained as electrical activity from the scalp 
(electroencephalogram, EEG), magnetic field fluctuation (magneto encephalogram, 
MEG), metabolic changes (functional magnetic resonance imaging, fMRI, or near 
infrared spectroscopy, NIRS). Each recording technology has its advantages and 
limitations with respect to spatial and temporal resolution, portability and cost and 
risks for the user. As a consequence, a vast majority of current BCI research 
focuses on EEG signals, as they offer high temporal resolution, are low cost and 
risk, and  are portable (Soekadar 2011). 



           MRCP based brain computer interface for stroke rehabilitation 
 

 

4

1.4 SYNCHRONOUS VERSUS ASYNCHRONOUS (SELF-PACED) BCI  

 
Synchronous BCI systems are cue-based, meaning that they depend on a protocol 
that determines the onset, offset and duration of the operations. For example, a 
subject might be instructed to move a screen cursor horizontally to the left or right, 
according to the position of a target. Imaginary movements of the right hand will 
move the cursor to the right, and imagination of left hand movements moves the 
cursor to the left. The appearance of the target informs the subject as to the task 
they are required to perform, a few seconds after the appearance of the cursor the 
subject is warned to start the task that will produce the desired EEG activity. After 
a period of time a decision is made by the system on the imagined task (left or 
right), followed by feedback to the subject about his/her performance. Conversely, 
an asynchronous (self-paced) BCI is always active. Besides reacting to the pre-
determined mental tasks that control the system, it is also able to identify a rest or 
idle state. In the rest state, the subject does not intend to control the system and 
therefore the system does not react or give feedback to the subject. 

1.5 BRAIN SIGNALS USED IN BCI 

BCI aims to identify the brain activity of subjects by having them performing tasks 
with specific neurophysiological signals (such as brain activity patterns), so that 
commands can be associated with each of these signals. Several kinds of mental 
activities may be used to implement a BCI system, and they can be divided into 
two main groups according to how they are generated. In the first group, subject 
perceives a specific external stimulus that generates an evoked potential (EP, such 
as visual evoked potentials). In the second group, there is no external stimulation 
and the commands are voluntarily generated by the user. This follows an internal 
cognitive process called spontaneous signals (for instance, slow cortical potentials, 
sensorimotor rhythms and non-motor cognitive tasks). 

In this first category the main signals used in BCIs are the Steady State Evoked 
Potentials (SSEP) and the P300 (Müller-Putz et al. 2008, Donchin et al. 2000). The 
main advantage of EP is that, contrary to spontaneous signals, evoked potentials do 
not require specific user training, as they are automatically generated by the brain 
in response to a stimulus. Nevertheless, as these signals are evoked, they require 
external stimulations which can be uncomfortable, cumbersome or tiring for the 
user. Within the category of spontaneous signals, sensorimotor rhythms (SMR) are 
widely used, such as event-related de/synchronization (ERD/ERS) (Neuper et al. 
2009, Pfurtscheller et al.  1997). Less commonly used neurophysiological signals 
include slow cortical potentials, such as movement related potentials (MRP), (Do 
Nascimento 2005) and non-motor cognitive signals, for instance auditory or spatial 
navigation imagery (Cabrera 2009). In this PhD, the brain signals which have been 
investigated and discussed are a type of slow cortical potentials, namely the 
movement-related cortical potentials (MRCPs). 
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decoded brain activity. In order to use a BCI, a new skill must be learned so as to 
control brain activity to achieve the desired command, and alter the plasticity of 
the brain. This may take a long period of training for both the subject and the 
machine learning algorithms (Kennedy et al. 2000). Rehabilitation through BCI 
control-driven paradigms are based on the capability of learning to modify the 
efficacy of spared neural ensembles, such as those involved in movement, 
sensation and cognition, through progressive practice with feedback and reward 
(Dobkin 2004).   In this thesis, neuromodulatory BCI are defined as BCI systems 
specifically designed and optimized for inducing neuroplasticity. For these systems, 
the task of designing the feedback and its timing is very important in order to drive 
specific (rather than unspecific) cortical changes (for example, an increase in the 
excitability of a specific cortical area). 

Thus, learning processes are activated by cognitive and sensory 
experiences related to feedback from the environment and these are the important 
factors in inducing cortico-spinal excitability and modifications of brain circuitries. 
Brain adaptation which occurs due to any damage (stroke etc.) can also be 
considered as a learning process: thus the brain, although damaged, triggers a 
reorganization of its structure. Addressing issues concerning brain structure 
modification, and learning capacity due to brain insults, is very important for an 
effective translation of neuroscience results into rehabilitation (Kleim et al.  2008).  

Jackson et al (Jackson et al. 2001) proposed a model for utilizing the 
motor imagery in rehabilitation. They proposed that three elements contribute to 
the rehabilitative outcome: physical execution (musculo-skeletal activity), 
declarative knowledge (information about the skill the patient has to learn) and 
non-conscious processes. Definitely, because of the interaction among these three 
components, the outcome improves with physical execution, but this is not always 
possible or may be difficult in patients with brain damage. Thus, motor imagery 
could be helpful for such cases (Jackson et al. 2001). Moreover, the lack of motor 
execution stresses the role of declarative knowledge and could also be important in 
disclosing non-conscious aspects of motor learning (Jackson et al. 2001 & 2006). 

A closed-loop BCI system uses two types of feedback: sensory and/or 
visual. These types of feedback can be given in various ways. For example, 
sensory feedback can be delivered as electrical or tactile stimulation, whereas 
visual feedback can be given by moving a cursor on a computer screen or through 
virtual reality. These forms of feedback are provided in real time, showing the 
subjects how they are performing as a response to specific brain activity. Closed-
loop BCI may change cortical excitability because of plasticity in the brain areas. 
Plasticity is based on the causal association between pre- and post-synaptic 
connection. According to the Hebbian rule (Hebb 1949), synapses increase their 
efficacy if the pre-synaptic neuron consistently assists the post-synaptic target 
neuron to generate action potentials (Sejnowski 1999). One aspect in Hebbian 
learning relates to the temporal nature of inputs to neuronal synapses, meaning 
both pre- and post-synaptic neurons have to be active in order to induce a 
strengthening of the synapse (Gerstner et al.  2002).  
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1.6.1 Methods to artificially induce plasticity 

Plasticity in the human motor cortex can be elicited with various interventions. For 
example, Transcranial Magnetic Stimulation (TMS) has been used (Butefisch et al. 
2004) to enhance use-dependent plasticity when applied while the motor cortex is 
activated during the performance of a training task. Other non-invasive artificial 
protocols include repetitive transcranial magnetic stimulation (rTMS) (Ziemann 
2004) and pair associated stimulation (PAS) (Stefan et al. 2000).  
In PAS protocol, electrical stimulation of peripheral nerve is paired with TMS 
stimuli applied over the motor cortex (Stefan et al. 2002, Stefan et al. 2000).The 
idea behind applying these artificial inducing plasticity protocol like PAS protocol 
is two-fold, they can be used to investigate the mechanisms behind the plasticity of 
central nervous system and also it can be utilized as a rehabilitation tool for patient 
population e.g. stroke.  The PAS protocol was designed based on the model of 
associative long term potentiation (LTP) and long term depression (LTD) (Stefan 
et al. 2002, Stefan et al. 2000). The  plastic changes observed after LTP-induction  
are rapidly developing, long lasting, fully reversible and pathway specific (Bliss et 
al. 1973). Similarly, when PAS was applied for 30 minutes same changed were 
observed by Stefan et al. 2000. 

This thesis focuses on the induction of plasticity by triggering peripheral 
electrical stimulation (PES) with motor commands decoded by a BCI system. A 
novel technique (modified PAS) was presented based on a conditioning protocol 
for inducing the changes in the excitability of cortical projections to the tibialis 
anterior (TA) muscle (Mrachacz-Kersting et al. 2012). The conditioning  protocols 
consisted of a single electrical stimuli of the common peroneal nerve (CPN)  
delivered at motor threshold (MT) paired with cortical potential (Movement related 
potentials, MRP’s) to arrive during i) the preparation phase (CPN+RP), ii) the 
movement execution phase (CPN+MP) or iii) the movement monitoring phase 
(CPN+MMP) of the MRCP. A total of 50 pairings were applied in two sets of 25 
trials. The mean peak to peak TA motor evoked potential (MEP) amplitude 
measured prior to and following each intervention was plotted against TMS 
intensity. This relation was fit with a  and the Boltzman sigmoidal function by the 
Levenberg-Marquard nonlinear, least-mean-squares fit, as previously described 
(Devanne et al., 1997). 

In this study, it was demonstrated that a physiologically generated signal 
may be used to drive stimulation at a peripheries leading to associative LTP. 
Generally in PAS studies, when targeting lower limb muscles it requires  greater 
number of paired stimuli (Mrachacz-Kersting et al. 2007 ; Roy et al. 2007)  One 
possible explanation of this in past studies is that TMS has a low spatial resolution 
(Ziemann et al. 2008). It not only activates the targeted regions in the brain but also 
activates other nearby regions within range of the TMS coil. In contrast, the origins 
of the self-generated brain signals are more focal, possibly making them more 
suitable for Hebbian-based neuroplasticity.  
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The results also demonstrate the importance of the timing of PES in relation to the 
different MRP’s components and only the intervention where CPN was stimulated 
in conjunction with MP phase of MRCP led to significant excitability changes. The 
results also showed that afferent feedback from the periphery is necessary to 
induce the observed changes as motor imagery or PES alone did not lead to a 
significant change in excitability which was observed during the control 
experiments.  



2. Thesis objectives 
 
 

The results of the study by Mrachacz-Kersting et al. 2012 and earlier work in the 
BCI lab of Aalborg university lead to the work carried out in this thesis, which 
have potential implications in BCI systems for rehabilitation used for artificially 
inducing corticospinal plasticity. The aim of this thesis is to test the modified PAS 
protocol on stroke patients and develop it further in healthy subjects with a BCI 
system aimed at inducing plastic changes in the central nervous system based on 
electrical stimulation triggered by MRCPs detected from EEG signals. Four studies 
were conducted to achieve this goal:  
 

• STUDY 1 was conducted on stroke patients to observe the efficacy of the 
protocol (modified PAS) developed in the study by Mrachacz-Kersting et 
al. 2012, and its functional implications with respect to rehabilitation.  

• STUDY 2 addressed the problem of detecting the movement intention 
from single trial EEG. For this purpose, the initial negative phase of the 
MRCP was used. The detection system proposed is needed for 
implementing the protocol proposed in the first study in a self-paced 
paradigm.  

• STUDY 3 examined the complete self-paced BCI system for inducing 
changes in the excitability of the cortical projections to the target muscle 
in healthy volunteers online.  

• STUDY 4 developed the detection method proposed in Study II without 
the need for individualized training.  

 
The final outcome of the four studies is an online (Study III), non-invasive self-
paced (Study II) BCI system that does not require any training (Study IV) and that 
control peripheral electrical stimulation based on the detected movement intention.  
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3. Conclusion  

The design of assistive / restorative BCI systems aimed at rehabilitation of stroke 
or other neurological disorders has been an exciting emerging field in the last 
decade. This thesis focused on the artificial induction of plasticity by triggering 
PES with motor commands decoded by a non-invasive BCI system. BCI can be 
used for rehabilitation in two ways: by providing command signals for assistive 
technological devices, or to recover some abilities by following rehabilitation 
protocols in clinical settings. Assistive technology, e.g. exoskeletons, has been 
used for the last few decades and in the last decade BCI has been incorporated for 
commanding assistive devices. In this thesis we aimed at developing a non-
invasive restorative BCI.  

In the Mrachacz-Kersting et al. 2012 study, a novel conditioning protocol 
was proposed and evaluated on healthy subjects based on the fact that repeated 
activation of somatosensory afferents projecting onto M1 has a pivotal role in 
motor skill learning in monkeys (Pavlides et al. 1993). So, the basic idea was to 
couple the naturally generated brain activation, e.g. when a person imagines a 
simple movement, with the afferent inflow through PES in temporal synchrony. 
This modified PAS protocol showed the changes in excitability of the neural 
projections connecting the relevant brain areas to the target muscle. One of the 
intriguing facts about the proposed protocol is that it requires only 50 pairings to 
observe the reported changes in MEP amplitude, which are fewer in number than 
those required in conventional PAS protocols (Mrachacz-Kersting et al. 2007, Roy 
et al. 2007).  

There are very few studies on the application of BCI technology in 
patients with stroke using a multimodal approach, to better the understanding of 
the correlation between functional recovery and neurophysiological changes 
(Soekadar 2011). To improve this fact, Study I was conducted with a multimodal 
approach in a stroke population with the conditioning paradigm proposed by 
Mrachacz-Kersting et al. 2012. The results were encouraging and some of the 
clinically relevant functional measurement showed a significant improvement. The 
first study alongside the earlier study (Mrachacz-Kersting et al. 2012) served as the 
basic neurophysiological studies to design and develop a restorative non-invasive 
BCI system. For developing such a system it was required to detect/predict the 
movement intention in a self-paced BCI environment with short latency. For this 
purpose, in Study II the initial negative phase of the MRCPs was exploited and a 
technique based on optimization of spatial filtering for improving the signal to 
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noise ratio (SNR) of EEG signals was proposed and evaluated in a pseudo online 
manner. With the proposed method, it was possible to detect/predict the movement 
intention with latency ranging from -100ms to 100ms of movement onset. 

The results of study II paved the path for developing a full online non-
invasive BCI system for inducing plasticity (Study III). When the movement 
intention was detected, a PES was triggered (as shown in Study I for a cue-based 
paradigm). This intervention also modulated the corticospinal excitability of the 
projection of the target muscle in healthy subjects. In the last study (Study IV), a 
practical aspect of the BCI based system has been addressed. For classic BCI 
systems, training data is needed to calibrate the detector/classifier for each subject 
and for each session. In Study IV, we addressed this issue and proposed a detector 
approach for which the training of the detector algorithm (Study II) was done on a 
database of MRCPs rather than on a training set of MRCPs collected from the 
subject under study. In this way, the training/calibration phase is not done on a 
subject basis but is obtained through a dataset of pre-recorded signals from a 
subject population.  

This thesis aimed at the design and implementation of a BCI-based 
system which can send a command signal based on movement intention detection 
(prediction). The proposed system was used in restorative rehabilitation paradigms. 
There is an essential difference between “classic” assistive/restorative devices and 
BCI-based systems: the former depends on the brain’s natural output pathways, 
while the latter require that the central nervous system controls the cortical neurons 
instead of the spinal motor neurons. In order to achieve a more natural, and 
therefore reliable, BCI system, it will be more beneficial to shift the control 
strategy from process-control to goal-selection. 
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