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”A person who never made a mistake never tried anything new”

-Albert Einstein





Abstract

Conflicts between human activities and wildlife are an increasing problem,
and in many parts of the world damage caused by wildlife creates significant
economic challenges to human communities. Methods for reducing human-
wildlife conflicts are either ineffective, time consuming or costly. Both lethal
and non-lethal techniques are used for reduction of human-wildlife conflicts.
However, the use of lethal methods is often controversial, as there is a public
desire to co-exist with wildlife.

This thesis is focused on human-wildlife conflicts in agriculture. The
research has been driven by two very different conflicts between wildlife
and agricultural activities, namely the problems with large flocks of birds
in agricultural fields and wildlife mortality during mowing operations. The
scientific contributions of this Ph.D. thesis focus on how sensor technologies
and pattern recognition methods can be applied in the design of solutions
for the reduction of human-wildlife conflicts in agriculture and thereby con-
tribute to more ethical and efficient wildlife damage management. The result
is a collection of contributions to the design of pattern recognition and sig-
nal processing algorithms to enable the use of smart sensing in the solution
for human-wildlife conflicts. The achieved results are a significant step to-
wards a more efficient sensor based solutions for wildlife-friendly farming
and reduction of human-wildlife conflicts within agriculture.
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Resumé

Konflikter mellem menneskelige aktiviteter og dyreliv er et stigende problem,
og i mange dele af verden skaber skader, forårsaget af dyreliv betydelige
økonomiske udfordringer. Metoder til at reducere konflikter mellem men-
neskelige aktiviteter og dyr er enten ineffektive, tidskrævende eller dyre.
Både dødbringende og udskadelige metoder anvendes til reduktion af men-
neskelige aktiviteter og dyreliv. Brugen af dødbringende metoder er dog ofte
kontroversiel, da der er et folkeligt ønske om tolerance og beskyttelse af dyr.

Denne afhandling fokuserer på konflikter mellem dyr og menneskelige
aktiviteter i forbindelse med landbrugsproduktion. Forskningen har været
drevet af to meget forskellige konflikter mellem dyreliv og landbrugsakti-
viteter, nemlig problemer med store fugle flokke i marker og påkørsler af dyr
i forbindelse med høst. De videnskabelige bidrag i denne Ph.D. afhandling er
fokuseret på, hvordan sensorteknologier og metoder fra mønstergenkendelse
kan anvendes i design af løsninger til reduktion af konflikter mellem dyr og
menneskelige aktiviteter i landbruget, og dermed bidrage til en mere etisk
og effektiv løsning. Der præsenteres adskillige bidrag til design af signalbe-
handlings - og mønstergenkendelsesalgoritmer, der kan anvendes til intelli-
gent brug af sensorer til løsning af konflikter mellem mennesker og dyr. De
opnåede resultater er et væsentligt skridt i retning af en mere effektiv sensor-
baseret løsning på vildtvenlig landbrug og reduktion af konflikter mellem dyr
og menneskelige aktiviter i landbruget.
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1
Introduction

Human-wildlife conflicts are defined by the interaction between wild animals
and people, which result in a negative impact on people or their resources,
or wildlife or their habitat. These conflicts occur when growing human popu-
lations or activities overlap with established wildlife territory or migration.
Conflicts between wildlife and humans are increasing [88], and in many
parts of the world damage caused by wildlife creates significant economic
challenges to human communities.

Wildlife is often referred to as a resource [35]. Humans may benefit pos-
itively from wildlife at various levels including ecologically, economically,
scientifically and recreationally, like hunting and enjoying nature. Negative
values include loss of agricultural production, destruction of property and
wildlife-related human injuries (collisions etc.). Hence, the goal of wildlife
damage management may be defined as the attempts to reduce the negative
value, and thereby increase the net value of wildlife resources [35].

Human-wildlife conflicts are not an isolated phenomenon, and there are
many scenarios where wildlife can cause serious problems for human activ-
ities. This includes air travel, industry, wind power, tourism, sports events,
agriculture and many more. Both the nature of the conflict and the complex-
ity of the wildlife damage management setup can be very different in these
scenarios, e.g. in industry the problems can be isolated to a smaller area,
whereas airports cover a much larger region.

Effective management of wildlife is vital to reduce the negative impact
of human-wildlife conflicts. A wide range of devices and methods are used
in wildlife damage management; however, their effectiveness is often highly
variable due to habituation or limited impact [50, 133]. Habituation is the
gradual adaptation to frightening stimuli, and it is a major limitation to cur-
rent frightening devices. The use of frightening devices is a popular approach
to wildlife damage management. However, both lethal and non-lethal tech-
niques have been used in the struggle to reduce human-wildlife conflicts. The

3



4 1 Introduction

use of lethal control methods is often controversial to control wildlife damage
[50]. The public accepts the use of lethal methods when there are no alterna-
tives. However, they also believe that continued research towards non-lethal
methods is needed [110]. This motivates research towards more efficient,
ethical and wildlife-friendly methods for wildlife damage management.

To narrow the scope within human-wildlife conflicts, this thesis concerns
human-wildlife conflicts within agricultural production. The scientific con-
tributions of the Ph.D. project focus on how sensor technologies and pattern
recognition methods can be applied in the design of solutions for the reduc-
tion of human-wildlife conflicts in agriculture and thereby contribute to more
ethical and efficient wildlife damage management.

1.1 Human-Wildlife Conflicts in Agriculture

During the last decades, strong competition in the agricultural sector has re-
sulted in the need for high efficiency agricultural production, and the develop-
ment of high-efficiency farming equipment. These developments, along with
a dramatic increase in a number of animal populations, have led to serious
conflicts between wildlife and agricultural activities all over the world.

1.1.1 Conflicts with bird flocks

Large flocks of birds, such as geese, starlings, gulls and rooks, may dam-
age fruit trees, feed on livestock food supplies, and cause severe damage to
newly sown crops [50, 108]. This is an economic challenge to agricultural
production, and it has increased over the past decades due to an exponential
increase in animal populations1. An example of a large flock of birds is shown
in figure 1.1, where a large flock of geese has landed on an agricultural field.
These flocks may consist of thousands of birds, which are able to damage
large areas within a short time.

Gas exploders or visual stimuli, such as pop-up scarecrows, are often used
as frightening devices in this context. However, both methods are subject to
habituation, which is often the major limitation associated with the use of
frightening devices [103]. When habituation occurs, the birds perceive the
disruptive stimuli as part of the acoustic or visual scene, which no longer
pose as a threat. Gas exploders may also disturb nearby residents due to high
noise levels [50]. Animal activated methods have also been used in agricul-
ture. In most cases, these frightening devices are non-specific, so they can be
activated by any animal, and not only by the target species. This increases

1 This is especially the case for goose populations



1.1 Human-Wildlife Conflicts in Agriculture 5

the risk of habituation. Methods to delay habituation include changing the
location of devices, altering the periodicity of stimuli [72] or the use of a
combination of devices [50]. This can be very time consuming, which is
undesirable in an efficient agricultural production. However, a type of stimuli
that are promising for future frightening devices is bioacoustics [50].

Figure 1.1: A large flock of geese are foraging in a field with crops. Photo by
Domen Stanis

1.1.1.1 Bioacoustics

Bioacoustics refers to animal communication signals, which includes calls
like alarm and distress calls. Birds and other animals are less likely to habit-
uate to their own alarm and distress calls [24, 50]. Furthermore, animals are
more sensitive to alarm and distress calls, which affects them physiologically
[126]. This means that alarm and distress calls are more meaningful to ani-
mals, even at lower intensities, than other sounds [50]. Frightening devices
may therefore apply these stimuli at lower sound pressure compared to noisy
gas exploders.

Frightening devices using bioacoustic-based stimuli have been used in
various applications including cornfield protection [51], soybean field protec-
tion [21] and urban roosts [53]. A commercial system that utilize bioacoustics
is The GooseBuster2, which is specifically designed for Canada geese. The
system is based on alarm, alert and distress calls which are played back from
multiple speakers. The calls are altered in sequence of play, frequency, du-
ration and interval, thus providing variability in the frightening stimuli. In

2 http://www.bird-x.com/goosebuster-products-50.php?page id=104



6 1 Introduction

[136], the effect of the system is studied in three controlled experiments.
The author concludes that the use of timed alarm and distress calls alone
experience habituation, however, ”on-demand” playback and reinforcement
(using screamers and bangers) proved to be efficient to avoid habituation.

Habituation to bioacoustics have been reported in [16, 50, 137]. In [137],
the authors argue that this may be a result of the fact that the geese, used in
the experiment, were not able to escape the enclosed study site. In [24], the
authors conclude that alarm and distress calls are more resistant to habituation
than other sounds, but a pest controller needs to be able to identify species,
as most calls are species-specific.

The use of bioacoustics seems promising, however, more research is re-
quired within effective management of bird flocks. The reported strategies
and limitations of existing methods have been part of the literature review
in this Ph.D. project and have led to the concept of an adaptive frightening
device.

1.1.1.2 An adaptive frightening device

This Ph.D. thesis includes work and scientific contributions regarding the de-
velopment of an adaptive frightening device. Here, sensor technologies and
pattern recognition methods have been applied to improve existent frighte-
ning strategies and thereby reduce habituation. These contributions are pre-
sented in Chapter 2 of this thesis.

1.1.2 Mowing operations and wildlife

The increased need for high-efficiency agricultural production has resulted
in efficiency improvement of agricultural machinery, including machines for
grass mowing. This involves working speeds beyond 15 km/h and working
widths of more than 14 meters (see figure 1.2). Furthermore, many species
nest or seek cover in cultivated forage fields, where mowing operations take
place repeatedly and at a time when there is overlap with breeding season.
This contributes to wildlife mortality, as it almost impossible for the farmers
to see, and react to, the presence of the animals in the fields.

Several species are likely to be negatively affected by mowing operations.
These include not only common farmland species, but also endangered spe-
cies like the corncrake [56]. In particular, the nests of ground nesting bird
species like grey partridge or pheasant are vulnerable to farming operations
in their breeding habitat both as a result of the nests being destroyed [92] or
the incubating female being killed or injured [71]. In mammals, the natural
instinct of e.g., leverets of brown hare and fawns of roe deer, to lay low and
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Figure 1.2: An example of mowing operations. The machine in the picture
has a typical working width of 14.6 meters and working speeds from 18 km/h
to 22 km/h. Photo by Ole Green.

still in the vegetation to avoid predators increase their risk of being killed or
injured in farming operations [71] (see figure 1.3). As a result of the increase
in both working speed and width, adults of otherwise mobile species, e.g., fox
and roe deer, are now at risk of being killed or injured in farming operations
as they may be unable to escape the approaching machinery.

Although the extent to which wildlife populations may be affected neg-
atively by farming operations is difficult to assess, there is no doubt that the
risk of wild animals being accidentally injured or killed during routine farm-
ing operations has increased dramatically over the years. Besides the potential
effects on wildlife populations, fodder contaminated with carcasses of ani-
mals may impose a health hazard for livestock from infection by the bacteria
Clostridium botulinum causing botulism [48]. This may lead to substantial
commercial loss.

Moreover, an aspect that has only received little attention is the mental
stress imposed on the farmers, who occasionally face an injured animal dur-
ing farming operations. The health and safety issue associated with the farmer
having to do a mercy killing without the professional expertise should not be
ignored.

Various methods and approaches have been used to reduce wildlife mor-
tality resulting from farming operations. Delayed mowing date, altered mow-
ing patterns (e.g., mowing from the center outwards [55]) or strategy (e.g.,
leaving edge strips), longer mowing intervals, reduction of speed or higher
cutting height [55] have been suggested to reduce wildlife mortality rates.
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Figure 1.3: Here is an example of five fawns being killed during mowing
operations. Trained dogs where used prior to mowing, however due to human
error, one field was not checked for animals. Photo by Chresten Bergh.

Likewise, searches with trained dogs prior to mowing may enable the farmer
to remove e.g., leverets and fawns to safety, whereas areas with bird nests
can be marked and avoided. Alternatively, various scaring devices such as
flushing bars [55] or plastic sacks set out on poles before mowing [67] have
been reported to reduce wildlife mortality.

However, wildlife-friendly farming often results in lower efficiency. There-
fore, attempts have been made to develop automatic systems capable of de-
tecting wild animals in the crop without unnecessary cessation of the farming
operation. For example, a detection system based on infrared sensors has
been reported to reduce wildlife mortality in Germany [58]. In [64] a UAV-
based3 system for roe deer fawn detection is presented. The authors show that
thermal imaging can be used to detect roe deer fawns based on aerial footage.
However, the detection is performed manually, and should be automated to
increase efficiency.

1.1.2.1 Wildlife-friendly farming

This Ph.D. thesis includes work and scientific contributions regarding the
development of methods for wildlife-friendly farming. Here, sensor technolo-

3 Unmanned Aerial Vehicle
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gies and digital image processing methods have been applied to in the attempt
to develop automatic detection of the animals hiding in the vegetation. This
is presented in Chapter 3 of this thesis.

1.2 Smart Sensing in Agriculture

The use of sensor technology and pattern recognition is not a novel concept
in agriculture. Both microphones, cameras (including multi-spectral and ther-
mal cameras), accelerometers, lasers and other sensors have been used to
increase efficiency or gain vital knowledge of agricultural production and
operations.

Figure 1.4: An example of using microphones to measure pig welfare -
http:www.soundtalks.be

1.2.1 Acoustics

States of mood or emotion are often accompanied by specific behaviors, with
emission of sounds being one of them. This means that farm animal vocaliza-
tions may work as an indication of the well-being of livestock in agricultural
production [81]. In agricultural production, knowledge of changes in the well-
being of farm animals is very important. Abnormal changes in behavior may
indicate emerging disease, which, if not detected, may spread and result in
serious economic challenges. The advantage of using acoustic measurements
to estimate the health and behavior of farm animals is that it is inexpensive,
non-invasive and continuous. An example of a commercial application, which
measures health status of pigs, is shown in figure 1.4.
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In research regarding acoustic monitoring of livestock welfare [81, 82],
three important tasks, which should be applied in a framework for audio-
based recognition of animal welfare, is defined: 1) Expert knowledge4 of
the relationship between a specific vocalization and the emotional or health
state of an animal 2) Descriptive features of the vocalizations, and 3) Statis-
tical methods to compare these features. These tasks are similar to methods
applied in the field of pattern recognition.

A common characteristic of using microphones as smart sensors in agri-
culture is that the recorded data needs to be processed in order to gain value
from the efforts. In most cases, the processing step involves some degree of
pattern recognition, and research within this field have been highly influenced
by human speech recognition methods, and have incorporated both feature
extraction and pattern recognition methods from this [25, 76].

The vocalizations of animals range from periodic vocal-fold vibration to
completely atonal turbulent noise [81]. Therefore, a wide variety of acoustic
features have been used to describe the vocalizations of animals. This in-
clude time domain features, such as energy and duration, frequency domain
features, such as fundamental frequency, harmonics and bandwidth, cepstral
features, known from human speech recognition [22, 42] and coding models,
such as linear predictive coding [82]. For recognition based on these acous-
tic features, pattern recognition algorithms such as Hidden Markov Mod-
els [25, 73, 81], Gaussian Mixture Models [25, 130] and Artificial Neural
Networks [81, 82] have been utilized.

1.2.2 Vision

Like acoustic measurements, visual measurements offer a non-invasive me-
thod to monitor livestock; or crops. Given the appropriate camera technology
it is possible to record and recognize the behavior and health status of live-
stock [17, 114], or even distinguish between plant and weed during weed
control [119]. Cameras have a limited range compared to microphones, how-
ever, the level of information and the number of potential applications is
rich.

Camera technology has been used in a variety of different applications
in agriculture. The development of image processing algorithms is often data
driven, and there is no rigorous theoretical framework. However processing
steps such as segmentation, thresholding, tracking and pattern recognition is
often part of the solution [17, 93, 105]. Object recognition in images is not

4 Can be derived from experiments
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a trivial task, however, in agriculture, another challenge is the uncontrollable
environment. An example of this is shown in figure 1.5, where a closed box
is used to control lighting conditions in experiments regarding automated
detection and recognition of crops and weed.

Figure 1.5: Here is an example of a sophisticated computer vision setup.
This field robot detects and recognizes plants from weeds to reduce the use of
pesticides. Apart from multispectral camera technology, the robot is equipped
with Real Time Kinematic-GPS for navigation. Photo by Morten Stigaard
Laursen.

1.2.3 Other Sensors

Other sensors used in agriculture include devices like Global Positioning Sys-
tems (GPS) [121] or other wireless transmitters in a wireless sensor network
[99], or accelerometers, measuring the movement of specific parts of farm
animals [98]. These sensors are efficient, however invasive, and, therefore,
not suitable when dealing with wildlife.

1.2.4 Pattern recognition

The fundamental problem in pattern recognition is to provide a reasonable
answer for a given input. The output is bound to be uncertain, due to statistical
variations, and is often defined as the ”most likely” answer. An example of
pattern recognition is classification, which attempts to assign each input value
to one of a given set of classes. However, pattern recognition is a more general
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problem that encompasses other types of output as well, such as regression,
sequence labeling and parsing [23].

Pattern recognition can be roughly divided into two sub-categories: su-
pervised learning and unsupervised learning. Supervised learning assumes
that a set of training data is available. Training data consists of data that
have been properly labeled with the correct output for a given input. The
task in supervised learning is then to generate a model that performs as good
as possible on the training data, and generalize as good as possible to new
data. If the model perform very good on training but poor in new data, the
model might have been over-fitted to the training data [23].

Unsupervised learning, on the other hand, use data that has not been
labeled, and attempts to find patterns in the data that can then be used to
determine the correct output value for new data. A third category in pattern
recognition is semi-supervised learning, which is a combination of the two.
Here, the learning is based on both labeled and unlabeled data. Typically, this
method is used if it is very time consuming or expensive to get enough labeled
training data.

There are examples of pattern recognition in a wide variety of research
and commercial applications. Pattern recognition is used in speech recogni-
tion, optical character recognition5, face recognition in commercial cameras
and online image tagging software, spam filters and many more. The great
interest in pattern recognition, in both research and commercial applications
have resulted in a large toolbox of ready to use algorithms, which each have
their advantages and disadvantages. One of the important tasks in applied
pattern recognition, is to choose the right method, and choose the appropriate
parameters of the model to solve the problem at hand.

1.2.5 Smart sensing and wildlife

Smart sensing in agriculture is mostly focused on agricultural production and
its livestock. There has not been much attention to use this technology to
reduce problems with wildlife damage in the agricultural production. It is
clear, that there exist a technological gap in the development of effective and
cost-efficient methods to reduce human-wildlife conflicts in agriculture, and
other industries. The concepts of smart sensing could be utilized to close this
gap. This Ph.D. thesis contributes with theoretical frameworks and methods
for using smart sensing in wildlife damage management in agriculture.

5 Used in postal services for automatic handwriting recognition
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1.3 Research Methods

The approach that has been taken in this Ph.D. project focus on how to ap-
ply sensor technologies and pattern recognition methods in the context of
wildlife damage management. The research has been focused on proof-of-
concept algorithm development to design theoretical frameworks for reduc-
tion of human-wildlife conflicts in agriculture.

The work has been driven by two very different conflicts between wildlife
and agricultural activities, namely the problems with large flocks of birds
in agricultural fields and wildlife mortality during mowing operations. This
work shows the potential of utilizing commercially available sensor technol-
ogy and pattern recognition algorithms in wildlife damage management. In
both case studies, field experiments have been conducted to record data, and
evaluate perfomance6, in the natural environment. This has included design
and development of experimental systems.

The scientific contributions of the Ph.D. project are mostly focused on
how pattern recognition methods can be applied in the design of solutions
for reducing human-wildlife conflicts. Methods from human speech recog-
nition, bioacoustics, visual- and acoustic surveillance have been adapted and
extended to fit the needs within the topic of the project.

1.4 Research Hypothesis and Objectives

The overall hypothesis of the Ph.D. is formulated on the basis of the limita-
tions of existing solutions for reduction of human-wildlife conflicts, and the
opportunity to investigate the effect of using intelligent sensor strategies in
the interaction with wildlife:

Wildlife damage management can be performed in a more ethical,
efficient and wildlife-friendly manner, if based on new sensor technology,
pattern recognition and automation within tools and methods for wildlife

damage management

6 Performance of reduction of human-wildlife conflict in mowing operations have not been
evaluated as these conflicts are seasonal and; therefore, it was not possible to fit the schedule
of the Ph.D. project



14 1 Introduction

Based on the research hypothesis, the objective of the Ph.D. project is
to define a theoretical framework, based on sensor technology and pattern
recognition methods, and investigate the effect of using this framework in
wildlife damage management. The three main objectives are identified as:

(1) Design a framework for utilizing sensor technologies and pattern recog-
nition within wildlife damage management

(2) Develop algorithms for sensor based detection and recognition of wildlife

(3) Investigate the effect of the proposed theoretical framework in controlled
field experiments

1.5 Published and Submitted Work

This section presents the work published and submitted during this Ph.D.
project. To distinguish these publications from other references in the thesis,
they are prefixed with the letter “P”, e.g. [P2].

1.5.1 Publications

The publications listed here are all included in this thesis in Part II and III.

[P1] Kim Arild Steen, Henrik Karstoft and Ole Green (2011). A Multime-
dia Capture System for Wildlife Studies. Paper presented at The Third
International Conference on Emerging Network Intelligence, Lissabon,
Portugal.

[P2] Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft and Ole
Green (2012). A Vocal-Based Analytical Method for Goose Behaviour
Recognition. Sensors 12(3), pp. 3773-3788

[P3] Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft and Ole
Green (2013). An Audio Based Adaptive Goose Scaring Device. Paper
presented at CIOSTA XXXV Conference, Billund, Danmark.

[P4] Kim Arild Steen, Ole Roland Therkildsen, Ole Green and Henrik Kars-
toft (2013). Audio-Visual Recognition of Goose Flocking Behavior. In-
ternational Journal of Pattern Recognition and Artificial Intelligence.
27(7), pp. 21

http://www.thinkmind.org/index.php?view=article&articleid=emerging_2011_6_50_40032
http://www.thinkmind.org/index.php?view=article&articleid=emerging_2011_6_50_40032
http://www.thinkmind.org/index.php?view=article&articleid=emerging_2011_6_50_40032
http://www.thinkmind.org/index.php?view=article&articleid=emerging_2011_6_50_40032
http://www.mdpi.com/1424-8220/12/3/3773
http://www.mdpi.com/1424-8220/12/3/3773
http://www.mdpi.com/1424-8220/12/3/3773
http://www.worldscientific.com/doi/abs/10.1142/S0218001413500201
http://www.worldscientific.com/doi/abs/10.1142/S0218001413500201
http://www.worldscientific.com/doi/abs/10.1142/S0218001413500201
http://www.worldscientific.com/doi/abs/10.1142/S0218001413500201
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[P5] Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft and Ole
Green (2014). Audio-Based Detection and Recognition of Conflict Spe-
cies in Outdoor Environments Using Pattern Recognition Methods. Ap-
plied Engineering in Agriculture vol. 30(1), pp. 89-96
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1.6 Outline and Reading Guide

This thesis is structured in three parts, and it is written as a collection of
papers. Part I, gives an overview of the research topic and the contributions
based on a selection of the publications carried out as part of this Ph.D.
project. All contributions are numbered e.g. [C1], and framed. Part II and
Part III, contains a selected subset of the actual publications that is the base
of my contributions.

The publications introduced in Part I all fall within the topic of ”Pat-
tern Recognition Methods for Reduction of Human-Wildlife Conflicts”. The
work carried out in the Ph.D. has been divided into two subcategories within
this topic: Adaptive Frightening Device and Wildlife-friendly Farming. The
purpose of Part I is to give an overview of the publications and how they
contribute to the topic while introducing relevant background material and
related work. Part I introduces a total of 8 publications, where 6 have been
published, and 2 have been submitted.

Part I is structured as follows: Chapter 1 contains a short introduction of
the Ph.D thesis. Chapter 2 presents the publications: [P1, P2, P3, P4, P5, P7]
all concerning work within an adaptive frightening device. The chapter starts
with an introduction to current wildlife damage management strategies, fol-
lowed by the motivation for developing an adaptive frightening device. This
is followed by a description of the proposed theoretical framework, and an
overview of how the contributions relate to this. In the description of these
contributions, related work regarding methodologies and topic is also pre-
sented. The contributions described in this chapter is focused on acoustic and
visual signal processing and pattern recognition.

Chapter 3 introduces work regarding wildlife-friendly farming, and pre-
sents the publications: [P6, P8]. This chapter starts with an introduction to
wildlife mortality in mowing operations, followed by the motivation for the
research within this. This is followed by a description of the proposed the-
oretical framework for automatic detection and recognition of animals in

http://www.njf.nu/filebank/files/20110905$201945$fil$wty95l1bb8na1ooy24y7.pdf
http://www.njf.nu/filebank/files/20110905$201945$fil$wty95l1bb8na1ooy24y7.pdf
http://www.njf.nu/filebank/files/20110905$201945$fil$wty95l1bb8na1ooy24y7.pdf
http://pure.au.dk/portal/files/45572923/samlet_TCR_7_ver2.pdf
http://pure.au.dk/portal/files/45572923/samlet_TCR_7_ver2.pdf
http://pure.au.dk/portal/files/45572923/samlet_TCR_7_ver2.pdf
http://pure.au.dk/portal/files/45572923/samlet_TCR_7_ver2.pdf
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vegetation, and an overview of how the contributions relate to this. The con-
tributions and related work is focused on digital image processing of thermal
images.

Chapter 4 concludes the work within the Ph.D. and discusses the con-
tributions made. The contributions are compared to similar or related work,
and a critical review of the methodologies is presented. The conclusion con-
tains a discussion of how the contributions fulfill the research hypothesis and
objectives, and presents possible future work.

Part II and III lists a selection of scientific papers written by the author
of this Ph.D. thesis, in collaboration with others. Each chapter presents a
publication and starts by listing the bibliography entry for the publication
followed by the publication in its original form.





2
Adaptive Frightening Device

This chapter presents the work and contributions regarding the development
of an adaptive frightening device. Current wildlife damage management strate-
gies are presented, followed by the motivation for developing an adaptive
frightening device. A theoretical framework for implementing this is pre-
sented, and the scientific contributions to this are presented according to the
identified components of the framework.

The publications: [P1, P2, P3, P4, P5, P7] are presented in this chapter.
These publications include a total of seven contributions, which are framed
at the end of each section concerning a specific publication. The contribu-
tions are mostly focused on acoustic and visual signal processing and pattern
recognition.

2.1 Wildlife Damage Management

Wildlife damage management involves the timely use of a variety of cost-
efficient control methods to reduce wildlife damages to tolerable levels. Fright-
ening devices are an important tool used in wildlife damage management to
reduce the impacts of animals [50], and the goal of using frightening devices
is to prevent or reduce the damage of animals by reducing their desire to enter
or stay in an area [72, 103].

Visual and acoustic stimuli are among the frequently used methods in
the effort to reduce wildlife damage caused by birds such as geese, rooks,
gulls, blackbird and startlings [50]. Systems include gas exploders, mylar
ribbon, moving and reflective objects, firecrackers, models of predators, ultra-
sonic devices and distress/alarm calls [72]. The effectiveness of these devices
ranges from a few days to a few weeks, at best.

In [50], a combination of stimuli is recommended to increase the effec-
tiveness. However, also the timing of activation of frightening devices is often
a critical factor, and random or animal-activated devices may reduce habitu-

19



20 2 Adaptive Frightening Device

ation [72, 103]. Here radar, or motion sensors can be utilized [122], however,
these methods are not very cost-efficient and non-specific.

2.1.1 Bioacoustics in wildlife damage management

A type of acoustic stimuli that are promising for future frightening devices is
bioacoustics [50]. Bioacoustics are animal communication signals, and this
communication includes alarm or distress calls. Alarm calls are vocalizations
used to warn other animals of danger. An example is the loud calling of a
disturbed Canada goose [16]. The communication signals are usually species-
specific [24].

Frightening devices using bioacoustic-based stimuli have been used in
various research applications. In [16], the authors used bioacoustics for man-
agement of Canada geese, and found that the geese moved up to a 100 meters
away from the device but never left the area. In [95] they reported a reduc-
tion of 71% in goose numbers when using bioacoustics. In [100], the author
compared the use of species-specific distress calls to using suspended crow
carcasses for wildlife damage management. It is concluded that the use of
distress calls proved to be very effective, whereas the carcasses had no effect.
In [53], the authors also concluded that treatment with tape-recorded distress
calls were able to scare crows away from their roosts.

There exist a few commercial systems, which utilize bioacoustics. The
GooseBuster1 is specifically designed for Canada geese. The system is based
on alarm, alert and distress calls which are played back from multiple speak-
ers. The calls are altered in sequence of play, frequency, duration and inter-
val, thus providing variability in the frightening stimuli. In [136], the effect
of the system is studied in three controlled experiments. The author con-
cludes that the use of timed alarm and distress calls alone experience habit-
uation, however, ”on-demand” playback and reinforcement (using screamers
and bangers) proved to be efficient to avoid habituation.

Another, more diverse system is the Scarecrow Premier 1500, together
with the Ultima2. This system is based on manual operations and is specif-
ically designed for airports. The system uses a roof mounted loud speaker
system, together with an arsenal of alarm and distress calls, which can be
played back if the operator sees the birds. The Ultima includes a visual de-
scription of the birds of interest, which makes it easy for an operator to
recognize the birds. This system is not suitable for agricultural production,

1 http://www.bird-x.com/goosebuster-products-50.php?page id=104
2 http://www.scarecrow.eu/
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however, it has proven efficient in airports, where cost-efficiency is surpassed
by flight security.

The LRAD system3 also utilize bioacoustics to protect airports/runways,
wind turbines and agricultural activities. The system i based on a directional
system, which can playback predator sounds at great distance. The activation
of the system is either based on manual operation or radar technology. This
makes the system too expensive in most cases of agricultural production.

Habituation to bioacoustics have been reported in [16, 50, 137]. In [137],
the authors argue that this may be a result of the fact that the geese, used in
the experiment, were not able to escape the enclosed study site. In [24], the
authors conclude that alarm and distress calls are more resistant to habituation
than other sounds, but a pest controller needs to be able to identify species,
as most calls are species-specific. These observations raises the questions:

Is it possible to design an automated system to avoid habituation?

and

How can sensor technology be used in such a system?

2.2 Wildlife Communication Framework

Based on reported results and a review of present frightening devices, a num-
ber of properties, which an effective frightening device should satisfy, has
been identified. The device must be able to alter the periodicity of stimuli and
make it possible to utilize a combination of stimuli. When frightening stimuli
is based on bioacoustics, which seems most promising, the device should
be able to detect and recognize specific species. Thereby, the stimuli can
be targeted towards these species most effectively. Furthermore, the device
should enable reinforcement, if needed.

These characteristics have led to the theoretical framework shown in fig-
ure 2.1. The framework is based on perception and action, which is the
fundamental design of an intelligent agent [113]. In this design, a model is
used to interpret incoming signals, and act accordingly. The model can be
a simple if-then (e.g. the activation of an infrared sensor leads to a specific
action), or a more sophisticated model, which perceives the world in a sta-
tistical manner, and base decisions on learning algorithms, such as pattern
recognition algorithms.

3 http://www.lradx.com/
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Figure 2.1: The proposed theoretical framework of an adaptive frightening
device

The framework enables detection and recognition of species, which pro-
motes timely use of bioacoustic, or other, stimuli. Futhermore, behavior re-
cognition could monitor subsequent changes in behavior when frightening
stimuli has been applied. This will make it possible to act accordingly, if re-
inforcement is needed. This framework, based on the design of an intelligent
agent, features the components of an adaptive frightening device.

The identified components of the framework are: Detection, Species Re-
cognition, Behavior Recognition and Decision of Action. The published
work, presented in this chapter, contains contributions to one or more of
these components. In table 2.1, an overview of the published work and their
contributions to the framework, is shown. It is seen that some papers include
more components and some papers contribute to the same component, but
based on different methods.

A brief description of each component, together with the rationale for
including the component in the framework, will be presented in the following
sections. The proposed methods, and a short presentation of the results and
contributions is also included.
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Table 2.1: Overview of publications and their contributions within the frame-
work of an adaptive frightening device. The component Data Collection is
not a part of the actual framework. However, it is critical in the design of the
algoritms within the framework.

Component
Data Detection Species Behavior Decision

Collection Recognition Recognition

Ref.

[P1] x
[P5] x x
[P2] x
[P7] (x)a

[P4] x x
[P3] x

a Behavior recognition was not implemented, however acoustic source tracking
could be utilized for recognition of behavior

2.3 Reseach Contributions

This section presents contributions from the published or submitted work.
The contributions are presented according to the identified components of
the framework for an adaptive frightening device as presented in table 2.1.
This section starts with a brief description of acoustic pattern recognition, as
this is an important part of the Ph.D. thesis.

2.3.1 Acoustic pattern recognition

The main focus of the work regarding an adaptive frightening device is within
acoustic pattern recognition. This section contains a brief description of the
tasks within acoustic pattern recognition.

The main task in acoustic pattern recognition is to extract low-dimensional
acoustic features from a high-dimensional acoustic waveform, and thereby
utilize classifier algorithms to recognize a specific call-type, a species or an
individual based on recorded acoustic data. These processing steps are re-
ferred to as acoustic feature extraction and pattern recognition in this thesis.

The first important step is to choose the acoustic data of interest, which is
known as segmentation [45]. Both manual and automated segmentation has
been utilized in research [34, 45, 129]. Manual segmentation is not suited for
automatic recognition of vocalizations, however, the method can be useful
when designing a classification scheme for later use. In this thesis, the task of
segmentation is presented as the first component (detection) of the frightening
device, which is presented in Section 2.3.3.
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2.3.1.1 Acoustic feature extraction

The goal of feature extraction, with respect to classification, is to represent
different vocalizations or bird calls in such a way that they are distinguishable
in the given feature space.

Feature extraction for animal vocalization recognition is inspired by re-
search within human speech and speaker recognition [25, 76]. Among the
most frequently used features for speech processing are model based features
such as Linear Prediction Coding (LPC) and Mel-Frequency Cepstrum Co-
efficients (MFCC). This has also been utilized in this thesis, where MFCC
has been the method of choice. The process of MFCC feature extraction

Pre-
emphasis

Windowing FFT | |² 

log DCT

Signal

Spectral
vectors

Cepstral
vectors

Mel-Scale filterbank

Figure 2.2: Flow of MFCC feature extraction

is shown in figure 2.2. In MFCC feature extraction, the frequency scale is
warped according to the Mel-scale, which is a logarithmic scale designed to
mimic the auditory perception of humans. The calculation of MFCC is often
carried out using a Mel-scale filter bank, consisting of a number of critical
band filters with center frequencies adjusted to the Mel-scale. The log-energy
of each critical band is represented by spectral vectors, and a cosine transform
converts the spectral vectors into cepstral vectors, according to:

cn =
K -1∑
k=0

Skcos

(
n

(
k -

1

2

)
π

K

)
n = 0, . . . ,K -1 (2.1)

Here cn is the nth cepstral coefficients and Sk is the spectral log-energy of
the kth band.

Both LPC and MFCC are frequently used in research regarding animal
vocalizations, however other, so called descriptive features have also been
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Table 2.2: Summary of related research papers within audio based recogni-
tion of animal species and behavior

Ref. Animal Segmentation Features Algorithm(s)

[25] Whales - Cepstral HMM & GMM
[130] Birds STE/ZCR MFCC & PLPa DTW & GMM
[34] Birds & Manual GFCC HMM

Elephants
[33] Elephants Manual MFCC HMM
[45] Birds Threshold in MFCC SVM

Energy domain Descriptive
[66] Cows - MFCC HMM
[73] Zebra Finch Manual MFCC HMM & DTW
[76] Birds Threshold in aMFCC & aLPC LDAb& HMM

frequency domain &
[81] Farm animals - MFCC & LPC ANN & HMM
[82] Pigs Manual LPC ANN
[115] Pigs - LPC SOMc

[129] Antbirds Manual MFCC & LPC HMM
[132] Birds - Descriptive SVM
[89] Monkeys Manual MFCC ANN

a Perceptual Linear Prediction
b Linear Discriminant Analysis
c Self-Organizing Map

used in recognition of animal vocalizations. Descriptive feature includes du-
ration, signal bandwidth, short time energy etc.

These acoustic features are utilized in the subsequent pattern recogni-
tion algorithm. In this context, a number of acoustic features are often com-
prised into a feature vector which is used in the mathematical framework of
a specific pattern recognition algorithm.

2.3.1.2 Pattern recognition

Recognition of animal vocalization, based on extracted features, is a pattern
recognition problem. As with feature extraction, the pattern recognition algo-
rithms used in animal vocalization research, are highly influenced by methods
proven successful in human speech recognition, the most popular being the
Hidden Markov Model (HMM) [25, 33, 73, 81, 107]. However other models
such as Support Vector Machines (SVM), Dynamic Time Warping (DTW),
Artificial Neural Networks (ANN) and Gaussian Mixture Models (GMM)
have proven useful in classification of animal vocalizations [25, 45, 81, 130].
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In table 2.2 there is a summary of research papers, which was part of the
literature review of this thesis. The papers describe methods for recognition
of animal vocalizations or behavior, based on auditory information. It is seen
that LPC and MFCC are frequently used for feature extraction, and the HMM
is by far the most popular pattern recognition algorithm.

This section includes a brief overview of three different approaches to
pattern recognition of acoustic features. The algorithms HMM, SVM and
GMM have all been used in animal vocalization research, and both GMM and
SVM have been utilized during this Ph.D. project. I have decided to include a
short description of HMM as well, as it is by far be most popular algorithm in
vocalization recognition, due to its ability to capture both the stochastic and
temporal variability in similar vocalizations.

Gaussian Mixture Models
The GMM is a statistical model capable of representing the probability distri-
bution of the acoustic features for a given class. The probability distribution
is modeled as a mixture of N Gaussian distributions (2.2)

p(x) =
N∑
i=1

πiN (x | µi ,Σi) (2.2)

Here, the parameters µ and Σ are found from training data, which is
manually labeled. The parameters πi are the mixing coefficients, which must
satisfy

∑N
i=1 πi = 1. The parameters describe the statistical properties of the

GMM, and much training data is needed to capture the true statistics of the
acoustic features. The GMM is trained using known vocalizations as training
data, and the parameters of the GMM are estimated using the expectation
maximization (EM) algorithm. The EM-algorithm is an iterative algorithm for
deriving the maximum likelihood solutions for models with latent variables
[23].

In figure 2.3 an illustration of a two class problem is shown. The two
classes are modeled with two different GMMs inR2; however, the GMM can
be defined in higher dimension, based on the dimensionality of the acoustic
features. The red class requires two Gaussians to model the statistics of the
data, whereas the blue class only needs one. The contours show the resulting
models.

Given a new observation, which may consist a number of extracted fea-
ture vectors: X = [x1, . . . ,xM ], the probability of each class can be calcu-
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Figure 2.3: Illustration of GMM based pattern recognition

lated. This is usually calculated as a log-likelihood (2.3)4 for each class. The
subsequent classification is based on maximum likelihood.

log p(X) =
1

M

M∑
i=1

log p(xi) (2.3)

Hidden Markov Models
The HMM is a state based model, where hidden states follow the properties
of a Markov chain. The Markov model is often used to model sequential data,
where the probability of an observation is influenced by prior observations.
Expressed here as the first-order markov chain:

p(Xn+1 = x | X1 = x ,X2 = x2, . . . ,Xn = xn) = p(Xn+1 | Xn = xn)
(2.4)

4 The log-transform allows for the use of the sum operator which is not as sensitive to
rounding and close to zero estimates as the product operator
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This makes the model excellent for modeling speech and specific animal
vocalizations, where the sequential information of spectral data is important
in the recognition algorithm.
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Figure 2.4: Illustration of a HMM for a single vocalization

In figure 2.4 an example of a HMM used for animal vocalization recog-
nition is shown. The hidden states (1-4) follow the left to right model, often
used in speech recognition [107]. They are called hidden states, as only the
state outputs are observable. In vocalization recognition, these observations
could be the extracted, often cepstral, features. To incorporate temporal in-
formation, the probability of observing a given feature vector is dependent
on the current state, and thereby a sequence of observations is bound to a
sequence of hidden states. This probability of a given observation for a given
state is often modeled by a GMM [23].

The parameters of the HMM include state transition probabilities and
observation probability distributions. These parameters can be estimated via
the Baum-Welch method [107], and the training of the HMM is within the
category of supervised learning, as samples of known vocalizations needs
to be available. The Baum-Welch method is an iterative procedure which
maximizes the probability of the model parameters given an observation of
known label.

Given a new observation, which may consist of a sequence of extracted
feature vectors (as with GMM), it is possible to compute the probability of
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the observation sequence given a specific model5, and thereby assign a class
to a new observation. An excellent tutorial in HMM for speech recognition
can be found in [107].

Support Vector Machines
The SVM is a supervised learning algorithm which can be used in both lin-
ear and non-linear pattern recognition problems [26]. The models are based
on structural risk minimization principle, which improves the generalization
ability of the classifier [124]. Since the introduction of the model in the 1990s
[134], the SVM has become a popular method of choice for many applica-
tions, including behavior recognition and speaker identification [27, 83].

m
argin

y = 1

y = 0

y = -1

Figure 2.5: Illustration of SVM, where the model is based on maximizing the
margin. The class labels are y = 1 or y = -1 and the decision boundary is
given by y(x) = 0

In training the SVM, an optimization algorithm tries to find the line,
plane or hyperplane (2.5) which best separates data from two classes. This
is accomplished by finding the largest possible margin (see figure 2.5). Inde-
pendent on the dimension of the data, a hyperplane can be expressed as

y(x) = wTx + b (2.5)

and the SVM training includes estimation of w and b given labeled data.

5 An example could be a HMM for each call-type
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As only the data points near the line, plane or hyperplane are used in
the final model; the SVM is useful when limited training data is available as
it not necessary to estimate distributions. The data points in the final model
are called support vectors. In figure 2.5 this principle is shown. Here, the
data points marked with circles are the support vectors, which are used in
the model for classification between classes. In the figure these classes are
labeled as y = 1 or y = -1 and the decision boundary is given by y(x) = 0.

SVMs can handle data that are not linearly separable. This is accom-
plished by the use of kernels (2.6), where data is transformed by φ(x) to
a higher dimension, where non-linear data becomes linearly separable. This
is not a computationally costly expansion of the SVM, as a kernel function
(2.6) provides that only the dot product needs to be calculated. The SVM is
one of the many pattern recognition algorithms which utilize this kernel trick,
and kernel parameters are an important part of SVM model training.

k(x,x′) = φ(xT )φ(x′) (2.6)

Here, x′ is the data to be classified by the SVM.
The structure of the SVM leads to a binary classification, where the output

is either one class, or another. However, it can also be used for multiclass
purposes [104, 124]. A more detailed description of SVM can be found in
[26].

2.3.2 Data collection
Collection of training and test data is important when developing supervised
learning algorithms. There exist on-line sound libraries of thousands of spe-
cies, including potential conflict species in agriculture6,7. However, as pre-
sented later in this chapter, both the link between vocalizations and behavior
and the opportunity to use multiple sensor inputs, is of interest in this Ph.D.
thesis. Therefore, a recording system was designed to record synchronized
audio and video in a wildlife setting. The system is presented in [P1], where
requirements such as remote access, uncompressed data and standalone power
source are taken into account in the design.

The system recorded for one month, and 4-5 hours of useful data was cap-
tured during that time. This data have been used for algorithm development
in [P2, P4, P5]. Furthermore, the experience gained during recording, have
been utilized to design the prototype of an adaptive frightening device used
in [P3].

6 http://macaulaylibrary.org/
7 http://www.animalsoundarchive.org/
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2.3.3 Detection

As described in Section 2.3.1 the process of acoustic pattern recognition in-
volves manual or automatic segmentation of signals of interest. In speech
or vocalization recognition the segmentation task is to find voice segments
in a continuous audio recording [109]. In outdoor environments, both high
degrees of background noise and other sudden changes in the acoustic scene
are present. This increases the complexity of automatic detection. Therefore,
the question to be answered is: Is it possible to achieve robust detection of
conflict species in an outdoor environment, based on audio recordings?

There exist limited work regarding robust detection of bird species, as
most research is based on manually labeled data. In [45], the author uses a
threshold defined by an estimate of the background noise energy level, in his
work regarding automatic bird species recognition. However, in the context
of outdoor devices, this may be difficult to estimate accurately, due to the
non-stationary noisy environments with sudden noise and varying levels of
this, such as gusts of wind. Acoustic arrays are utilized in [132], and this al-
lows for higher threshold values of the energy measurements in the detection
stage. The detection scheme used in the array is presented in [18]. Here, they
model the background noise as a Gaussian distribution and set the threshold
above the mean of the estimated distribution. In [130] a mixture of energy
and zero-crossing-rate is used to separate bird calls from silent periods in the
recorded data. Despite the similarity of analyzing bird vocalizations, none
of the research mentioned has been working with bird flocks or the acoustic
scene of agricultural fields.

An algorithm for detection of conflict species based on acoustic mea-
surements is presented in [P5]. The algorithm is based on a probabilistic
framework, where the probability of conflict species versus background is
evaluated by GMMs. The GMM is used to model the density of acoustic
features and has proven to be a good model in human speaker recognition,
where only the spectral information is used for recognition [111], compared
to speech recognition where temporal information is important. The purpose
of both detection and the subsequent species recognition is not to recognize
specific calls, but rather to detect the presence and recognize the species based
on the measured soundscape. The GMMs are capable of modeling the multi-
modality of animal vocalizations. Hence, GMMs were chosen over HMM to
model both conflict species and background.

The flow of the proposed algorithm is shown in figure 2.6. The detection
algorithm is given by a Multiple Hypothesis Model, which evaluates the prob-
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Figure 2.6: Flow of the proposed algorithm in [P5]

ability of conflict species versus the probability of background (no conflict
species), and make a decision based on pre-defined threshold (Λ > Th). The
algorithm includes both detection and species recognition, based on acoustic
feature extraction and GMM evaluation. In figure 2.7, the concept of GMM
based detection is visualized. In the figure, a background model and a conflict
species model are shown. These are trained on the acoustic features of labeled
data. Given a new observation, which consist of feature #1 and feature #2,
the probability of this being a conflict species or part of the background,
is calculated based on the trained models. The models shown in the figure
are manually generated for visualization purposes, as the a 2-dimensional
visualization of the models in [P5] is not possible8.

As presented in Section 2.3.1.1 MFCC features are widely used in animal
vocalization research, and these are also utilized in [P5]. Acoustic pattern
recognition algorithms which utilize MFCC feature extraction has yielded
good results across a variety of taxa including frogs, crickets, birds, cows
and fish [30]. This generic feature of MFCC is attractive with respect to the
proposed framework, which should be capable of managing various conflict
species.

The paper includes four conflict species: Rooks, Barnacle-, Pinkfooted-
and Greylag geese, which are all concatenated into one conflict species model
(with multiple mixtures, as seen in figure 2.7). The performance of the detec-
tion algorithm is found via a five-fold cross-validation [23]. In a five-fold
cross-validation, the extracted feature vectors are randomized, and 4/5 are
chosen for training data, and the remaining 1/5 is test data. The division of

8 The models are of a higher dimension, and a simplified 2-dimensional visualization
would not illustrate the concept in a good manner
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Figure 2.7: Illustration of the concept in conflict species detection based on
GMM models. The figure shows an example of a background model and a
conflict species model in a 2-dimensional feature space

data is continued five times until all data has been both training and test data.
The proposed algorithm achieves a detection rate of 0.98, which is decreased
as signal-to-noise ratio decreases, as seen in table 2.3. The SNR given in the
table is simulated by adding additive white gaussian noise to the original data,
which consist of various wildlife recordings of the conflict species.

The algorithm is based on a background model, which should model all
other sounds than the conflict species. This requires more data, than used in
the paper, and an evaluation of the true performance of the algorithm is there-
fore difficult to present. It is not possible to acquire a complete background
model of all possible sounds, however a local background model9 could be
used. Here, a model update scheme, based on semi-supervised learning, could
be utilized to train new models based on new measurements [41, 94]. This
will be further discussed in Chapter 4.

9 A model representing the common sounds in a specific geographic location
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Table 2.3: Performance of conflict species detection

Predicted

Observed Conflict Species Background

Conflict species (SNR = 5 dB) 0.74 0.26
Conflict species (SNR = 10 dB) 0.81 0.19
Conflict species (SNR = 12 dB) 0.86 0.14
Conflict species (SNR = 15 dB) 0.88 0.12
Conflict species (SNR = 18 dB) 0.93 0.07
Conflict species (original data) 0.98 0.02

Contribution 1. A framework for detection of bird flocks based on
acoustic measurements and statistical modeling

Video recordings have been used in surveillance applications where de-
tection of specific events is an important part of this. Here, background sub-
traction or motion estimation are among the frequently used methods. In [P4],
an algorithm based on audio-visual fusion is presented. The main contribution
of the paper is within automatic behavior recognition, and the contribution
will be presented in more detail in Section 2.3.5.2. However, the class of no
activity is included in the algorithm. This could be utilized to detect activity,
and thereby aid in the detection of the presence of specific species. The audio
and video recording supplements each other and the algorithm achieve good
performance. However, due to the limited field of view of the camera, the
proposed method is, at this point, not suitable in an agricultural setting, where
large areas should be monitored.

2.3.4 Species recognition

The next component in the proposed framework is species recognition. The
framework is focused on the use of alarm calls as disruptive stimuli, and
also base the decision of when to frighten the birds, on observed behavior
(is presented in Section 2.3.5). The communication signals within a bird
flock, or between individual birds, are usually species-specific [24]. Hence,
the proposed framework should include the feature of species recognition
if bioacoustics are used as frightening stimuli, and the question that drives
the contribution included in this thesis is: Is it possible to utilize acoustic
measurement to perform robust recognition of conflict species?
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Acoustic based species recognition is comparable to the task of speaker
recognition. The result is a hypothesis of who, or what, is talking or vocali-
zing, based on spectral or other acoustic information in the recorded audio.
Different species have different acoustic characteristics, and acoustic pattern
recognition can be utilized to recognize between different animals, species
and even individuals within the same species.

As presented in table 2.2, different feature extraction methods and pattern
recognition algorithms have been used for animal vocalization recognition,
including work on species recognition.

In [129], authors use HMM to distinguish songs from five species of
antbirds. Here, the various songs have very different spectral and temporal
characteristics, and the HMM is able to capture both the spectral and tem-
poral information in the songs, resulting in classification performance above
90%. In [115] LPC feature extraction is utilized based on a brief analysis
of pig sound production, which is similar to human sound production. Even
though songbirds vocalization include harmonics, which is comparable to the
formants found in LPC, birds like geese and rooks produce a more non-tonal
sound which is not captured by the LPC model.

The study performed in [45] include bird species comparable to the scope
of this thesis; namely the hooded crows and greylag goose. However, only
individuals, and not flocks, were investigated. The author achieves the best
results with a mixture of MFCC and descriptive features. He argues that the
resulting feature vector is very high-dimensional; however, classification is
based on SVM, which are less sensitive to the curse of dimensionality [23,
124].

Based on the similarities between human speaker recognition and animal
species recognition, and the literature review presented in table 2.2, the algo-
rithm presented in [P5] is based on MFCC feature extraction and GMM for
classification of specific conflict species. The proposed species recognition
algorithm is included in the paper regarding detection of conflict species.
In figure 2.6 the individual species recognition is the last step of the block
diagram. When a conflict species is detected, the probability of each species is
evaluated. Each species model is a GMM, trained on labeled data (presented
in the paper). The species with the highest probability is the output of the
algorithm.

In figure 2.8, the conflict species data from figure 2.7 are labeled accord-
ing to species. The species recognition algorithm models each species as a
GMM, as seen in the figure. Like GMM based detection of conflict species,
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Figure 2.8: Concept GMM based species recognition. Here the conflict spe-
cies data from figure 2.6 is divided into specific species. The evaluation of
probability follows the same concept as with conflict species detection

the acoustic features represent the soundscape of the individual species, and
the purpose is to classify species and not individual call types10.

The proposed algorithm is evaluated via five-fold cross-validation and
achieves classification precision between 87% and 95%. The proposed me-
thod has not been tested in real life scenarios, and it is, therefore, difficult to
conclude if these results are good enough for the proposed application of an
adaptive frightening device. However, it can be concluded that it is possible
to utilize vocalizations to automatically recognize specific conflict species in
a flock. The algorithm for species recognition was not tested in different SNR
as the detection part of the algorithm. In [129] the authors conclude that clas-
sification performance is decreases as SNR decreases, which is also expected
from the proposed algorithm. Simulations with various levels of SNR should
have been conducted to strengthen the contribution and conclusion of [P5]
with respect to species recognition.

10 As with human speaker recognition, which should be invariant to the choice of words
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More species could be included in the framework, however, with a poten-
tial cost in performance. An increase of models would increase the possibility
of overlap within the feature space, which could result in more erroneous
classifications.

GMMs are used to model the distribution of features within the fea-
ture space. In the paper, recognition of barnacle geese has the strongest per-
formance, and this species is also the species of which most training data
was available, which is important in modeling probability distributions. Even
though, feature selection was performed to reduce the curse of dimensionality
[23], more data could be used for GMM training to increase performance.

Contribution 2. GMM based framework for recognition of specific
conflict species based on their vocalizations

2.3.5 Behavior recognition

The initial hypothesis of the proposed framework (see figure 2.1) is that an
action from the system is capable of altering animal behavior. In a frightening
scenario, the intended result is flight, based on fear. Therefore, an adaptive
system need to be able to monitor change in behavior, based on the ability to
recognize behavior, and react accordingly.

Methods used within animal behavior research include attached tracking
devices like GPS [121] or other wireless transmitters in a wireless sensor
network [99], or accelerometers, measuring the movement of specific parts
of the animal body [98]. Acoustic information has also been used in chew-
ing behavior recognition of cows [131], however, these methods also rely
on attaching a device on the animals. These methods are not suitable when
the purpose of the animal behavior recognition, is to utilize the results in
a wildlife damage management system, as it is not possible to attach these
devices on the animals. Therefore, non-invasive sensors, like microphones
and cameras, are a necessity in this context.

In [132] acoustic measurements, within an array, are utilized to recognize
vocalizations for source identification and localization, and thereby recognize
bird behavior. However, their study is focused on individuals. Other stud-
ies utilizing acoustic measurements include recognition of dolphin behavior
[125], measuring pig and chicken welfare [36, 81], and real-time stress mon-
itoring of piglets [97]. This research show that it is possible to recognize
behavior based on acoustic measurements, whether it being recognition of
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specific calls or the soundscape of multiple animals, which is being presented
in this thesis.

A more frequently used non-invasive technique for behavior recognition
is video recordings. In video recordings, digital image processing techniques
and tracking algorithms can be utilized to detect and recognize specific move-
ments, which are linked to certain behaviors. Compared to acoustic mea-
surements, the range of visual information may be lower. However, the link
between visual information, like movement or posture, and behavior is more
straightforward. A popular application in automated video based behavior
recognition is laboratory experiments, where changes in mouse or fish be-
havior is important for medical research or behavioral research [84, 138].
More domain related applications include monitoring of livestock behavior,
including pigs [17, 127], chickens [36] and cows [80]. These applications are
either focused on controlled experiments or indoor applications, which is not
the case with wildlife in an agricultural setting.

During the Ph.D. project various methods for automatic behavior recog-
nition, have been proposed based on both audio and video recordings. The
most recent approach, based on using an array of microphones, has not been
used for behavior recognition within the Ph.D. project. However, results from
this work may be utilized in future work.

In the following three subsection, three different strategies for automated
behavior recognition are presented.

2.3.5.1 Single microphone setup

A certain behavior is a mixture of responses to internal and external stimuli,
and a full description of behavior would include internal as well as external
responses [127]. Therefore, the task of measuring behavior can be a difficult
one. However, acoustic information may provide useful information about an-
imal behavior, as animals may use different vocalizations based on their state
of mind. This is especially true for birds within a flock, as they utilize acoustic
communication within the flock to express this. Thereby recognition of inter-
species communication could be used for automatic behavior recognition.
This was the hypothesis in [P2], where audio recordings of wild geese during
different behaviors are utilized to train a supervised learning algorithm, and
thereby develop an algorithm for audio based behavior recognition.

The data, utilized in the paper, is acquired by the system described in [P1].
Here two occurrences of three behaviors: landing, foraging and flushing, were
recorded. The amount of data is limited; hence the SVM has been chosen for
classification of behavior.
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In the proposed algorithm, the SVM is used in a multiclass setup using a
directed acyclic graph [45, 104], and is trained in a one-versus-one manner.
To avoid over-fitting in the training, a soft margin SVM is utilized [20, 26].
The soft margin SVM allows for misclassifications during training, which
makes it possible to adjust the generalization properties of the model. As
the extracted acoustic features were not linearly separable, a radial basis
function kernel has been utilized as kernel in the algorithm. The weights and
bias of the SVM are found through optimization. However, the soft margin
parameter and the kernel parameter are fixed values, which must be defined
before training. To choose the best possible parameters for the algorithm, grid
search, which is a standardized method for SVM kernel parameter selection,
was utilized [29, 60].

In [P5] MFCC features were used for detection and species recognition.
These features have been shown to be useful in both human speech recogni-
tion [42, 139] and animal vocalization recognition. However, animals do not
perceive sounds equally as humans, which means that MFCC may not be use-
ful for audio based behavior recognition, as this is based on the inter-species
communication. In [34] generalized perceptual features are introduced. This
feature extraction method is based on the Greenwood function [57], which
assumes that sound perception is on a logarithmic scale (like the Mel-scale)
but that this scale differs for different species. Greenwood found this to hold
true for mammals, however, in [15] the Greenwood Function Cepstral Co-
efficients (GFCC) are used for recognition of Ortolan Bunting songs with
good results. In [P2] GFCC features are utilizes for the audio based behavior
recognition. The paper includes data from two occurrences of the specific

Table 2.4: Model performance for each behaviour classification

Performance

Behaviour Accuracya Precision b Sensitivityc

Flushing 0.93 0.66 0.79
Landing 0.90 0.79 0.91
Foraging 0.91 0.98 0.86

a Ratio of correct predictions (both positive and
negative) that were correct
b Ratio between correct postive and incorrect
postive predictions
c Ratio of correct classifications versus total
number of predictions
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behaviors. Performance measures are found via five-fold cross-validation,
where data from these occurrences have been mixed and randomized. The
GFCC and SVM based algorithm achieves the performance measures shown
in table 2.4.

Landing behavior, which is an important behavior to detect11, achieves
fair performance with precision of 0.79. However, some overlap between
flushing and landing behavior is present in the feature space (as seen in the pa-
per). Both training and test data were manually chosen in order to isolate the
hypothesis of audio based behavior recognition, and not focus on detection of
specific vocalizations. This means that the SNR is high for the data utilized in
the paper, and it is expected that decreased SNR would result in more overlap
between classes. This is the motivation for further work within automatic
behavior recognition, which includes audio-visual behavior recognition and
array based tracking.

Contribution 3. A novel method for recognition of flocking behavior
based on acoustic pattern recognition

2.3.5.2 Audio-visual recognition

The main contribution of sensor fusion is based on the idea that multiple,
orthogonal, sources of information achieve better performance compared to
using one source alone. An excellent example of this is within audio-visual
speech recognition, where a combination of visual and acoustic features pro-
vide better results in the case of low SNR [106].

In animal flocks, both the movement and the vocalizations, i.e. the com-
munication within the flock, is often associated with certain behaviors. The
hypothesis of [P4] is that fusion of audio and video are suitable for robust
multi-modal recognition of animal flocking behavior, and thereby provide
improved performance compared to using audio alone.

There are different strategies for fusing audio and video information. In
human audio-visual speech recognition research, feature fusion and classifier
fusion have been used to fuse the information from the two sources [106].
The most common method used in speech recognition is to perform feature
fusion in a multi-stream HMM. However, SVM models for audio based re-
cognition was developed in [P2], and, therefore, multi-stream HMM was not

11 The birds are more alert while landing and a disruptive stimuli will have a better chance
of success
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found suitable for this application. Furthermore, in contrast to feature fusion
methods, the classifier fusion framework provides a mechanism for capturing
the reliability of each modality, and thereby design the algorithm for robust
recognition based on knowledge of the individual classifier performance [70].
In [P4], a classifier fusion strategy is implemented, where classifiers for each
individual source were designed.

Vision based recognition of bird flock behavior is similar to the task of
crowd behavior recognition. Popular approaches in crowd motion estimation
are background subtraction, temporal differencing and optical flow [37, 61,
135]. Optical flow estimation is utilized in the paper regarding audio-visual
recognition. It is an approximation of the motion in an image sequence and
has been used in animal behavior recognition, crowd motion simulations and
event detection [37, 40, 86].

Flock 

behavior

Vocalizations

Feature 

extraction
Classification

Microphone

Pre-

processing

Feature 

extraction
Classification

Pre-

processing

Fusion

Camera

Behavior

Short time sequences

Frame level

Figure 2.9: Flow of the proposed framework for fusion of audio and video
information for animal behavior recognition. The framework is based on
classifier fusion.

It has not been possible to find any work regarding automatic recogni-
tion of animal behavior based on audio-visual information. Most research
regarding the link between visual and acoustic information for animal behav-
ior recognition utilize either manual observations or manual inspections of
video recordings. In [96] video recordings of chickens were used for manual
detection of group behavioral pattern in an experiment to link their vocaliza-
tions with the thermal environment. Likewise, [125] uses video recordings
for linking dolphin sound to their location and behavior, and in [97] manual
observations were used to link vocalizations to the stress level of piglets.

In figure 2.9 the proposed framework, for classifier fusion based audio-
visual recognition, is shown. The audio based recognition is based on SVM
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models as in [P2], however, with a slight change in output values. In the
paper regarding audio based recognition, the output from the SVM models,
were hard outputs, meaning one class or another. In the proposed classifier
fusion framework, this has been modified to soft outputs. The soft output is a
measure of probability of each behavior. This property is also the case for the
video based classifier and is utilized in the final step of classifier fusion.

In the video based classifier, the probability of each behavior is estimated
based on optical flow estimation for each frame. As behavior is a sequential
action, these probability estimates are updates based on Bayes’ rule (2.7)

P(A | B) =
P(B | A)P(A)

P(B)
(2.7)

where P(B | A) and P(A) is the likelihood and prior, respectively. The
denominator P(B), sometimes called evidence [23], ensures that the poste-
rior probability P(A | B) is a valid probability measure. In the presented
algorithm, B denotes data, which is given by optical flow estimates and A
denotes behavior. At each frame, the posterior probability of a behavior given
the data, is updated based on prior information of this behavior and the current
probability of data given a specific behavior. Thereby, the output of the video
based classifier is a vector containing probability estimates for each behavior
(like the audio based classifier).

The classifier fusion, given soft outputs from the individual classifiers,
have been implemented in the following manner: Given R classifiers, the
pattern Z can be assigned to m possible classes {ω1, . . . , ωm} by

assign Z → ωj if

P(ωj | x1, . . . ,xR) = max
k

P(ωk | x1, . . . ,xR) (2.8)

where P(ωj | x1, . . . ,xR) denotes the probability of class ωj given the vector
containing soft outputs, x, from R different classifiers. In the paper, the sum-
product- and mean rule for calculating class probabilities are evaluated.

In table 2.5 the performance of the different fusion strategies is compared
to using audio and video alone. It is seen that the overall performance is
improved using all fusion strategies.

The fusion slightly degrades the performance of the video-based clas-
sifier with respect to sensitivity, which is a result of the outputs from the
audio based classifier (as presented in the paper). However, even though the
sensitivity is degraded both the accuracy and specificity has been improved.
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Table 2.5: Comparison of performance using audio (A), video (V) or clas-
sifier fusion, sum (S), product (P) and mean (M), (mean ± s.d.). The four
classes are No Geese (NG), Flushing (FL), Landing (L) and Foraging (FO)

Performance

Behavior C Accuracya Specificityb Sensitivityc

NG

A 0.97 ± 0.03 0.97 ± 0.03 0.95 ± 0.05
V 0.96 ± 0.03 0.99 ± 0.004 0.88 ± 0.001
S 0.99 ± 0.002 0.99 ± 0.003 1 ± 0
P 0.99 ± 0.004 0.99 ± 0.005 1 ± 0
M 0.99 ± 0.002 0.99 ± 0.003 1 ± 0

FL

A 0.91 ± 0.05 0.98 ± 0.02 0.71 ± 0.22
V 0.88 ± 0.08 0.84 ± 0.11 1 ± 0
S 0.98 ± 0.04 1 ± 0 0.92 ± 0.17
P 0.98 ± 0.04 1 ± 0 0.9 ± 0.17
M 0.98 ± 0.04 1 ± 0 0.92 ± 0.17

L

A 0.88 ± 0.07 0.88 ± 0.1 0.88 ± 0.07
V 0.89 ± 0.08 0.97 ± 0.06 0.65 ± 0.33
S 0.97 ± 0.04 0.97 ± 0.06 0.99 ± 0.007
P 0.97 ± 0.04 0.97 ± 0.06 0.99 ± 0.01
M 0.97 ± 0.04 0.97 ± 0.06 0.99 ± 0.007

FO

A 0.96 ± 0.03 0.97 ± 0.03 0.92 ± 0.08
V 0.97 ± 0.04 0.99 ± 0.003 0.91 ± 0.17
S 1 ± 0 1 ± 0 1 ± 0
P 0.99 ± 0.01 0.99 ± 0.01 1 ± 0
M 1 ± 0 1 ± 0 1 ± 0

a Ratio of correct predictions (both positive and negative) that were cor-
rect
b Ratio of correct negative predictions (the ability to reject)
c Ratio of correct positive predictions

The improvement of landing behavior recognition is an important result in
the paper, since robust recognition of landing behavior is an important part
of an adaptive frightening device. Immediate detection of landing behavior
is crucial to scare off bird flocks while they are alert. However, the video-
based recognition performs worse than the audio based in the case of landing
behavior. This is due to the nature of landing behavior. Not all geese land at
the same time and some geese might take off again to find a better location.
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This affects the robustness of the optical flow estimates, which are utilized in
the video based classifier.

Furthermore, the limited field of view of cameras, and the constant need
for maintenance, makes a video based method impractical in real life scenar-
ios. The advantage of using visual information in behavior recognition is the
direct link between movement and behavior. However, this property is not
unique for camera based systems, as localization through sensor arrays may
provide similar results. This is the motivation the work within microphone
array based localization and tracking of acoustic sources, which is presented
in the next section.

Contribution 4. A theoretical framework for fusion of audio and video
in animal behavior recognition

2.3.5.3 Multiple microphone setup

Microphone arrays have been utilized by [132] to localize and track indi-
vidual birds, in order to investigate behavior. Here microphone arrays were
chosen as it was not possible to use camera technology, as the application of
interest was antbirds in the jungle12. They use an array of arrays, meaning
that a single sensor node is comprised of four microphones. This results in
robust direction of arrival (DOA) estimates which are used for localization
of the birds. The array system is very sophisticated, and several papers have
been published on the subject including descriptions of the hardware archi-
tecture [52], self-localization algorithms and bird localization algorithm [18],
and individual bird recognition based on vocalizations [132]. However, their
application is not comparable to the application of an adaptive frightening
device, as a frightening device should monitor and frighten bird flocks in large
regions of interest. Furthermore, there is a desire to develop a cost-efficient
method for wildlife damage management.

Sensor array based localization is mostly based on three types of phys-
ical variables: time difference of arrival (TDOA) [79, 120], DOA [68] and
received signal strength, e.g. energy based methods [62, 87]. Long baseline
microphone arrays, where the distance between single microphones is large,
is a cost-efficient method to monitor activity in a large region of interest. In
long baseline arrays, the geometry of the array affects both time and energy
measurements, due to long travel times and a high degree of attenuation. The

12 Dense vegetation led minimum visibility
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high range between source and sensors leads to low SNR that affects both
energy- and phase-based methods (TDOA and DOA). The large separation
between sensors also affects the phase-based methods, as turbulence will
de-correlate the signals. Furthermore, TDOA and DOA requires very accu-
rate synchronization between microphone pairs. This requires high sampling
rates, complicated infrastructure and more computation at each sensor. En-
ergy measurements reduce the need for high sampling rates and data transfers,
compared to the TDOA and DOA. Moreover, the cost of computing energy
levels is very low. This makes energy based localization (EBL) a cost-efficient
method for acoustic surveillance of a large area.

In [118], EBL methods are used for localization and tracking of an am-
phibious assault vehicles and dragon wagons along a road. They used approx-
imately seven to nine sensors in a region of 100×150m2. In [43] microphone
arrays are used for vehicle tracking, including classification of the vehicles
based on acoustic features. These applications are not within animal behav-
ior recognition; however, there is a common objective, which is to monitor
movement from specific objects within a large region.

Acoustic source localization
In [P7] a tracking algorithm based on energy measurements within a long
baseline microphone array is presented. Energy based localization is based
on the energy decay model (2.9), where the energy at the ith sensor, within a
microphone array, is calculated as follows:

yi(t) =
s(t-τi)

‖rs -ri‖α
+ εi(t) i = 1, 2, . . . ,N (2.9)

Here s(t-τi) denotes the source energy over a time interval, given by t .
The time required for the signal to propagate from the source to the ith sensor
is given by τi . The vectors rs and ri denote the unknown source position and
the known sensor position, respectively. The noise term εi is white Gaussian
measurement noise with variance σ2εi . The decay factor α may vary due to
the environment, however α = 2 is a good approximation [62].

This model has two unknowns, namely the source energy s(t-τ) and its
position rs . By calculating the energy ratio (2.10) between two microphones
(the ith and the jth), the source energy, which is not of interest in the scope
of localization, is removed from the problem. By approximating the additive
noise term ε by its mean value µ, the energy ratio K can be calculated:
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Kij =

(
yi -µi
yj -µj

)- 1
α

=
‖rs -ri‖
‖rs -rj ‖

(2.10)

All possible source locations rs that satisfy the above equation is located on
a D-dimensional hyper-sphere given by |rs -cij |2 = ρ2ij where the center cij
and radius ρij associated with the sensor pair i and j are given by:

cij =
ri -K

2
ij rj

1-K 2
ij

and ρij =
Kij ‖ri -rj ‖

1-K 2
ij

(2.11)
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Figure 2.10: Example of LS based localization in noisy measurements with
SNR = 7± 1 dB. It is seen that LS estimates are erroneous. The notation©
indicate a microphone position

Based on these hyper-spheres, an unconstrained least-squares (LS) solu-
tion can be formulated by considering different pairs of hyper-spheres [87].
In figure 2.10 the LS solution is utilized for localization of a moving acoustic
source within a long baseline array. In the simulation, background noise was
added to the measurements, and it is seen that the estimate is erroneous in
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many cases. This makes localization alone unsuitable for tracking moving
acoustic sources as background noise will occur.

Acoustic source tracking
The tracking algorithm presented in [P7] is based on the cost reference par-
ticle filter (CRPF). The CRPF is a new class of particle filters which is able
to estimate the system state from the available observations without a priori
knowledge of any probability density function [91]. Hence, it is suitable for
real life application, where a statistical model of the system is not always
known. In the paper, the system state consists of the position r of the acoustic
source and its velocity in the x- and y-directions, denoted by ṙ, resulting a
four dimensional state space x = [r ṙ]T .

In CRPF, a user-defined cost function measures the quality of the state
estimates according to the available observations. As this approach is not
based on probabilistic assumptions, the CRPFs yield local representations of
the cost function specifically built to facilitate the computation of minimum
cost estimates of the state signal [91]. The framework of the CRPF features
an incremental cost function ∆C(x | y), which assigns a cost on each particle
after measurements (y) are obtained. It is a user-defined cost function and can
be designed based on the desired application.

A risk function,R(·), is used to select the most promising particle trajec-
tories based on measurements. The risk of each particle motion is based on
the incremental cost as such

R(xt | yt+1) = ∆C (fx (xt) | yt+1) (2.12)

Here fx (xt) is the dynamic model for x. Each particle stores its cost,
which is updated by (2.13). Here, a memory term λ can be used to preserve
the cost information from previous iterations

Ct+1 = λCt + ∆Ct+1(xt+1 | yt+1) (2.13)

In figure 2.11 the flow of CRPF based tracking is shown. For illustration
purposes only five particles (the black dots) are used in the example. The par-
ticles are initialized in a bounded interval [91] and all particles have the same
weight. During tracking of the target (the green dot), the particles are prop-
agated (figure 2.11b) and the most promising trajectories are chosen (figure
2.11d). This is based on evaluation of the risk function (figure 2.11c), which
is illustrated as different sizes of the particles. Here a larger size indicates a
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(a) Target motion (b) Particle propagation

(c) Risk analysis (d) Resampling and weight updates

(e) Estimate (f) Next iteration

Figure 2.11: Illustration of the flow in CRPF based tracking
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larger risk. In figure 2.11d it seen that the larger particles are removed, and the
smaller particles are copied. This is the process of resampling in the particle
filter. The final state estimate (the red dot) is based on the resampled particles,
and calculated as such:

xmean =

Q∑
i=1

π(i)x(i) (2.14)

where Q is the number of particles in the filter and π(i) ∝
(
C(i)
)-1

is a
probability mass function, which maps the cost of a particle to an importance
weight (as in standard particle filters).

Unlike the standard particle filter, the particles store their weight for the
next iteration, as seen in figure 2.11f.

Based on observations of localization errors during simulated noise and
wind gusts, a user-defined cost function (2.15) is proposed, which can be used
within the CRPF framework for acoustic source tracking. The new cost func-
tion is a modification to the non-linear least-squares formulation presented in
[62]. The main contribution of the modified cost function is that it is designed
to promote particle estimates that lie on or very close to the hyper-spheres,
estimated from calculated energy ratios.

Ĵ (r) =

M∑
m=1

|‖r-cm‖ -ρm |p 0 < p ≤ 1 (2.15)

Here the exponent p is a design parameter, which can be used for choosing
to which degree the particles have to fit the hyper-spheres. The variable r
denotes the source position estimate, and m denotes a sensor pair.

In figure 2.12 tracking using LS estimation is compared to CRPF based
tracking using the modified cost function (CRPF-Mod). In figure 2.12a differ-
ent levels of background noise are simulated, and it is seen that CRPF-Mod
outperforms LS based tracking when SNR is low. The same result is seen in
figure 2.12b, where sudden wind gusts are simulated. When SNR is increases,
the advantage of CRPF based tracking is decreased. Here, the LS based me-
thod is able to achieve fair estimates, and the modeling noise in the CRPF
framework contributes to more erroneous estimates.

Like the standard particle filter, the CRPF is able to estimate non-linear
and non-Gaussian states. However, compared to LS estimation it is less com-
putational efficient, due to the number of particle updates in each iteration
of the filter. Computational cost is an important design parameter in sensor
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(b) Wind gusts

Figure 2.12: Simulation results of tracking in different levels of background
noise and wind gusts. Tracking error is measured by root mean squared
error (RMSE), and the plots compare LS estimation versus the CRPF-Mod
algorithm

arrays due to energy consumption. Nonetheless, the increased availability of
graphical processing units (GPUs) in mobile devices [31] and research within
real time particle filters [59] makes it possible to utilize these algorithms
in sensor arrays. Other, more computationally efficient tracking filters are
available, including the Interacting Multiple Model Kalman filter (IMM-KF)
[85]. Unlike, the standard Kalman filter or the Extended Kalman filter, the
IMM-KF incorporates multiple dynamic models, and fuse these models to
reach a single state estimate. This method has proven very efficient in radar
tracking [69, 101], where rapid changes between linear and non-linear move-
ment often happen. The IMM-KF was not utilized in the contribution as it
does not allow user-defined cost functions in the same manner as the CRPF
framework. However, further work could include research within IMM-KF
based tracking.

Contribution 5. Theoretical framework for acoustic source tracking in
long baseline microphone arrays

Contribution 6. A modification to cost function for energy based lo-
calization, which increases tracking performance in noisy conditions
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2.3.6 Decision of action

The proposed component, named Decision of Action, decides, based on the
previous processing and estimates, whether an action should take place or
not. Based on the promising results of using bioacoustics in wildlife damage
management systems, the initial action should be a playback of distress or
alarm calls when conflict species are detected and recognized. Based on the
measured response to the chosen stimuli, the system should choose whether
or not to use the same method again immediately or wait, or maybe use
another stimuli.

In [P3], the results of using methods from the framework are presented.
The main hypothesis of the experiment was that an acoustic based adaptive
frightening device would outperform existing methods used for managing
wildlife barnacle geese. This includes gas exploders and visual stimuli, which
is subject to habituation after a few days or at best a few weeks. The ex-
periment involved one system, and the achieved results are, therefore, of
a preliminary nature, as more experiments needs to take place, in order to
achieve a statistically sound result. The prototype system, used for the ex-

(a) The hardware inside the device (b) The device (right) and a recording
setup (left)

Figure 2.13: Prototype of an adaptive frightening device. Photo by Kim Arild
Steen

periment, included a computer, a microphone, an amplifier and two speakers
(see figure 2.13). The microphone continuously recorded, while the computer
performed acoustic pattern recognition to decide whether barnacle geese were
landing, foraging or flushing. The system did not include species recognition,
as the barnacle geese were the only conflict species within the region at the
time of the experiments. The system was set to take action if landing or for-
aging behavior was observed. Unfortunately, the algorithm for robust conflict
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species detection were not available at the time of the experiment, which
resulted in multiple false detections as wind gusts and other background noise
triggered the system. The classifier, implemented for the experiment, had a
class of no geese included, which was designed to decide whether geese were
present or not. However, the trained model proved unfit for the task. Despite
this, the system did a very good job at keeping the geese away from the test
area.

The main result is shown in figure 2.14, where barnacle goose activity
have been measured for three periods of time: an active period, an inactive
period and again an active period. The goose activity was measured based on
counting goose droppings along three transects13, starting from the system.
First, the system was turned on for three weeks (active period #1). Then it was
turned off for almost another three weeks (inactive) to check if the barnacle
geese were not interested in the specific area chosen for the experiment. As
seen in the figure, this was not the case as goose activity increased in that
time. When the system was turned on again for almost three weeks (active
period #2), the activity dropped again.
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Figure 2.14: Results from preliminary experiments with an adaptive frighte-
ning device

13 A transect is a path along which one counts and records occurrences of the phenomena
of study. In this case goose droppings.
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Obviously, the conclusions, which can be made on the basis of this pre-
liminary field test, are limited by the lack of adequate statistical power. There-
fore, the results should be interpreted with caution. However, the system was
successful at reducing the presence of barnacle geese for a total period of
almost six weeks and thereby preventing damages to the pasture at a radius
of up to 200 meters from the system. This is equivalent to an area of 12.6 ha.

Contribution 7. An evaluation of using acoustic behavior recognition
to perform wildlife damage mangement of goose flocks

In the spring of 2014 field tests including five systems and more fre-
quently counting of goose dropping, are being performed. These tests involve
a commercially available system called AniManr (see figure 2.15), which
implements the concepts presented in this chapter. The system is being de-
veloped by a small company called Wildlife Communication Technologies14,
which is a spin-off company based on the research conducted during this
Ph.D. project.

14 http://www.wildlifecommunication.dk/
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Figure 2.15: AniManr



3
Wildlife-Friendly Farming

This chapter presents the work and contributions regarding wildlife-friendly
farming. The motivation and current strategies for wildlife-friendly farm-
ing are presented, followed by a presentation of state of art work within
automated solutions for detection of wildlife during mowing operations. A
theoretical framework for implementing sensor based solutions for wildlife-
friendly farming is presented, and the contributions of this thesis are related
to the identified components of the framework.

The publications: [P6, P8] are presented in this chapter. These publica-
tions include a total of three contributions, which are framed at the end of
each section concerning a specific publication. The contributions are mostly
focused on digital image processing of thermal images.

3.1 Wildlife Mortality in Mowing Operations

As presented in the introduction, the increased need for high-efficiency agri-
cultural production has resulted in high wildlife mortality rates during mow-
ing operations. Mowing operations take place during the summer, where roe
deer fawns and leverets are immobile, vulnerable and hiding in the grass.
When a large and noisy agricultural machine is approaching these animals,
their natural instinct is not to run, but rather to remain motionless on the
ground. This makes it very difficult to see and react to the presence of the
animals, and they are often overlooked by farmers. As a result of the increase
in both working speed and width, adults of otherwise mobile species, e.g., fox
and roe deer, are also at risk of being killed or injured in farming operations
as they may be unable to escape the approaching machinery.

Various methods and approaches have been used to reduce wildlife mor-
tality. Delayed mowing date, altered mowing patterns (e.g., mowing from the
center outwards [55]) or strategy (e.g., leaving edge strips), longer mowing
intervals, reduction of speed or higher cutting height [55] have been sug-
gested to reduce wildlife mortality rates. Likewise, searches with trained dogs

55
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prior to mowing may enable the farmer to remove e.g., leverets and fawns
to safety, whereas areas with bird nests can be marked and avoided. Alter-
natively, various scaring devices such as flushing bars [55] or plastic sacks
set out on poles before mowing [67] have been reported to reduce wildlife
mortality. Altered mowing patterns might work for mobile animals; however,
fawns are immobile, and they are not able to run towards safety even if they
got the time to do it. Reduction of speed, the use of trained dogs and actions
before mowing all results in lower efficiency. Therefore, the development
of automated systems, capable of detecting animals in the vegetation could
have a positive impact on both agricultural production and wildlife mortality.
This chapter present related work regarding the development of an automated
system, and the contributions made during this Ph.D. project.

3.2 Automatic Detection of Wildlife

The idea of automatic detection of wildlife in grasslands is not novel, and
various attempts have been made to develop such a system. In [58] a manual
operated portable system is presented. The system is based on infrared tech-
nology and works very well under defined weather conditions (early morning
and cloudy days), and it has been applied the patented Infrared Wild Savior
system since 1999. The disadvantage of the system is its low efficiency, as
the maximum search power is around 3 ha1/h, when the weather conditions
are fit.

In the WILDRETTER project2, principles from [58] were further devel-
oped and tested. Here the initial idea was to mount sensors to a mechanical
arm next to the mower, which would make it possible to analyze the part of
the field that were to be mowed next. The arm could be equipped with mul-
tiple sensors including, LDS3, Infrared Thermal camera, radar and spectral
cameras [63].

In [44] a multistatic radar array for detecting wildlife is presented. The
method is not sensitive to weather conditions and works at high speeds. The
solution is sensitive to the orientation of the wildlife, however, a solution to
this is presented in the paper. In [63] the authors do not present further result
using the multistatic radar system, but put more focus on thermal imaging
systems. However, they conclude that vision systems are not a viable solution
when the cameras are mounted on the arm, as image quality is highly affected

1 ha = 100× 100m2

2 http://www.wildretter.de
3 Laser Distance Sensor
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by the speed and vibrations of the machine. Instead a UAV-based system is
utilized [64]. Using this solution, the movement of the tractor does not affect
the image quality, and it is possible to manually scan large areas. The authors
show that thermal imaging can be used to detect roe deer fawns based on
aerial footage. However, the detection is performed manually, and should
be automated to increase efficiency. They conclude that the thermal imaging
strategy is sensitive to detection of false positives, meaning that objects that
are heated by the sun are falsely labeled (manually) as a roe deer fawns. The
authors suggest further research within sensor fusion to reduce the number of
false detections.

Based on this review, a theoretical framework for automatic detection
of wildlife is proposed (see figure 3.1). The framework is based on initial
detection of objects in the field, followed by a subsequent recognition of the
object (animal or not) to reduce false positives. The final component is the
decision of which action to take. As described earlier, once an animal is de-
tected, it may not be able to escape by itself. In [64] trained farmers or hunters
move the fawns manually. This is inefficient and may also impose problems
to the mother/fawn relationship (human odor etc.). A brief discussion of this
is found in Section 3.3.3.

Detection Animal Recognition

Decision of Action

Hidden animal

Sense

Act

Wildlife Safety System

Figure 3.1: The proposed theoretical framework of a sensor based wildlife
safety system. Photo by Gilles San Martin

In table 3.1, an overview of the published, or submitted, work and their
contributions to the framework, is shown. A brief description of each com-
ponent, together with the rationale for including the component in the frame-
work, will be presented in Section 3.3. The proposed methods, and a short



58 3 Wildlife-Friendly Farming

presentation of the results and contributions is also included. The compo-
nent regarding decision of action has not been investigated during this Ph.D.
project; however, a discussion on the subject is included in this chapter.

Table 3.1: Overview of publications and their contributions within the
framework of a wildlife safety system

Component
Detection Animal Recognition Decision of Actiona

Ref. [P6] x
[P8] x x

a The final component of the proposed framework has not been investi-
gated during this PhD project

3.2.1 Thermal imaging

The work carried out in the Ph.D. project is based on vision systems using
thermal camera technologies. This section gives a brief introduction to ther-
mal imaging and the capabilities of this technology within the scope of the
Ph.D. project.

Figure 3.2: Image of rabbit, human and chicken in both the thermal and
visual spectrum

The main advantage of infrared imaging is that it is invariant to illumina-
tion and color balance, which are always changing in outdoor applications. In
figure 3.2 another advantage of using thermal imaging is seen. Here it is easy
to spot the rabbit (in the center of the image) in the thermal image, but in the
visual spectrum the color and fur works as a camouflage in the dense grass.
This property can be utilized for detection of wildlife in dense vegetation.
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Infrared imaging can be divided into active and passive sensors, where the
active sensors require infrared illumination to work. This technology is used
in most night vision devices. Thermal cameras are passive sensors, which op-
erates in the mid- (MWIR) and long-wavelength (LWIR) infrared spectrum.
In the MWIR and LWIR infrared spectrum (3–14 µm), radiation is emit-
ted by the objects themselves, with a dominating wavelength and intensity
depending on the temperature [47].

Thermal imaging is commercially available, and the technology has de-
veloped quickly over the last decades. This has resulted in both better and
cheaper cameras, and the technology is now being introduced to a wide range
of different applications, such as building inspection, medical science, agri-
culture, fire detection, and surveillance [47].

Figure 3.3: The subdivision of the infrared domain [47]

3.2.1.1 Thermal radiation

All objects with a temperature above absolute zero (-273.15◦C ) emit infrared
radiation. This is often referred to as thermal radiation. The thermal radiation
from an object is a function of both temperature and wavelength. In figure 3.3,
the wavelengths of the infrared domain is shown, together with the division
of the infrared spectrum into several regions.

In figure 3.4 the radiation intensity for different temperature levels is
shown. The radiation intensity is described by Planck’s wavelength distri-
bution function [117]. It is seen that objects with temperatures from 0◦C
to 37◦C have their peak within the LWIR band. Due to this, most thermal
cameras used for surveillance are designed for these wavelengths, and this
has also been utilized in this research. The radiation intensity showed in figure
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3.4 is based on black body radiation. Most materials in practical applications
are assumed to be so called grey bodies, which have a constant scale factor
of the radiation between 0 and 1 [47]. This factor is called the emissivity and
is 1 for black bodies. As an example, the emissivity for human skin is very
close to 1, whereas it is very low for polished silver (0.02).

A thorough review of thermal cameras and their applications can be found
in [47].

Figure 3.4: Radiation intensity of black body at four temperatures [47]

3.3 Research Contributions

Here, the contributions from the published, or submitted work, regarding
wildlife-friendly farming are presented. The contributions are presented ac-
cording to the identified components presented in table 3.1.

3.3.1 Detection

The output of thermal imaging is a greyscale image, where the intensity is
related to the measured temperature. Ideally, the thermal radiation of the
animals exceeds the radiation from the background, which makes detection
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of the animals straightforward. However, during sunlight periods, the temper-
ature difference between animal and background or other objects with high
emissivity may be subtle or nonexistent. This was part of the problem with
the infrared based solution presented in [58]. Here, weather conditions had to
be just right for the system to achieve good performance.

In [38] and [39] thermal imaging is used for person detection. The au-
thors present thermal images of people at different times of day and during
summer and winter. Here it is clear that the object of interest (people) does
not always appear brighter (higher temperature) than the background. They
propose background subtraction techniques, followed by a contour based ap-
proach to detect people in the thermal images. Background subtraction is also
utilized in [54, 77, 128], however, this approach is not suitable for mobile
application with non-fixed cameras.

Another approach is detection of hot spots based on a fixed temperature
threshold [32, 78, 116, 112]. In [102] a probabilistic approach for defining the
threshold value is presented, however, it is still a fixed value. The detection is
usually followed by a subsequent classification of human versus non-human
objects based on shape or size. In people detection and recognition, the His-
togram of Oriented Gradients (HOG), which is a shape-based feature, is a
frequently used feature in the classification step [49, 74, 75].

(a) Camera placement (b) Photo from inside the tractor. A
caged hen is emphasized in the image,
and it can also be seen on the laptop
screen

Figure 3.5: Experimental setup for investigation of using tractor mounted
thermal cameras to detect animals in grass. Photos by Ole Green
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In [63], a tractor mounted system was discarded as the quality of the ther-
mal images were affected by the motion of the tractor. This problem occurred
as the camera was mounted on a mechanical arm next to the mower, looking
down in the grass. Hence, the limited frame rate of the thermal camera and
vibrations resulted in motion blur, in the thermal image.

Hen

(a) Thermal image of heated grass
patches and the hen

Hen

(b) Thermal image after filtering. The
hen is enhanced and the patches are
almost removed

Figure 3.6: Pre-processing of thermal image to enhance animal versus
background

In [P6] a different tractor mounted solution is investigated. Here, a ther-
mal camera with a resolution of 320×280 pixels and a frame rate of 9 frames
per second was used for the experiment. It was placed on top of the hood of
the tractor (see figure 3.5a) which gives a different field of view compared to
[63]. A hen and a rabbit (see figure 3.5b) were placed in dense grass in front
of the tractor, and recordings were performed at different driving speeds. This
resulted in eight different test runs which were evaluated in the paper.

The recorded data were utilized for the development of an adaptive de-
tection algorithm based on digital image filtering and an adaptive thresh-
old value. To enhance animal versus background, the Laplacian of Gaussian
(LoG) filter is applied before thresholding the thermal image. In figure 3.6
a thermal image from one of the experiments is shown. Here the thermal
pixel values of surrounding grass patches are comparable to animal pixels
(the hen is marked with the black arrow in figure 3.6a). However, the thermal
signatures of grass patches are more diffuse than the thermal signature of
the animal, and the LoG is, therefore, able to enhance the animal versus
background, as seen in figure 3.6b.
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(a) Thermal images of roe deer fawns versus other hot objects [28].
The top row is fawns and the bottom row is not fawns

(b) Thermal images of roe deer fawns versus other hot objects. Images
are captures from a UAV [64]

Figure 3.7: Examples of thermal images of fawns versus non-fawns. In the
thermal image it can be very hard to distinguish between the two

The subsequent detection of the animals (hot spots) is based on an adap-
tive thresholding, where the threshold value is based on the maximum pixel
value of the current image compared to the mean value of maximum pixel
values of previous images (the previous 10 images were used in the paper).
The maximum pixel values increase significantly when an animal is present
in the image, and this rapid increase in the values can be used to detect the
animal. The threshold value is, therefore, adaptively set with respect to the
maximum pixel value within the image, when a significant increase in max-
imum values has been detected. When a significant decrease in maximum
values is detected, the threshold value is set to a default value above the cur-
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rent maximum value within the image to avoid false detection. A prerequisite
for this algorithm to achieve good performance is that the thermal camera
records data at a fixed temperature interval, where the maximum temperatures
are set to the expected temperature of the animals.

The proposed algorithm has been tested using two different animals (hen
and rabbit) at six different driving speeds. Detection was almost 100% for
all but one test run. In this test run, the hen was covered in very dense grass,
and the detection algorithm was only able to detect the animal in 26% of the
frames (were the animal was present). These frames were the four frames,
where the animal was closest to the camera. This would give the farmer
under one second to react. The risk of not detecting an animal due to high
density of grass is, of course, a disadvantage to the tractor mounted solution.
In the study, the field of view of the camera was approximately two meters
wide with a distance to the crops of approximately five meters. This is only a
smaller part of the potential working width in mowing operations. Therefore,
there is a need to increase the field of view, both in width and distance, and,
most important, the visibility in very dense grass. This could be achieved
by increasing the distance to the crop by different camera positioning, mul-
tiple cameras or other lens types. This could potentially increase detection
distance, and should be considered in future research.

In [P6], the heated grass patches were removed using image filtering. This
was possible as the thermal radiation is more diffuse for these patches. How-
ever, as seen in figure 3.7, molehills, rocks and other objects may have a very
similar thermal signature to animals, and detection based on thresholding
alone is not a robust method, as false detection would occur [28, 64, 65].
Here, classification, like in people detection, could increase performance.

Contribution 8. Investigation of tractor mounted thermal camera system
for automatic detection of animals in during grass mowing

Contribution 9. An adaptive detection algorithm for detection of hot
spots in thermal images

3.3.2 Recognition of animals

The similarities between animal and non-animal hot spots in thermal im-
ages motivates research within recognition of animals. There is little research
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within automatic detection and recognition of animals in thermal images.
However, in people detection, the intial segmentation, or detection of regions
of interest, is usually followed by a recognition of human versus non-human
[49, 54, 74, 75, 77, 128].

In [28] an algorithm for recognition of roe deer fawns is presented. The
algorithm is based on Normalized Compression Distance for features extrac-
tion and a clustering algorithm for classification. The dataset consists of 103
images, with 26 containing fawns hidden in grass. The same dataset is used
in [65], where Fast-Compression-Distance is applied in the feature extraction
step, and a nearest neighbor classifier is used for classification. In both pa-
pers, the features are derived from a dictionary, generated by a compression
algorithm. The proposed algorithms perform well on the dataset evaluated in
the papers. However, even though the features are scale invariant, they are not
rotation invariant, and they rely on absolute temperature measurements.

Another algorithm for identification of deer, to avoid deer vehicle-crashed,
is presented in [140]. Here, HOG features are utilized followed by an SVM
classifier. Their method relies on occlusion-free side-view images, and per-
forms poorly if these criteria are not met.

Inspired by the work carried out in [64], the experiment and contribution
of [P8] is based on top-view images. This reduces problems with vegetation
density. Another advantage, which is also part of the hypothesis of this re-
search, is that images in the visual domain could help increase recognition
performance in a sensor fusion setup [63]. Almost occlusion-free images
would enable conventional cameras to be utilized for sensor fusion.

In figure 3.8 the experimental setup used in [P8] is shown. A thermal-
and a conventional camera is mounted next to each other, looking down
on the ground, where animals are manually placed4. The telescopic boom
lift could adjust recording heights from 3 to 43 meters, thus simulating a
UAV. The reason for not using a commercially available UAV, as the Hug-
inn X15, is that these are designed for real time manual operation, hence,
real time transmission of compressed thermal video is favored compared to
recorded un-compressed data. This was also part of the problem in [64],
where data was captured on a ground station based on radio transmitted data.
The compression of the thermal images could have removed important detail
information, which could be utilized for automated recognition of animals.
Therefore, un-compressed data was a priority in [P8].

4 Thanks to Børnebondegården for lending us the animals (www.børnebondegården.dk)
5 http://sky-watch.dk/product-line.aspx
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Figure 3.8: A photo from the experiment in [P8]. Photo by Kim Arild Steen

Even though color images were recorded, it has not been possible to in-
vestigate and implement a sensor fusion based recognition of wildlife within
the timeframe of the Ph.D. project. Therefore, the contribution of [P8] is
focused on recognition based on thermal images and thermal feature extrac-
tion. This approach is comparable to the related work in [28, 65, 140] where
thermal images were utilized for animal recognition. However, in the context
of top-view images, both shape and rotation invariance is important, as the
animals are lying flat on the ground in various positions. This is part of the
contribution of [P8].

The thermal feature extraction presented in [P8] is based on Shrinking
Thermal Contours. The main idea of this is to extract thermal pixel values
from small slices of the detected hot spots. This is accomplished by the
process shown in figure 3.9. The contour of a detected hot spot (fig. 3.9a)
is extracted by morphological boundary extraction with a small disk shaped
structure element. These contours (fig 3.9b and fig. 3.9c) are used as a binary
masks to extract thermal values from the thermal object. For each of the con-
tours, the mean temperature is calculated, which results in a thermal signature
for each hot spot. In figure 3.10 examples of these signatures are shown. The
x-axis indicates the contour number. Here contour number -1 and 0 are not
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(a) Thermal image of de-
tected object

(b) First contour of the
detected object

(c) Seventh contour of
the detected object

Figure 3.9: The process of thermal contour extraction
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Figure 3.10: Thermal signatures extracted from shrinking thermal contours.
Contour number -1 and 0 are not part of the object, but used for edge feature
extraction

part of the detected hot spot, but rather thermal pixel values around the hot
spot. These contours are used for edge feature extraction.

From these thermal signatures, three features, for each detected hot spot,
are extracted: Center-Edge Difference, Variance and Edge. The Center-Edge
Difference feature is the difference in mean temperature between the inner-
most contour and the edge contour (contour #1). Based on visual observa-
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tions, and as seen in figure 3.10, this difference is smaller for animals, as the
thermal signature is more uniform than, as an example, molehills6.

The variance measures the variability in the thermal signature and give
a statistical measure of the distribution of thermal pixel values within the
detected hot spot. The edge features are based on the transition in temperature
from background to the object, which is calculated as the difference between
contour #1 and contour #-1. As observed in [P6], regarding automatic de-
tection of hot spots, the changes in temperature are more abrupt when the
object is a living creature compared to heated grass patches. This observation
is utilized in the proposed feature extraction algorithm. These features were
used in the subsequent classification.

The classification is performed using a kNN classifier. In [P8] 80 animal
feature vectors and 95 non-animal feature vectors were used as the training
data for the classifier. Both resolution and the distance between the animal
and the camera [123] affect the quality of the thermal images. Therefore,
the algorithm was evaluated at two different height intervals. A total of 3987
frames containing one, two or three animals were evaluated, and the results
are shown in figure 3.11. By sweeping the threshold for the kNN classifier,
the Receiver Operating Characteristics (ROC) for the classifier could be ob-
tained. The area under the curves works as a performance measure, and it
is that the algorithms achieve the best performance at height interval 3-10
meters. The captured dataset comprised of five recordings, where the height
was increased from 3 to 30 meters. All five datasets included useful data
at height interval 10-20 meters; however, only three of the recordings were
useful at height interval 3-10 meters (as seen in the figure).

In the figure, it is seen that performance decreases as height increases.
This fits well with observations from [64] where the authors were able to
manually detect row deer fawns at 30 meters, but had problems at 50 meters
with a thermal camera with a resolution of 640×512 pixels. The animals used
in [P8] are smaller than roe deer fawns, which results in fewer thermal pixels,
compared to the roe deer fawns. This means that a UAV has to fly at a lower
height to detect and recognize smaller animals like pheasants and hares.

When the height is increased, the image frame could contain more false
positive candidates, which would decrease performance measures. However,
empirical experiments with lowered spatial resolution at height interval 3-10
meters indicate that the spatial resolution is also important for performance.

6 They are heated by the sun from above, and due to its shape, the temperature increase
from edge to center is not as uniform as with an animal
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Figure 3.11: Receiver Operating Characteristics for two different height
intervals
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The goal of the research within recognition of wildlife in thermal im-
ages is to decrease the number of false positives. Sensor fusion techniques,
temporal information and other thermal features, derived from the thermal
signatures, should be investigated within this context.

Contribution 10. Feature extraction methods for recognition of animals
in thermal images

3.3.3 Decision of action

Once an animal has been detected, the next task is to act upon this infor-
mation. In [64] they move the animals manually prior to mowing. Other
approaches include stopping the machine or avoiding the animal. In the case
of mobile animals, simply slowing down could reduce the risk of injuring
or killing it. However, immobile animals are not able to escape even if the
machine is driving slowly. Independent of the solution, the sensor system
needs to detect and recognize the animal in time. Here top-view images are
more reliable as they are not as affected by very dense vegetation as tractor
mounted systems are. These considerations are important in future research
regarding wildlife-friendly farming.



4
Discussion and Conclusion

This chapter summarizes and concludes the results achieved in this thesis.
The hypothesis and objectives of the thesis defined in Chapter 1 are related
to the contributions regarding an adaptive frightening device and wildlife-
friendly farming presented in Chapters 2 and 3. The proposed theoretical
frameworks, the developed pattern recognition and signal processing algo-
rithms, and the conducted field experiments comprise the results of this thesis.

4.1 Introduction

This thesis introduces various pattern recognition and signal processing algo-
rithms in the context of human-wildlife conflicts. The scientific contributions
of the Ph.D. project are mostly focused on how pattern recognition and signal
processing methods can be applied in the design of solutions for reducing
human-wildlife conflicts. The work has been motivated by limitations in ex-
isting devices utilized in wildlife damage management, and the opportunity
to investigate the possible effect of using intelligent sensor strategies in the
interaction with wildlife.

The purpose of this chapter is to evaluate the outcome of the thesis and as-
sess to what extent the hypothesis and objectives have been met. Section 4.2,
summarizes the research contributions made, and evaluates and compare the
contributions to state-of-art research within the domain of the contribution.
Proposed future work is described and presented in Section 4.3, and the
conclusion of the Ph.D. thesis is found in Section 4.4.

4.2 Research Contributions

The research contributions are grouped into two main categories: adaptive
frightening device and wildlife-friendly farming. The contributions to the pro-
posed frameworks are shown in table 4.1. The contributions within an adap-
tive frightening device are focused on applied pattern recognition and signal
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processing, whereas the contributions within wildlife-friendly farming are
within digital image processing of thermal images.

Table 4.1: Overview of publications and their contributions to the defined
frameworks

Adaptive Frightening Device

Ref. Data Detection Species Behavior Decision
Collection Recognition Recognition of Action

[P1] x
[P5] x x
[P2] x
[P7] (x)a

[P4] x x
[P3] x

Wildife-friendly Farming

Ref. Detection Animal Decision
Recognition of Actionb

[P6] x
[P8] x x
a Behavior recognition was not implemented, however acoustic source track-
ing could be utilized for recognition of behavior
b The final component of the proposed framework has not been investigated
during this PhD project

4.2.1 Adaptive frightening device

This section summarizes the contributions within the context of an adaptive
frightening device.

4.2.1.1 Detection and recognition of conflict species

The contributions [C1] and [C2] presented in [P5] are part of a generic frame-
work for detection and recognition of conflict species. The purpose of the
framework is to detect and recognize species of bird flocks to enable corre-
sponding disruptive stimuli. Here, the purpose of the acoustic based recogni-
tion differs from other studies, as these are mostly focused on classification of
individuals or specific call types. When dealing with specific calls, both the
choice of acoustic features and pattern recognition algorithm can be designed
specifically to this [19].
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An adaptive frightening device needs to handle very different bird species
at different geographic locations. Hence, the developed algorithm should be
generic and easily adjustable to various species. In [P5] MFCC features were
chosen as acoustic features for all conflict species. The focus of the paper is
on geese and rooks, however, other species can be included in the framework.
MFCC features have yielded good results across a variety of taxa including
frogs, crickets, birds, cows and fish [30], and this generic feature of MFCC is
attractive within the context of the proposed framework.

In [P5], the robustness to background noise is implemented in the detec-
tion step of the algorithm, as background sounds and noise are modeled as a
background model. This model is compared to the conflict species model in
the detection step. This performs well, when the background noise is non-
additive, meaning that the noise occurs at another time window than the
conflict species sounds. However, in the case of additive noise, MFCC fea-
tures are sensitive [46], which affects performance. This was also observed
in the publication, as performance decreased when SNR decreased. Here,
automatic noise removal techniques could be implemented to increase clas-
sification performance. In [19] and [45] background noise is removed via
noise level estimation of frequency bands known not to contain any bird
vocalization. This technique could be applied in the proposed framework.

Both detection and species recognition are call-independent, meaning that
the framework should detect and recognize the conflict species regardless of
call type. Here, GMM based recognition has been chosen, as this technique is
also frequently used in human speaker recognition, which includes the same
functional properties. The contribution of using GMM to classify between
species [C2] is not novel, as it has been used in acoustic based recognition of
birds, in other contexts [30, 130]. However, these papers do not deal with the
soundscape of multiple birds within a flock. The GMM based framework also
allows for future work regarding model robustness. This will be discussed in
Section 4.3.

4.2.1.2 Behavior recognition

Research regarding a direct link between vocalizations and behavior is lim-
ited. In [81] and [97] vocalizations are utilized to measure pig welfare and
stress levels, and in [36] examples of utilizing automatic vocalization analysis
to monitor thermal stress in the poultry industry is shown. Using acoustic
information to monitor behavior has great potential as the available technol-
ogy is cost-efficient and non-invasive. This is important in wildlife damage
management.
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Contribution [C3] is a novel method to automatically monitor bird flock
behavior based on their interspecies acoustic communication. Within wildlife
damage management, this can be utilized to react to the specific behavior
and thereby altering the flocking behavior based on stimuli. Audio based
behavior recognition could also be beneficial to research within biology and
other aspects of agricultural production. The contribution in [P2] show that
automatic audio based recognition of vocalization is not limited to single calls
and species, but it can be utilized to monitor the behavior of multiple animals
by recognizing their interspecies communication.

Another small contribution within audio based behavior recognition is the
use of GFCC features. The GFCC features have been utilized in bird vocal-
ization recognition in [15]. However, in [P2] the motivation for using GFCC
is based on their ability to map hearing capabilities of animals instead of
humans. In human speech recognition, MFCC features are utilized because of
the ability to describe human sound perception. Therefore, the use of GFCC
features seems promising in the context of interspecies communication.

Contribution [C4], which is presented in [P4], is a framework for audio-
visual behavior recognition. Most research regarding the link between visual
and acoustic information for animal behavior recognition utilize either man-
ual observations or manual inspections of video recordings. In [96] video
recordings of chickens were used for manual detection of group behavioral
pattern in an experiment to link their vocalizations with the thermal envi-
ronment. Likewise, [125] uses video recordings for linking dolphin sound
to their location and behavior, and in [97] manual observations were used
to link vocalizations to the stress level of piglets. The link between visual
information, like movement or posture, and behavior is more straightforward
than using audio. Therefore video based recognition is a frequently used me-
thod in behavior recognition [17, 36, 80, 84, 127, 138]. However, automated
methods for fusing these video based algorithms with audio has not been
reported. This makes contribution [C4] a novel approach in automated animal
behavior analysis and recognition.

The performance the audio based approach, given by contribution [C3],
is affected by low SNR. This was not investigated further in the publica-
tion [P2], however, low SNR would cause class overlap in the classification.
This could be improved by contribution [C4], where fusion with video data
would increase performance. However, the limited field of view of the vi-
sion system and the limited capabilities during sunrise and sunset1 makes an

1 Goose flocks are especially active in early morning hours



4.2 Research Contributions 75

audio-visual approach impractical within the context of cost-efficient wildlife
damage management.

The advantage of using visual information in behavior recognition is the
direct link between movement and behavior. However, this property is not
unique for camera based systems, as localization through sensor arrays may
provide similar results. This is the motivation for contributions [C5] and [C6],
where a framework for tracking acoustic sources in a long baseline micro-
phone array is proposed. Here the contributions are more general within the
context of target tracking. Contribution [C5] is a theoretical framework for
tracking maneuvering targets within a long baseline microphone array. The
tracking algorithm is based on the CRPF, which is a new class of particle
filters. The CRPF has been utilized in target tracking within wireless sensor
networks [90], however, CRPF tracking in long baseline arrays is a novel
contribution of [P7].

Contribution [C6] is a modification to the cost function within energy
based localization. The modified cost function is designed to increase track-
ing performance in the case of low SNR and sudden wind gusts. Here, the
CRPF framework allows for the use of user-defined cost functions, which has
been implemented in [P7].

The limitation of the proposed tracking framework is the computational
cost of the CRPF compared to LS localization or Kalman filter based tracking.
Computational cost is an important design parameter in sensor arrays due
to energy consumption. Future work regarding the microphone array based
tracking should include more research within computational efficient algo-
rithms. Furthermore automated behavior recognition, based on estimates of
source movements, should be developed. This will be further discussed in
Section 4.3.

Three different methods for behavior recognition have been investigated
during this Ph.D. project. All methods could contribute to a sensor based
solution for efficient wildlife damage management. However, audio based
behavior recognition could be sensitive to low SNR, and the method would
also require labeled behavior data, which is time consuming to collect. The
audio-visual fusion is less sensitive to low SNR, but the use of vision systems
in this context would be impractical. The microphone array based method
seems the most promising, as it is able to cover a large region, and the co-
operation between sensors could make the system less sensitive to low SNR.
Furthermore, the automated behavior recognition could be based on flock
movement rather than soundscape, which could potentially increase behavior
recognition performance. Each sensor could utilize the detection and species
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recognition algorithms from contribution [C1] and [C2], and thereby make it
possible to develop species specific tracking.

4.2.1.3 Decision of action

The last part of the proposed framework for an adaptive frightening device is a
decision on how to act based on knowledge from detection and recognition al-
gorithms. In [P3], the contribution [C7] is an investigation of the effectiveness
of the proposed framework for barnacle geese management. The investigation
itself is novel, as it is based on the proposed framework developed during this
thesis. Alarm and distress calls have been used in related work [16, 136, 137],
however, these systems do not include the ability to automatically recognize
and react to behavior.

The investigation showed promising results as the system was able to
reduce crop damage to a minimum during almost six weeks2. However, the
study was only based on one system, and the results lack statistical power.
Furthermore, the system experiences many false detections caused by sudden
wind gusts and other background noises. Despite this, habituation was not
observed during the experiment, which may be because the geese were not
in the area at the same time as the false detections. In conclusion, it must
be concluded that more field experiments are required to achieve significant
practical results using the proposed framework.

4.2.2 Wildlife-friendly farming

This section summarizes the contributions within the context of wildlife-
friendly farming.

4.2.2.1 Detection

In [63], a tractor mounted system was discarded as the quality of the thermal
images were affected by the motion of the tractor. This problem occurred
as the camera was mounted on a mechanical arm next to the mower, looking
down in the grass. Here, the limited frame rate of the thermal camera together
with high driving speeds and vibrations from the machine resulted in motion
blur, in the thermal image. In [P6] a different tractor mounted solution is
investigated. Here, the thermal camera is placed on top of the hood of the
tractor. This investigation constitute contribution [C8]. This tractor mounted
system does not affect the quality of the thermal images. However, as pre-
sented in Chapter 3, timely detection of the animals in the grass is important,

2 Until the geese eventually migrated north
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and this could be a problem when the vegetation is dense. Therefore, the field
of view of the thermal camera needs to be investigated further.

Contribution [C9] is an adaptive detection algorithm based on digital
image filtering and adaptive thresholding. The proposed detection algorithm
makes it possible to detect animals while avoiding detection of heated grass
patches. This is an important feature, as multiple false detections does not
promote efficiency during farming operations. The proposed method is not
able to distinguish between animals and other hot objects3, like molehills and
stones. Here a detection and recognition of the animals, using other features
than absolute temperature is suggested. Preliminary research within this has
been performed during this Ph.D. project [P8].

4.2.2.2 Recognition of animals

In [P8], an algorithm for extraction of thermal features is presented [C10].
These thermal features are used for recognition of animal versus non-animal
in top-view thermal images. Top-view images reduce problems with vege-
tation density, and enables the use of other sensors, such as conventional
cameras4.

There exist limited work regarding recognition of animals in thermal
images. In [28] and [65] template based methods are presented. The pro-
posed algorithms in these papers perform well on the limited dataset eval-
uated in the papers. However, even though the thermal features are scale
invariant, they are not rotation invariant, and they rely on absolute temper-
ature measurements. Another algorithm, which identifies deer, to avoid deer
vehicle-crashed, is presented in [140]. Here, HOG features are utilized for
recognition. Their method relies on occlusion-free side-view images, and
performs poorly if these criteria are not met.

The thermal feature extraction technique presented in [P8] is a novel
method for extracting scale and rotation invariant thermal features. The fea-
tures are derived from a thermal signature generated by morphological con-
tour extraction. The method has been tested in a controlled experiment with
good results for a selected height interval (3-10 meters). However, additional
thermal features could be calculated from the thermal signature, and sensor
fusion methods could be utilized to increase performance. Additionally, more
experiments including more animals should be conducted.

3 Heated by the sun
4 That rely on a hard line of sight measurement
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4.3 Future Work

Here proposed future work regarding an adaptive frightening device and wildlife-
friendly farming is presented.

4.3.1 Adaptive frightening device

For the purpose of overview, this subsection has been divided into the specific
components of the proposed framework for an adaptive frightening device.

4.3.1.1 Detection and species recognition

Both detection and species recognition are based on GMM, which is a statis-
tical model of the different classes (e.g. conflict species versus background).
In the detection algorithm, the background model comprises of background
sounds, which are not from a defined conflict species. The quality of this
model, with respect to classification performance, is dependent on the train-
ing data available. It is impossible to sample the entire soundscape of an
agricultural field, as this varies from location to location. However, a local
background model5 could be used. This could be accomplished by incremen-
tal learning techniques [41, 94], where both background and species models
could be incrementally constructed based on the soundscape of the specific
location.

Incremental learning is part of semi-supervised learning, where new ob-
servations may be chosen as part of training data in an incremental frame-
work. There is much work regarding incremental learning with respect to
GMMs using the EM-algorithm, and the theoretical algorithms for imple-
menting this exists. However, a very important step in this is the automated
choice of which new observations are included as new training data. This is
a difficult task, as the quality of the model relies on the quality of data, and
wrong decisions could decrease performance rather than increasing it. Future
work should include development of methods to automatically choose this
data and investigate the performance over time in real life scenarios.

4.3.1.2 Behavior recognition

A long baseline microphone array is a promising method for automatic flock
behavior recognition. It is possible to monitor a large region and behavior
recognition could be performed on the basis of motion rather than sound-
scape. Future work regarding acoustic source tracking in long baseline array

5 A model representing the common sounds in a specific geographic location
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should focus on automated behavior recognition based on tracking results.
Here, methods from the research found in [132] and [18] can be used for
inspiration.

Computational efficiency is an important design parameter in sensor ar-
rays due to energy consumption. In [P7] the CRPF filter were used for track-
ing. However, other, more computationally efficient tracking filters are avail-
able, including the IMM-KF [85]. Unlike, the standard Kalman filter or the
Extended Kalman filter, the IMM-KF incorporates multiple dynamic models,
and fuse these models to reach a single state estimate. This method has proven
very efficient in radar tracking [69, 101], where rapid changes between linear
and non-linear movement often happen. The IMM-KF was not utilized in
the contribution of this thesis as it does not allow user-defined cost functions
in the same manner as the CRPF framework. However, future work could
include incorporating the concepts from contribution [C5] and [C6] within
the IMM-KF framework to increase computational efficiency.

4.3.1.3 Decision of action

The results from the field experiments lack statistical power, and more ex-
periments should be conducted. An important part of this is, of course, to
investigate the performance of the proposed framework, but also to gain in-
sight in which components are more important to performance than other.
Thereby, requirements for such a system could be defined.

4.3.2 Wildlife-friendly farming

An algorithm for recognition of animals in thermal images has been pre-
sented. However, more thermal features and other sensors could be utilized
to increase performance. An important task in the context of a sensor based
wildlife safety system is to achieve robust detection, while simultaneously
avoiding false detections. A high number of false detection would decrease
efficiency and also introduce a lack in confidence towards the system, which
could result in farmers discarding the solution. Therefore, sensor fusion should
be investigated further to increase detection performance.

Futhermore, field experiments should be conducted in multiple fields, in
various weather conditions. Based on this, the constraints of sensor based
solutions could be found, and requirements and guidelines for future research
could be defined.
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4.4 Conclusion

The hypothesis of this thesis was that wildlife damage management can be
performed in a more ethical, efficient and wildlife-friendly manner, if based
on new sensor technology, pattern recognition and automation within tools
and methods for wildlife damage management. To investigate this, three main
objectives were defined, which inluded development of sensor based methods
for detecting and recognizing wildlife, and investigate the effect of using
smart sensing in the context of wildlife damage management.

The research within an adaptive frightening device has been focused on
the development of algorithms and methods to introduce the intelligent use
of sensor technologies within wildlife damage management. Here, acous-
tic pattern recognition based on cepstral feature extraction and GMMs have
been utilized to develop algorithms for detection and recognition of conflict
species. The timely detection and recognition of conflict species enables a
system to monitor a large region, and only apply a disruptive stimuli when it
is needed. Futhermore, the stimuli can be targeted towards specific species.
A framework, which implements an adaptive system has been presented.
The framework includes automated flock behavior recognition, which can
be accomplished through analysis of soundscape or flock movement. Here,
acoustic, audio-visual fusion and array methods have been proposed. These
contributions promote ethical and efficient wildlife damage management, as
the system is able to monitor possible habituation and react accordingly. The
feature of having a wildlife damage management system capable of monitor-
ing its own performance and be species specific is a novel concept, which can
be further developed based on the work carried out during this Ph.D. project.

An automatic detection and recognition of animals in mowing opera-
tions would promote both efficient and wildlife-friendly farming. The use of
thermal cameras allows for robust detection of animals during mowing oper-
ations. In this thesis, an algorithm for detection and recognition of wildlife in
thermal images have been presented. The recognition of wildlife in thermal
images is based on a novel thermal feature extraction method, which captures
the thermal signature of detected hot spots. However, using this technology
alone will not solve the task of automated detection and recognition of ani-
mals, as it is sensitive to false positives, and sensor fusion techniques should
be investigated to improve this.

The achieved results and contributions in this thesis are a significant step
towards a more efficient sensor based solutions for wildlife-friendly farming
and reduction of human-wildlife conflicts within agriculture.
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5
A Multimedia Capture System for Wildlife Studies

The paper presented in this chapter is a peer-reviewed conference paper and
has been presented at Emerging 2011.

[P1] Kim Arild Steen, Henrik Karstoft and Ole Green (2011). A Multi-
media Capture System for Wildlife Studies. Paper presented at The
Third International Conference on Emerging Network Intelligence,
Lissabon, Portugal.
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6
A Vocal-Based Analytical Method for Goose

Behaviour Recognition

The paper presented in this chapter has been published in Sensors.

[P2] Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft and
Ole Green (2012). A Vocal-Based Analytical Method for Goose
Behaviour Recognition. Sensors 12(3), pp. 3773-3788
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7
Audio-Based Detection and Recognition of

Conflict Species in Outdoor Environments using
Pattern Recognition Methods

The paper presented in this chapter has been published in Applied Engineer-
ing in Agriculture.

[P5] Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft and
Ole Green (2014). Audio-Based Detection and Recognition of Con-
flict Species in Outdoor Environments Using Pattern Recognition
Methods. Applied Engineering in Agriculture vol. 30(1), pp. 89-96
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8
Audio-Visual Recognition of Goose Flocking

Behavior

The paper presented in this chapter has been published in International Jour-
nal of Pattern Recognition and Artificial Intelligence.

[P4] Kim Arild Steen, Ole Roland Therkildsen, Ole Green and Henrik
Karstoft (2013). Audio-Visual Recognition of Goose Flocking Be-
havior. International Journal of Pattern Recognition and Artificial
Intelligence. 27(7), pp. 21
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9
Acoustic Source Tracking in Long Baseline

Microphone Arrays

The paper presented in this chapter has been accepted for publication in
Applied Acoustics.

[P7] Kim Arild Steen, James H. McClellan, Ole Green and Henrik
Karstoft. Acoustic Source Tracking in Long Baseline Microphone
Arrays. Submitted for publication in Applied Acoustics, March
2014.
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10
An Audio Based Adaptive Goose Scaring Device

The paper presented in this chapter has been presented at CIOSTA (Commis-
sion Internationale de l’Organisation Scientifique du Travail en Agriculture).

[P3] Kim Arild Steen, Ole Roland Therkildsen, Henrik Karstoft and Ole
Green (2013). An Audio Based Adaptive Goose Scaring Device.
Paper presented at CIOSTA XXXV Conference, Billund, Danmark.
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11
Automatic Detection of Animals in Mowing

Operations Using Thermal Cameras

The paper presented in this chapter has been published in Sensors.

[P6] Kim Arild Steen, Andrés Villa-Henriksen, Ole Roland Therkildsen
and Ole Green (2012). Automatic Detection of Animals in Mowing
Operations Using Thermal Cameras. Sensors 12(6), pp. 7587-7597
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12
Detection and Recognition of Wildlife in Thermal

Images

The paper presented in this chapter has been submitted to IEEE International
Conference on Image Processing 2014.

[P8] Kim Arild Steen, Rasmus Nyholm Jørgensen, Ole Green and Hen-
rik Karstoft. Detection and Recognition of Wildlife in Thermal
Images, Submitted to IEEE International Conference on Image
Processing, January 2014
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