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Abstract

Abstract

Plastic microbuckling, also called kink band formation, in unidirectional
fiber composites is addressed. An individual fiber and matrix 2D finite el-
ement model is built and compared to a 2D composite constitutive model
on a square geometry. Comparison is made on the applied stress, fiber
angle and kink band angle, and a good correlation between the models is
seen. Expanding the height to get larger slenderness of the geometry will
introduce the opportunity of Euler buckling as well. This is done in a para-
metric study where the competing failure mechanisms are observed. The
prediction of the critical load of a single-edge notch carbon fiber reinforced
epoxy composite beam is addressed as well. The superelement technique
is used to reduce analysis time. A comparison with a compressive crack
approach is made as well, and almost similar results are obtained.
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Resumé

Resumé

Plastisk mikrobuling, ogs̊a kaldet kinkb̊andsformation, i enakset fiberkom-
posit er behandlet. En individuel fiber og matrix 2D finite element model
er bygget og sammenlignet med med en 2D konstitutiv model anvendt p̊a
en kvadratisk geometri. Sammenligningen er lavet med p̊atrykt spænding,
fibervinkel og kinkb̊andsvinkel. En god sammenhæng er set mellem mod-
ellerne. Hvis højden af geometrien udvides, hvorved et større slankheds-
forhold opn̊aes, introduceres muligheden for søjlebuling, ogs̊a kaldet Euler-
buling. Dette er udført i et parameterstudie, hvor de to konkurrerende fe-
jlmekanismer optræder. Forudsigelsen af den kritiske last i en kærvp̊arvirket
kulfiberforstærket epoxykompositbjælke er ogs̊a behandlet. Superelement-
teknikken er anvendt for at spare beregningstid. En sammenligning med
kompressionsrevneteknikken er udført, og virkelig lovende resultater er opn̊aet.
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Chapter 1

Introduction

In the design of mechanical structures it is in most cases desirable to have
light and strong structures. One opportunity for meeting this need is the
use of a lightweight material like aluminum, but another option is the use
of composite materials. Some classical examples where fiber composites are
used are shown in Fig. 1.1.

The demand for fiber composite is a growing business. In Fig. 1.2 the
use of composite in aircrafts is shown. The same tendency is seen in other
industries as well. The wind turbine industry is another example. But
what to do when, for example, a wind turbine blade is retiring? How about
reuse or proper waste handling? These questions have encouraged the use
of biological materials. In nature, composite materials are often seen in
wood or flax where evolution has shaped and optimized the materials. In
Fig. 1.3 two other types of fiber composites are shown. In the review paper
by Faruk et al. (2012) they made a collection of the material specification
on the most commonly utilized natural fibers and biopolymers. Since the
materials are biological, other characteristics need to be taken into account
like cellulose contents.

One of the composite material options is to apply layered materials
where the lay-up usually is made of materials with different stiffnesses.
Each layer, called ply or lamina, is made of a matrix material reinforced by
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1. Introduction

(a) (b)

(c) (d)

Figure 1.1: Examples of the use of fiber composites. The BMW i8 (a), the
787 Dreamliner from Boeing (b), the V164 from Vestas (c) and the international
spacestation MIR (d).

a stiffer material which together represent a laminate. The reinforcement
could be long continuous fibers in which the direction of orientation is cru-
cial for the stiffness of the ply. This means that the fibers can be orientated
in a given direction where the high stiffness is wanted.

Woven composite is widely used as well. This produces a strong mechan-

2



Figure 1.2: Use of composite materials in aircrafts shown as percentage of weight.
Source is ATSB.

(a) (b)

Figure 1.3: Examples of biocomposites. A coconut and bamboo.
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1. Introduction

ical interlocking of the fibers. Fabrics are woven using the same techniques
as in the textile industry in which many different weave styles are adopted.
When draping is a problem in complex 3D geometry, weaving the fabric in
another way can help solve this problem.

There are many ways of handling the problem of mixing the matrix
with the fibers. One way is to use a so-called pre-preg which is a compos-
ite where the matrix is embedded and semi-cured prehand of the lay-up.
Another approach is to use dry fibers in the lay-up and then use a tech-
nique such as injection molding to embed the fibers in the matrix. If a pure
unidirectional composite with a constant cross section is wanted, a method
called pultrusion could by applied.

A sandwich structure is another way of using composite materials. This
type of composite is mostly used where a high bending stiffness is wanted.
The sandwich structure principle is to have a lightweight core in a sandwich
between fiber composite laminates. This offsetting the stiff laminates from
the center axis of the structure increases the bending moment of inertia
highly.

Another use of fibers is to chop them up and mix them with the matrix
in a random way to produce a reinforced isotropic material. When using
chopped up fibers in an injection molding process, for example, the fibers
will orientate in the direction of the flow and thereby become stiffer in this
direction.

1.1 Unidirectional fiber composite

In many structural components, laminates include one or more plies with
fibers located in the direction of the loading. An example of this is in a
wind turbine blade that fundamentally acts like a beam in bending. To
reduce deformation of the blade a high stiffness is wanted in the direction
of the length. The high stiffness comes with a price when the fibers are
in compression. For example, the compressive strength of an epoxy matrix
reinforced by unidirectional carbon fibers in the direction of the loading is
often less than 60% of the tensile strength (Fleck, 1997).

4



1.1. Unidirectional fiber composite

Figure 1.4: Failure modes in unidirectional fiber composite from Fleck (1997).

There are many types of compression mode of failures but the classifica-
tion is usually made as shown in Fig. 1.4 from Fleck (1997). In Fig. 1.4(a),
elastic microbuckling is sketched. Rosen (1965) considered elastic bifurca-
tion of two different modes; a transverse buckling mode and shear buckling
mode. Elastic microbuckling is rarely seen in commercial materials like car-
bon/epoxy composites. Instead plastic microbuckling is the most common
compressive failure as sketched in Fig. 1.4(b). A nonlinear response of the
matrix is assumed here and will be discussed in section 1.2. In Fig. 1.4(c),
the failure mode fiber crushing is shown. This happens when the matrix is
sufficiently stiff and strong so that the uniaxial strain reaches the crushing
strain of the fibers before any of the other failure modes occur. Another
failure mode is splitting, which is shown in Fig 1.4(d). The splitting is seen

5



1. Introduction

as one or more cracks developing in the interface between the fiber and
matrix or in the matrix by itself. This failure mode is controlled by the
critical stress intensify factor of the matrix. Depending on the loading, the
crack can develop as a mode I or a mode II crack. A related failure mode
is buckle delamination as seen in Fig. 1.4(e). Hutchinson and Suo (1992)
modeled this type of failure as a straight-sided surface layer with infinite
extend in the direction transverse to the direction of loading. In Fig. 1.4(f),
shear banding is shown. This type of failure is seen in polymer composites
with very low fiber volume fractions.

So which type of failure will happen for a given composite? In Fig. 1.5,
a 2D failure map is shown with failures indicated for different unidirectional
composites exposed to uniaxial compression. On the x-axis, the shear mod-
ulus of the composite, G, is used and on the y-axis, the shear yield stress
of the matrix, τy, normalized with the initial fiber misalignment angle, φ0.
From this failure map is is clear that all failures for the given composites

τy
/φ

0
 

G [MPa]

[M
P

a
]

Figure 1.5: 2D failure map from Fleck (1997).
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1.2. Plastic microbuckling

occur as plastic microbuckling. Plastic microbuckling is often seen as the
dominant failure mechanism in unidirectional polymer matrix composites.
Usually this results in a kink band formation which will be discussed in the
next section.

1.2 Plastic microbuckling

Plastic microbuckling is a material instability and results in kink band for-
mation. At the critical stress, i.e. the kinking stress, a narrow band is
formed where strains localize which can be seen in Fig. 1.6 for a ther-
moplastic matrix reinforced by carbon fibers from Vogler and Kyriakides
(2001). The phenomenon is seen in different anisotropic materials and was

Figure 1.6: Kink band in unidirectional AS4/PEEK.

observed in phyllite by Paterson and Weiss (1966). In the early work on
fiber kinking, models were formulated treating the fibers as beams on an
elastic foundation. Rosen (1965) suggested a model in which the critical
compressive stress, σc, for kink band formation is equal to the shear mod-

7



1. Introduction

ulus of the composite, G
σc = G (1.1)

which is a linear material formulation. This was not a conservative predic-
tion and experimental results showed σc down to 1/4 of the prediction by
Rosen. Later Argon (1972) formulated a model for rigid-perfectly plastic
matrix using τy and φ0 to determine the critical stress as

σc =
τy

φ0
(1.2)

Budiansky (1983) incorporated the effect of an elastic-perfectly plastic ma-
trix by use of the shear yield strain of the matrix, γy, by

σc =
G

1 + φ0/γy
(1.3)

containing previous results as special cases. In all three predictions, the
angle of the kink band, β, is assumed to be zero. It is clear from Fig.
1.6 that this is not the case for a AS4/PEEK composite in unidirectional
compression. This will be discussed further in chapter 2.

During the years, several suggestions on more sophisticated modeling
of kink band formation have been made. Fleck and Shu (1995) developed
a unit cell of a linear elastic Timoshenko beam embedded in a nonlinear
elastic-plastic matrix using a couple stress theory. The fiber composite was
treated as a smeared-out Cosserat continuum. Christoffersen and Jensen
(1996) derived a constitutive model accounting for the microstructure of the
composite. Recently Wadee et al. (2012) developed a geometrical kink band
model founded on potential energy principles. It was further developed by
Zidek and Völlmecke (2014) to include nonlinear material behavior of the
matrix.

As suggested by Argon and Budiansky, the fiber misalignment had a big
influence on σc. These imperfections are introduced during manufacturing
and cannot be avoided. Yurgartis (1987) made local measurements of fiber
misalignments in continuous fiber composites. He measured the misalign-
ment angle to lie with ±3◦ of the mean fiber direction. A way to reduce the

8



1.3. Scope of this work

misalignment is to use the pultrusion technique as discussed earlier. The
downside is that usually only a constant cross section can be obtained.

Observing a kink band in a pure compression test can be difficult. When
the critical kinking stress is reached, a dramatic load drop will result in a
broken specimen in most cases. A way to improve this is to use a non-
homogeneous stress field by introducing a notch for example. The stress
concentration at the notch tip will force the failure to occur here while
there is still load bearing capacity left in the rest of the specimen. Moran
and Shih (1998) succeeded in tracking the end-shortening as a function of
applied stress in a pure compression setup in a single-edge notched unidi-
rectional IM7/PEEK composite. This behavior was similar to that shown
by Kyriakides et al. (1995) where they individually modeled the fibers and
the matrix in a unidirectional composite using a 2D finite element scheme.
Vogler and Kyriakides (2001) managed to observe the same stable phenom-
ena in an AS4/PEEK composite in a biaxial test setup. They captured
micrographs showing the evolution of the kink band as well.

1.3 Scope of this work

The work in this thesis is divided into three chapters. The first two are
build on papers attached where specific parts have been clarified. The last
chapter is ongoing work. The first part of this PhD project is introducing
an individual fiber and matrix discretized finite element model. The model
is built with the intention of making a tool where the constitutive model
by Christoffersen and Jensen (1996) can be verified using it in a kink band
analysis. Different parameters are used for comparison such as the critical
stress, fiber angle and kink band angle.

Next this finite element model is used to predict the failure load of a
single-edge notch beam in a four-point bend setup. The prediction is built
on experiments made for an epoxy reinforced carbon fiber composite. The
hypothesis is that failure occurs as plastic microbuckling, which the finite
element model is able to predict. The idea of using a notched beam is to get
a non-homogeneous compressive stress state where it is possible to observe

9



1. Introduction

what is actually happening on fiber level in a microscope.
In the last chapter, the transaction from Euler buckling to kink band

formation of a composite beam of varying aspect ratio is explored. This
means that a parametric study is made using the finite element model
varying the width-to-height ratio. The imperfection sensitivity is small in
Euler buckling while it is large in kink band formation. The hypothesis is
that, in the transition, there is a mixture of the two failure modes which is
investigated.

10



Chapter 2

Comparison with a constitutive
model

Structural finite element calculations on composite materials on a detailed
fiber/matrix level can be attacked from two angles: A detailed discretiza-
tion of fiber and matrix individually or using a smeared out constitutive
model. Making a detailed finite element model of a structure used in prac-
tice on the fiber/matrix level will result in a finite element model with a
very large number of elements, and in most cases it is not even possible.
If the same mechanical behavior with sufficient accuracy can be observed
using a smeared out model, that is preferable in most cases. In Fig. 2.1,
a sketch of a 2D composite model with a fiber waviness introduced as an
imperfection is shown. This figure will be used as a reference in the setup
of a constitutive model and in the setup of a detailed finite element model.

In a composite where the stiffness and the yielding stress of the fibers are
significantly higher, material nonlinearity of the fibers contributes with a
minor effect on the mechanical behavior. It was observed by Christoffersen
and Jensen (1996) and Kyriakides et al. (1995) that the critical stress was
only slightly affected by nonlinearity in the fibers. The nonlinearity did have
an effect on the critical displacement, but the contribution was still small.
Due to these findings, it is assumed that only the matrix behaves elastic-
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2. Comparison with a constitutive model

Figure 2.1: Sketch of 2D composite model.

plastic, while the fibers remain isotropic elastic. Many fiber materials are
known to have orthotropic material behavior. In a compression scenario in
the fiber direction the axial stiffness is of high importance while the radial
stiffness is less important. The fiber orthotropic behavior is due to this
ignored.

2.1 Constitutive equations

The plasticity of the matrix material is described by the J2-flow theory
with isotropic hardening. The time-independent constitutive tensor Lijkl
relating the Jaumann rate of Kirchhoff stresses τ̂ij to strain rate ε̇ij is

τ̂ij = Lijklε̇kl (2.1)

where the constitutive tensor Lijkl for J2-flow theory from McMeeking
and Rice (1975) using a finite strain formulation (total Lagrangian) as in

12



2.1. Constitutive equations

Hutchinson (1973) is

Lijkl =
E

1 + ν

(
1

2
(GikGjl +GilGjk) +

ν

1− 2ν
GijGkl

−β∗ 3

2

E/Et − 1

E/Et − (1− 2ν)/3

sijskl
σ2e

)
(2.2)

− 1

2
(Gikτjl +Gjkτil +Gilτjk +Gjlτik)

where Gij are the components of the metric tensor of the deformed con-
figuration, E is the Young modulus of elasticity, ν is Poisson’s ratio and
Et is the tangent modulus. sij are the components of the deviatoric stress
tensors and are defined by Kirchhoff stresses τij as

sij = τij − 1
3GijG

klτkl (2.3)

σe is the equivalent von Mises stress

σe =
√

3
2G

ikGjlsijskl (2.4)

The relation between Kirchhoff and Cauchy stresses is

σij =

√
g∗

G∗
τij (2.5)

where g∗ and G∗ are the determinants of the metric tensor of the unde-
formed and deformed configuration, respectively. β∗ is determined by

β∗ =

{
1 for σe = (σe)max and σ̇e ≥ 0

0 for σe < (σe)max or σ̇e < 0
(2.6)

The relation between the uniaxial logarithmic strain, ε, and the uniaxial
Cauchy stress, σ, is described as a Ramberg-Osgood relation for the matrix
material by

ε =
σ

E
+

3σy

7E

( σ
σy

)n
(2.7)

where σy is the yield stress and n is the hardening index. The tangent
modulus, Et, is determined by differentiation of (2.7).
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2. Comparison with a constitutive model

2.2 The constitutive model

Christoffersen and Jensen (1996) developed a rate constitutive equation
accounting for the microstructure of a 2D unidirectional fiber composite.
They treated the problem in the framework of localization of deformation
(Rice, 1976). The model allowed for arbitrary elastic-plastic behavior of the
constituents. The model was applied in a study of initial fiber misalign-
ments (Jensen and Christoffersen, 1997) and solutions were obtained in a
numerical scheme by increasing the fiber angle incrementally and satisfying
equilibrium and compatibility across the kink band boundary. An expres-
sion is obtained for the composite moduli as a function of constituent mod-
uli and volume fractions by Christoffersen and Jensen (1996). The plane
constitutive model is based on continuity and equilibrium across layer in-
terfaces on a constituent level rather that on global composite level. The
model is briefly reviewed in this section.

In the following, superscript c denotes constituents (fiber or matrix)
and properties without superscript denote composite properties. Assuming
that the fibers are orientated along the x1 axis (see Fig. 2.1), the consti-
tutive relation between the nominal stress rates ṡij and the gradients of
displacement rates vi,j is

ṡcij = Ccijklv
c
k,l , i, j, k, l ∈ {1, 2} (2.8)

for the constituents (matrix and fiber individually) where Ccijkl is the tensor
of nominal moduli. With the state of Cauchy stresses σcij of the fiber and
matrix assumed known, the constitutive tensor can be expressed as

Ccijkl = Lcijkl − 1
2δilσ

c
kj − 1

2δikσ
c
lj − 1

2σ
c
ilδkj + 1

2σ
c
ikδlj (2.9)

written in an updated Lagrangian formulation. Symmetry conditions apply
for Lcijkl as

Lcijkl = Lcijlk = Lcjikl = Lcklij (2.10)

Equation (2.8) may for convenience be written as

ṡcα = Cc
αβv

c
,β , α, β ∈ {1, 2} (2.11)

14



2.2. The constitutive model

where the vectors ṡc denote the rates of nominal stresses by

ṡc1 =

{
sc11
sc12

}
, ṡc2 =

{
sc21
sc22

}
(2.12)

and the vector vc is

vc =

{
vc1
vc2

}
(2.13)

The matrix Cαβ is decomposed as

Cc
11 =

[
Lc1111 − σc11 Lc1112 − σc12
Lc1211 − σc12 Lc1212 −

σc
22−σc

11
2

]
,

Cc
12 =

[
Lc1112 Lc1122

Lc1212 −
σc
22+σ

c
11

2 Lc1222

]
,

Cc
21 =

[
Lc1211 Lc1212 −

σc
11+σ

c
22

2
Lc2211 Lc2212

]
,

Cc
22 =

[
Lc1212 −

σc
11−σc

22
2 Lc1222 − σc12

Lc2212 − σc12 Lc2222 − σc22

]
(2.14)

Applying the constitutive model comes with a number of assumptions:

(A) Material lines parallel with the fibers are subjected to a common
stretching and rotations.

(B) Planes parallel with the fibers transmit identical tractions.

(C) The material of the constituents is elastic or elastic-plastic.

(D) No bending stiffness of the fibers is included.

Assumption (A) corresponds to a Voigt estimate for effective material prop-
erties parallel with the fibers. It corresponds to the fact that the displace-
ment gradients vc,1 are common to both constituents

vf,1 = vm,1 = v,1 (2.15)
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2. Comparison with a constitutive model

using the notation v,1 without superscript which corresponds to the overall
displacement gradient. For overall compatibility of a representative volume
element

cfvf,2 + cmvm,2 = v,2 (2.16)

where cf and cm are the volume fractions and have the relation

cf + cm = 1 (2.17)

which may change during deformation as the strains and material properties
in the fibers and matrix differ.

Assumption (A) is not realistic perpendicular to the fibers for which rea-
son assumption (B) is imposed which is the Reuss estimate for composites.
This means that

ṡf2 = ṡm2 = ṡ2 (2.18)

and for overall equilibrium

cf ṡf1 + cmṡm1 = ṡ (2.19)

Balances of forces together with assumption B gives us

cfσf11 + cmσm11 = σ11 , σ
f
12 = σm12 = σ12 , σ

f
22 = σm22 = σ22 (2.20)

Assumption (C) indicates that (2.8) and (2.11) are valid. Through
combination of (2.11) and (2.15) - (2.20), it is shown by Christoffersen and
Jensen (1996) that the overall constitutive equations for the composite can
be written as

Cαβ = cfCf
αβ + cmCm

αβ − cfcm
(
Cf
α2 −Cm

α2

)
C∗−122

(
Cf

2β −Cm
2β

)
(2.21)

where C∗−122 denotes the inverse of the matrix

C∗22 = cmCf
22 + cfCm

22 (2.22)

The first two terms of (2.21) is the Voigt estimate. The rest of the terms
is a correction according to assumption (B) perpendicular to the fibers.
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2.2. The constitutive model

Assumption (D) is implicit in the model as no bending stiffness of the
fibers is included. This means that no finite kink band width can be found.
The kink band width will be discussed in section 2.3.2.

The equations (2.15) - (2.20) takes care of the continuity between the
fiber and matrix. The use of (2.21) in a kink band analysis requires continu-
ity equations between the base material and the kink band (Jensen, 1999).
The continuity of displacement gradients across the boundary requires that

v′i,jt
′
jt
′
i = vi,jtjti v′i,jt

′
jn
′
i = vi,jtjni (2.23)

where a primed symbol relates to the base material coordinates and an
unprimed to the kink band coordinates. ti, t

′
i ni and n′i are, respectively,

the unit tangent and the unit normal of the boundary between base material
and kink band expressed in the base material coordinates and the kink band
coordinates. Continuity of traction rates between the two regions requires
that

ṡ′ijn
′
in
′
j = ṡijninj ṡ′ijn

′
it
′
j = ṡijnitj (2.24)

Note that the kink band analysis using (2.23) and (2.24) is carried out on
the overall composite level using (2.21) as constitutive equation.

2.2.1 Implementation in a finite element analysis

Sørensen et al. (2009) implemented the constitutive model in the commer-
cial finite element software ABAQUS. The implementation was done in a
user subroutine. In Fig 2.2, a load-displacement curve is shown for different
number of elements in the model. As expected, there is a big difference in
the postbuckling regime. This is because of the difference in the kink band
width shown in Fig. 2.3 which leads to different elastic unloading paths.
The kink band width is mainly controlled by the fiber bending stiffness as
will be discussed in section 2.3.2. Since there is no bending stiffness in-
cluded in the constitutive model, the kink band width will not converge.
The high mesh dependency comes in because of the only length scale in-
troduced is the size of the mesh. The critical load is converging as more
elements are used. If the analysis was continued, it would be expected that
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2. Comparison with a constitutive model
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Figure 2.2: Mesh dependency on load path using the constitutive model in a
finite element analysis. Results are from Sørensen et al. (2009).

(a) (b)

(c) (d)

Figure 2.3: Mesh sensitivity on deformations using the constitutive model in a
finite element analysis. The darker region indicate plastic strains. Results are
from Sørensen et al. (2009).

the different mesh sizes will converge to the same steady state load. This
is expected because the steady state load is weakly dependent on the fiber
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2.3. The detailed finite element model

bending stiffness.

2.3 The detailed finite element model

The finite element model is build in a comparable scheme to Kyriakides
et al. (1995). The commercial finite element code Marc from MSC Software
is used for the analysis. The numerical scheme is chosen as an updated
Lagrangian formulation. The model is build of alternating fiber and matrix
layers with one 8 node bi-quadratic plane strain element per individual fiber
and matrix layer. The mesh in generated manually using MATLAB and
imported into the pre- and postprocessor Marc Mentat from MSC Software.
It was observed by Borg (2003) that using 1 element per layer compared to
3 gave a deviation on the kink stress by only 3 %. The grid in Kyriakides
et al. (1995) is also made of 1 element per layer.

The imperfection in Fig. 2.1 is to simulate a fiber misalignment and is
imposed as a cosine function in the area marked by the dashed lines. The
imperfection is imposed as

x2 =
h

2

(
1− cos

(πx1
b

))
(2.25)

where h is determined from the misalignment angle φ0

h =
2b tan(φ0)

π
(2.26)

and b is the width of the imperfection. The angle of the imperfection, β,
determines in combination with b the area where the imperfection from
(2.25) applies. The fibers outside this area are straight. When b = L0

there are no straight fibers and the misalignment is applied to the whole
model. This type of misalignment is referred to as global imperfection.
When b < L0, the misalignment is referred to as local imperfection.

The fiber volume fraction, cf , is specified in the setup of the model.
The matrix volume fraction, cm, is determined by (2.17). The width, W0,
and the length, L0, are fixed values in the model. This leads to the fiber
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2. Comparison with a constitutive model

diameter df being a variable determined by

df =
W0 c

f

nf
(2.27)

where nf is the number of fibers in the model. The width of the matrix is
then

dm =
W0 − dfnf

nf − 1
(2.28)

Using (2.27) and (2.28) requires that the outer elements on both sides are
fiber elements.

Since this 2D model represents a slice of a 3D composite, the 2D fiber
volume fraction and 2D fiber diameter can be determined in different ways.
Gutkin et al. (2010) stated three ways:

(i) 2D fiber volume fraction equals 3D; cf2D = cf3D

(ii) A hexagonal fiber arrangement; cf2D =

√
2
√
3

π cf3D

(iii) 2D bending stiffness of the fiber equals 3D; df2D =
[
12
64π(df3D)4

]1/3
In a τ -σ failure envelope there was not much of a difference between meth-
ods (i) and (iii). In method (ii) the results were less conservative. Keeping
the same volume fraction and fiber diameter in 2D as in 3D as in method
(i) is therefore chosen.

Since the equilibrium path may experience snap-through and snap-back,
the numerical technique for incremental solution is chosen as the arc-length
method first introduced by Riks (1979). A linear constraint is chosen as
described in Krenk (2009) so that the sub-increment (δu, δf) lies in a hyper-
plane orthogonal to the current total increment (∆u,∆f) and is expressed
by the condition

(∆u,∆f) · (δu, δf) = 0 (2.29)
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2.3. The detailed finite element model

where u is the displacement vector and f is the force vector. The load
factor increment, δξ, is calculated as

δξ = − ∆uT δur
∆uT∆u1

(2.30)

where δur is the sub-increment residual displacement vector and ∆u1 is the
initial displacement vector in the current increment. The edges at x = 0
and x = L0 are fixed for rotation.

2.3.1 Kink band process

In Figure 2.4 several different stages at the load-displacement curve is
marked. This is to illustrate the deformations. The applied stress, −σ11, is
normalized with the elastic shear modulus, G, of the composite

G =
GmGf

νfGm + νmGf
(2.31)

Stage (0) refers to the initial stage which is shown in Figure 2.1. The
deformation stages in connection with Fig. 2.4 are shown in Fig. 2.5. Stage
(a) is where the equivalent von Mises stress of the matrix first exceeds the
yielding stress. The zone of yielding is shown as plastic strains in the darker
region for all the stages. At stage (b), the maximum stress is reached, i.e.
the kinking stress. From stage (a) to (b) it is worth noting that the zone
of plastic strains becomes smaller even before the kinking stress is reached.
It is clear from Figure 2.4 that the load drops dramatically from stage (b)
to (c) as well as the current length is increased due to snap-back behavior.
This is due to the localization of deformation into a kink band which entails
elastic unloading of the fibers outside the kink band. The amount of load
drop and snap-back behavior is dependent on the imperfection, the material
parameters of the matrix, the size of the specimen, and the bending stiffness
of the fibers. In section 2.3.2 the kink band width will be discussed. In
stage (c) the deformation is fully localized and the fibers start to rotate more
rapidly. As the load keeps dropping from stage (c) to (d), the current length
of the model starts increasing again. As the fibers rotate, the kink band
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2. Comparison with a constitutive model

angle, β, will also rotate. This is clear if a comparison is made between
stage (c) and stage (f), for example. After stage (f) the load reaches a
steady state value and a continuous compression will result in kink band
broadening or a possible fiber breakage. Kink band broadening is discussed
by Jensen (1999) and Moran et al. (1995).
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Figure 2.4: Applied normalized stress as a function of normalized end shortening.

2.3.2 Convergence and kink band width

To determine how many fibers are needed in the model to obtain a satisfying
result, a convergence study on the number of fibers is made. Since the
geometry of the model is fixed as a square with fixed side lengths, changing
the number of fibers will change the diameter of the fibers. This will affect
the response in different ways and will be outlined next. The data used in
this convergence study is shown in Tab. 2.1. The imperfection is imposed
as a global imperfection, i.e. b = L0. In Fig. 2.6, the applied stress as a
function of end-shortening for a range of fibers from nf = 40 to nf = 200
is shown. In the linear elastic pre-buckling stage from stage (0) to stage
(a) there is no difference. A small deviation comes in at the critical stress,
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2.3. The detailed finite element model

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Deformation plots at different stages illustrating localization of de-
formation and rotation of kink band. The darker region indicate plastic strains in
the matrix elements. The stages refer to Fig. 2.4.
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2. Comparison with a constitutive model

Ef/Em 35
νf 0.263
νm 0.356
σy/Em 0.013
n 4
φ0 1◦

Table 2.1: Parameters used in convergence study.
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Figure 2.6: Applied stress as a function of end shortening. nf steps by 20 from
nf = 40 to nf = 200.

σcr11, in stage (b). In Fig. 2.7 it can be observed that changing nf only has
a slight effect on σcr11. As suggested by Budiansky (1983), the critical stress
is mainly dependent on material parameters and the fiber misalignment
which support the results in Fig. 2.7. When the critical stress is reached in
stage (b), a deviation starts to kick in as the kink band is formed at around
stage (c) and elastic unloading of the material outside happens. This can
be explained by Fig. 2.8 where σ11 is shown as a function of b/L0. As
nf increases, b decreases. This is because the bending stiffness of the fibers
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2.3. The detailed finite element model
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Figure 2.7: Critical applied stress as a function of number of fibers in the model.
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Figure 2.8: Applied stress as a function of kink band width normalized with
initial length of model. nf steps by 20 from nf = 40 to nf = 200.
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Figure 2.9: Applied stress as a function of kink band width. The curve for
nf = 40 is dashed for clarity.

decreases as df decreases. In Fig. 2.9, b is normalized with df instead of
L0. Budiansky (1983) derived an expression for b/df for perfectly brittle
initially straight fibers and assuming that the matrix is perfectly plastic
after the shear yielding stress, τy, is reached as

b

df
=
π

4

(
2τy

cfEf

)
(2.32)

Calculating τy using Von Mises yield criterion

τy =
σy√

3
(2.33)

Using the material parameters from Tab. 2.1 used in this analysis gives a
kink width fraction

b

df
= 8.8 (2.34)

In Fig. 2.9 it shows that b/df ≈ 12.5 at the initiation of the kink band. This
is slightly larger in comparison with (2.34). If using ductile fibers instead
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2.3. The detailed finite element model

of brittle fibers, a larger b/df , as described in Budiansky (1983), would be
predicted. This explains why a larger value is found in these analyses where
the fibers are not perfectly brittle. Because of the almost identical starting
point of b/df for varying nf in Fig. 2.9 it can be concluded that using a
simple prediction as (2.32) would give reasonable results for the initiation
width of a kink band.

As σ11 keeps decreasing rapidly from stage (c), the deviation enlarges
until around stage (e). Continuing the load path to stage (f) and further
reduces the deviation as the steady state is reached and the kink band
broadens. As kink band broadening is happening a deviation in Fig. 2.9
starts to show as well.

In Fig. 2.10 the applied stress is shown as a function of fiber rotation,
φ. φ is measured in the fiber adjacent to W0/2 and in the element at L0/2.
In this figure φ shows a very weak dependency on nf .
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Figure 2.10: Applied normalized stress as a function of fiber rotation, φ, for two
different number of fibers, nf = 40 and nf = 200. Only two curves are shown
because nf = 80 is almost identical to nf = 200, so this is believed to be the
converged curve.
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2. Comparison with a constitutive model

2.3.3 Kink band angle and fiber rotation

The relation between β and φ is shown in Figs. 2.11 and 2.12 for the local
and global analysis respectively. It can be observed in Fig. 2.11 that
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Figure 2.11: Kink band angle, β, as a function of fiber rotation, φ, with different
initial fiber misalignment for the local analysis.

β rotates with φ in a nearly linear manner when φ > 20◦ independent of
initial fiber misalignment φ0. An approximate relation between β and φ
has been observed experimentally in different materials to be (Paterson and
Weiss, 1966)

φ ≈ 2β (2.35)

which is in good agreement with Figure 2.11 when φ > 20◦. For the global
analysis in Fig. 2.12 the same linearity can be observed. The relation in
(2.35) thus only seems to apply for small initial fiber misalignment φ0. Usu-
ally (2.35) is used as a lock-up condition corresponding to zero volumetric
straining of the matrix material (Fleck and Budiansky, 1991).

In the large strain material response of the matrix there is no stiffening
incorporated. Stiffening is known to happen for amorphous polymers (e.g.
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Arruda and Boyce (1993)) when exposed to large strain. With this effect
included, the relation between β and φ would act differently.

2.4 Comparison

Jensen and Christoffersen (1997) showed that the critical kink band angle
βcr0 was not necessarily 0 in contrast to previous theoretical studies. Exper-
imental observations also indicate inclined bands in most cases. This was
shown in a −σ11 vs φ plot for initial fiber misalignments angle of φ0 = 0.5◦

and φ0 = 3◦ . A comparison with this is made for a global and a local im-
perfection. The values of β0 and b for the local imperfection were obtained
by the following procedure: The global analysis was conducted, and the
point where the kink band has localized, was observed (stage (c) in Fig.
2.4). Then β and b was noted at that stage and used as imperfection values
for the local analysis. This means that the equilibrium from the global
analysis controls the initial configuration of the local analysis. The com-
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Figure 2.12: Kink band angle, β, as a function of fiber rotation, φ, with different
initial fiber misalignment for the global analysis .
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parison can be seen in Figs. 2.13 and 2.14. The tendency of the curves
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Figure 2.13: Applied normalized stress as a function of fiber rotation, φ, for
initial imperfection φ0 = 0.5◦. Jensen is from Jensen and Christoffersen (1997).

is similar, but it can be observed that there is a difference in the values
between the curves from Jensen and Christoffersen (1997) and the global
and local analyses. The reason for this is due to the presence of a finite
kink band width, b, in the global and the local analyses which is absent in
Jensen and Christoffersen (1997).

A study on the kink band stress, σcr11, as a function of initial misalign-
ment angle, φ0, was also made by Jensen and Christoffersen (1997). In
addition, the critical kink band angle, βcr0 , was observed. A comparison
with present results can be seen in Figure 2.15. The global analysis works
as a lower bound while the local analysis works as an upper bound. The
reason for the increased deviation between the local and global analyses
compared to Jensen and Christoffersen (1997) for small φ0 is the J2 flow
rule used here. This results in a deviation compared to the J2 deformation
theory at very low imperfections which can also be seen in Jensen (1999).
Like in Jensen and Christoffersen (1997) it can be observed that βcr0 is in-
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creasing with increasing φ0. The critical kink band angle βcr0 for the local
analysis is measured at the same time as the critical kink band stress (stage
(b) in Figure 2.4), while for the global analysis it is measured just as the
kink band has localized i.e. where it is first possible to observe a kink band
(stage (c) in Fig. 2.4). To clarify the relation between βcr0 and φ0, the
relation is shown in Figure 2.16.

2.5 Conclusion

It was shown in the implementation of the constitutive model in a finite
element scheme by Sørensen et al. (2009) that the postbuckling regime
was mesh dependent in an applied stress vs. end shortening space. The
reason for this is the fact that the mesh is the only length scale used in the
constitutive model in a finite element scheme. Since the postbuckling load
path is mainly controlled by the fiber bending stiffness, the big difference
comes in because there is no bending stiffness included in the constitutive
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Figure 2.14: Applied normalized stress as a function of fiber rotation, φ, for
initial imperfection φ0 = 3◦. Jensen is from Jensen and Christoffersen (1997).
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Figure 2.15: Applied normalized critical stress −σcr
11 as a function of initial fiber

misalignment, φ0, with critical kink band angle, βcr
0 , indicated. Jensen is from

Jensen and Christoffersen (1997).

model.
The same bending stiffness dependency applies for the discretized model

and is also due to the width of the kink band that forms. This controls
the elastic unloading after the critical stress has been reached. The load
path for the discretized model does converge towards the steady state load
though. This makes good sense since this is mainly controlled by the ma-
terial properties of the matrix. In this paper the fiber rotation is chosen
instead of the end shortening for comparison, due to a fast convergence on
the whole load path.

The comparison of the two models is made with the purpose of validat-
ing the constitutive model under plane strain conditions and a homogeneous
compressive stress field in Figs. 2.13 - 2.16. The discretized finite element
approach has previously shown to be in good agreement with experimental
observations and is used as reference in the present work. A microme-
chanical discretized finite element model has the disadvantage that it is
impossible to use in a large structure while the constitutive model used in
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ment. Jensen is from Jensen and Christoffersen (1997).

a finite element scheme is possible to use. Of course this comes with some
assumptions which have been outlined.

The initial kink band width, b, in relation with the initial fiber angle,
φ0, determines the size of the initial imperfection. With this in mind, it
is difficult to make a direct comparison of the constitutive model and the
discretized model in the applied stress vs. fiber angle space due to lack of
information on kink band width in the constitutive model. The approach
of introducing a global and then a local imperfection afterwards is a way
of letting the equilibrium from the global imperfection analysis determine
the size of the local imperfection. The global imperfection analysis works
as a lower bound for the critical stress while the local imperfection analysis
works as an upper bound. This is valid for all values of φ0 examined in the
present work and indicates a good agreement between the two models.

Previous models, e.g. those by Jensen and Christoffersen (1997) and
Fleck and Budiansky (1991), assume fixed initial kink band angles which
may evolve with the general state outside the kink band. The present
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results, where a less constrained rotation of the band with increasing fiber
rotations is observed, could be applied in improved simplified models such
as those by Jensen and Christoffersen (1997) and Fleck and Budiansky
(1991).
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Chapter 3

Failure in a notched beam

Observing compressive failure in unidirectional composites is difficult. First
of all the size of the failed region can be very small. Next, the failure can
happen instantly with no opportunity of observing what is actually going on
during failure. This rapid failure is mostly seen in unidirectional composites
in homogeneous unidirectional loading in the fiber direction. A way of
getting around this sudden failure is to make a lay-up of the composite
with a [0/90]s stacking. The 90◦ layers then make the failure happen less
sudden. Another way is to make the loading non-homogeneous. An example
is a beam in bending which will force the compressive failure to happen at
the edge of the beam where the compressive stress is highest. To make
sure that the failure starts at a specific point, a notch can be introduced.
This is what is done in this chapter. A beam in a four-point bend setup
as shown in Fig. 3.1 is investigated. A setup like this will produce a

L=121

L/3

t=5.9
0°W=11.6 d~2W/3a

Figure 3.1: A beam in a four-point bend setup. Dimensions are in mm.
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3. Failure in a notched beam

failure starting from the notch tip. Compressive initiation of failure and
propagation at notches in unidirectional composites can be seen to behave
as a material instability forming a kink band or as a crack-like manner.
The usual definition of a crack is where an opening between two surfaces
is present and the state of stress is dominated by tension. Guynn et al.
(1989) violated this definition by introducing a ”compressive crack” with
a state of stress dominated by compression and a negative stress intensity
factor. They viewed the damaged zone as a crack with a plastic zone in a
carbon/epoxy composite. They applied the model introduced by Dugdale
(1960) to predict the size of the buckled region in multilayered composites.
In the Dugdale model a constant normal stress is applied in the damage
zone. It was concluded that this did not accurately predict the size of the
damaged zone. Soutis et al. (1991) applied a stress which varied linearly
with the crack displacement which improved the accuracy.

Waas et al. (1990) introduced a circular hole in a rectangular multi-
layered carbon/epoxy composite. This produced a stress gradient at the
hole surface in which the failure initiated. The failure mode was fiber
microbuckling in the 0◦ ply approximately perpendicular to the loading
direction surrounded by delamination.

Sutcliffe and Fleck (1994) used a large scale bridging model for propa-
gating microbuckles in uni-directional carbon/epoxy fiber composites with
a rectangular hole using a constant bridging stress and a constant crack
tip toughness. The mode of failure was an in-plane and out-of-plane mi-
crobuckle as mode II and mode I cracks. They compared the microbuckle
displacement with experimental observations. To avoid splitting they cut a
notch along the fiber direction. Fleck et al. (1997) further investigated the
idea in multilayered composites both analytically and experimentally. The
materials used were thermoplastic PEEK matrix reinforced by AS4 and
IM8 carbon fibers and Toray T800 carbon fibers in epoxy. They discovered
experimentally that the fiber strength had a minor effect in the propagation
behavior as well.

Laffan et al. (2011) measured the negative fracture toughness associated
with the 0◦ ply in a multilayered IM7/8552 composite. They used compact
tension specimens to track down the critical notch tip radius for a correct
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measurement of the fracture toughness. Laffan et al. (2012) used that
information to measure the fracture toughness in a unidirectional IM7/8552
composite using a single-edge notch beam in a plane stress four-point bend
setup.

To view the damaged zone as a crack is a way to observe what happens
on macro-mechanical level. To find out what happens at the microme-
chanical level, modeling of the material instability of the fibers and matrix
individually is an option. Ahn and Waas (2002) used a global-local ap-
proach to model the material instability in a square plate with a circular
hole in a biaxial compression setup. They used a notched laminate of infi-
nite extent to compute the displacement field of a rectangular local region.
An imperfection was imposed as a scaling of the first modal vector from a
linear eigenvalue analysis. The size of the scaling was determined by the
maximum angle of the fibers. A similar approach was used by Davidson
et al. (2013) in a rectangular plate with a circular cutout. The procedure
was to use the displacement and forces on the boundaries of the local model
from a global linear static analysis as an input to a local nonlinear static
analysis.

Laffan et al. (2012) viewed the failure as a crack. The scope of this
chapter is to see the failure as a material instability instead of a crack. The
method is to detect initiation of fiber microbuckling experimentally in a
unidirectional fiber composite. A stable failure is desired so the deforma-
tion at the composite on material level can be observed. A finite element
model is presented to predict the failure initiation and to verify the failure
initiation as fiber microbuckling.

3.1 Experiments

The test setup was a four-point bend setup following the standard ASTM
D6272 - 10. The test was quasi-static using a loading rate of 0.6mm/min.
A picture of the setup can be seen in Fig. 3.2. To take pictures for digital
image correlation (DIC) and post observations of deformation and failure
during testing, a reflex camera was installed. A picture was taken every
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3. Failure in a notched beam

Figure 3.2: Four-point bend test setup.

1 second. The material system used was carbon fiber reinforced plastic
IM7/8552 unidirectional prepreg. This material is widely used in aerospace
structures. To find the configuration shown in Fig. 3.1, a design iteration
was conducted. The first design is shown in Fig. 3.3(a) with W/L = 0.21.
The outer geometry was cut using water jet technology. The notch was
prepared using a water-cooled diamond disc saw making an almost square
notch tip. The surface was spray painted so it was possible to track the
deformation using DIC during testing. The failed specimen can be seen
in Fig. 3.3(b). Because of an angled cut using water jet technology, the

(a) (b)

Figure 3.3: The first design failed by flipping and crushing.
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3.1. Experiments

specimen flipped before any failure happened at the notch tip. Besides
this, a too high contact pressure under the rolls crushed the surface. The
second design is shown in Fig. 3.4(a) with W/L = 0.096. In this setup,
rubber patches were used under the rollers to lower the contact pressure.
To avoid flipping, the bottom and top surfaces were made parallel using a
water-cooled diamond-coated grinding disc. The notch was prepared using
the same technique as in Fig. 3.3. This time the specimen did not flip as

(a) (b)

Figure 3.4: The second design failed by splitting.

can be seen in Fig. 3.4(b). Instead, splitting happened in the matrix layer.
The splitting was observed as a big drop in the load/displacement curve
but can also be seen as a line in both directions starting from the notch tip.

Since a kink band failure is wanted in this experiment, an attempt to get
rid of the splitting was made. The focus was aimed at the notch tip. The
hypothesis was that a higher stress concentration would encourage a kink
band to happen instead of splitting. To get a higher stress concentration
at only one location, a round notch tip was made instead of a square in the
third design as shown in Fig. 3.5(a). This was done using a water-cooled
diamond-coated band saw making a cut ≈ 650µm wide with a tip radius
≈ 290µm. This time kinking happened instead of splitting. The failed spec-
imen can be seen in Fig. 3.5(b). From the pictures taken during the test
a video clip was made showing the load/displacement curve and the cor-
responding deformation of the specimen1. The applied load was measured
using the load cell on the testing machine while the deformation was found
using DIC. The first small change in stiffness on the load/displacement
curve is where failure is initiated. Next a decrease in stiffness is seen until
multiple small changes in the curve are observed. The deformed shape dur-

1http://youtu.be/SNOn0e4DwWE
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3. Failure in a notched beam

(a) (b)

(c)

Figure 3.5: The third design failed by kink band formation.

ing testing is made into a video clip2. The deformation of a section line just
beneath the notch tip is shown in the bottom left corner. In the beginning
of the test, the section deforms like a normal beam. As failure kicks in,
the deformation has a tendency of discontinuity under the notch tip. This
indicates that the load bearing capacity of the section decreases. This is in
good correlation with the decreasing of stiffness in the load/displacement
curve. In Fig. 3.5(c), a picture of the failure using a microscope at the
notch tip is seen. The specimen is unloaded and polished after testing.
From the picture, it can be seen that several kink bands has formed. The
question is what happened first? To answer this question the test must be

2http://youtu.be/Kr_LO7snvbg
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3.1. Experiments

(a) (b)

Figure 3.6: Failure when the test is stopped right after failure detection. Failure
happens out-of-plane.

stopped just after the first sign of failure. This is done in Fig. 3.6 where
the notch is prepared slightly differently in addition. The band saw in the
third design turned out to be difficult to control. Instead, a slow rotating
oil-cooled diamond-coated disc saw was used in the preparation. The cut
was made at an angle forming a cusp-like shape of the notch as can be seen
in Fig. 3.1. This time the notch tip is observed during testing through the
lens on the camera. As soon as failure is seen, the test is stopped. It can be
observed that the kinking is out-of-plane because the fibers are orientated
out-of-plane in the kink band. From a practical point of view most kinking
happens in-plane since 0◦ layers often are embedded in off-axis layers. To
provoke in-plane kinking, glass plates were clamped on the sides inspired
by Sutcliffe and Fleck (1994) as shown in Fig. 3.7. If the c-clamps are
assumed rigid, a plane strain condition can now be assumed. Using glass
gives the opportunity to continue observing failure. The disadvantage using
standard c-clamps is that the clamping force in unknown and friction can
play a part. By preliminary experiments, it was established that a small
clamping force was enough to make the failure happen in-plane. The im-
pact from the glass plates is assumed to have a minor effect on the results.
Fig. 3.8 shows pictures from a test using glass plates. Now in-plane kinking
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3. Failure in a notched beam

Figure 3.7: Four-point bend test setup with glass plates clamped on the sides
using c-clamps.

(a) (b)

Figure 3.8: Failure when glass plates are clamped on the sides. Failure happens
in-plane.

is present and a clearly marked kink band has formed at an angle where
the fibers are broken at the edges. The width is constant and is measured
to

b ≈ 3.2 df (3.1)

At the top section, a second kink band is formed adjacent to the first one
with the same width.

In the design iteration, some samples failed by splitting. The hypothesis
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3.1. Experiments

was that the depth of the notch, d, had an influence on the failure mode.
To verify this an investigation was made on the size of d. Three depths were
examined; d ≈ W/3, d ≈ W/2 and d ≈ 2W/3. It was found that splitting
rarely happened in specimens with d ≈ 2W/3, and so this configuration
was chosen for further study.

Next, eight roughly similar specimens were prepared with a notch tip
design as shown in Fig. 3.9. The cuts were made forming an angle at
θ ≈ 67◦. The shape of the disc and the angle of the cut determine the
radius, ρ, at the notch tip. ρ was measured in a microscope to be ρ =
196± 15µm. According to Laffan et al. (2011) the critical notch tip radius

ρ

θ

Figure 3.9: Picture taken by microscope before test showing notch tip.

for measuring compressive fracture toughness is ρ ≤ 250µm. The depth of
the cut expressed by the remaining width, a, was measured as well to be
a = 3.82 ± 0.072mm. The specimens were polished before the test for a
better observation of the failure initiation.

The failure in all the tests happened rapidly which means that initiation
was not possible to observe. The camera taking pictures during the test
did not have sufficient magnification to observe micromechanical initiation.
Post observation of the unloaded polished specimens showed one common
indicator of initiation of failure in five cases; namely microbuckling at the
notch tip. In the three other cases splitting happened before microbuckling.
In Figs. 3.10(a), 3.10(b) and 3.10(d), a failure at the notch tip can be ob-
served. It is believed that microbuckling happens first followed by different
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3. Failure in a notched beam

(a) (b)

(c)

100 µm

(d)

Figure 3.10: Four different types of failure after unloading.

types of postbuckling damage. In Fig. 3.10(a), a compression crack can be
seen at an angle ≈ 45◦ which was also seen by Hancox (1975). Fig. 3.10(b)
shows that microbuckling appeared first and was then followed by splitting.
In Fig. 3.10(c), splitting happened before microbuckling and therefore mi-
crobuckling cannot be observed at the notch tip. In Fig. 3.10(d), the most
common type of failure is seen; microbuckling at the notch tip followed by
a kink band.
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3.2. Analysis

3.2 Analysis

In the experiments, it was shown that fibers break just after damage has
initiated. It is assumed that fiber microbuckling happens before fiber break-
age. The objective of this analysis is to predict the load, F , where fiber
microbuckling appears, e.g. before fiber breakage. The geometry is made
from the averaged dimensions of the test specimens, but since only small
deviations are present in the measured value of ρ, θ and a, minor devia-
tions in the results would be expected. A 2D plane strain finite element
analysis is conducted using a two-step procedure as shown in Fig. 3.11.
Step 1: The part is divided into two regions, beam and local. The beam

Superelement

Step 1 Step 2

Superelement Nonlinear analysis

Beam: Ortho Beam: Superelement

Local: Ortho Local:
Fiber: Linear elastic
Matrix: Elastic-plastic

Figure 3.11: FEM workflow.

region is the whole part except for the local region. The beam region is
discretized with a coarse mesh. The local region is a small region around
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3. Failure in a notched beam

Orthotropic Isotropic

E11 [MPa] 131090 -
E22 [MPa] 72040 -
G12 [MPa] 48700 -
ν12 0.34 -
Ef [MPa] - 276000
Em [MPa] - 4080
νf - 0.3
νm - 0.38
σy [MPa] - 90
n - 4

Table 3.1: Material parameters used in orthotropic and isotropic analyses.

the notch tip discretized with one element per fiber and matrix individu-
ally. This is done in order to keep the same local mesh in step 2 due to the
degree of freedom (DOF) numbering. Eight node bi-quadratic elements are
used for both regions. The material parameters for both regions in step 1
are 2D orthotropic. The measured orthotropic material parameters for the
composites can be seen in Table 3.1. The DOFs associated with the beam
region are condensed except for the DOFs where F needs to be applied.
The last band of elements from the beam region (and their DOFs) adjacent
to the local region is kept as well. A superelement is made for use in step
2.

In step 2, the previously established superelement is used as input. The
superelement is linear and will stay linear in this nonlinear analysis. The
superelement is attached to the nodes on the boundary of the last band
of elements from the beam region shown in Fig. 3.11. A node-to-segment
glued contact is made on the boundary between the local region and the last
band elements. This approach prevents contact between the superelement
and the local region. The mesh in the local region is the same as in step 1.
The local region is built in a similar way as in Wind et al. (2014) where the
fiber diameter, df , determines the width, W0, of the local region in relation

46



3.2. Analysis

with the number of fibers, nf , and the fiber volume fraction. cf . W0 can
be found as

W0 =
dfnf

cf
(3.2)

where cf = 0.587, nf = 100 and df = 5.2µm in this analysis. cf and
df is provided by Hexcel3. The length of the local region is L0 = 1mm.
The semi-circle cut-out is made by use of a perfect circle with tangents
corresponding to the cut angle. The material parameters for the fibers are
changed to linear elastic isotropic with parameters supplied by Hexcel4.
The material parameters for the matrix are changed to isotropic elastic-
plastic material behavior described by a uniaxial Ramberg-Osgood relation

ε =
σ

Em
+

3σy

7Em

( σ
σy

)n
(3.3)

By differentiation of (3.3), the tangent modulus is obtained,

Etm =
7Em

3n
(
σ
σy

)n−1
+ 7

(3.4)

which defines all necessary input to the material model. In order to deter-
mine material properties, the following approximate relation is applied

Gtm =
Etm

2(1 + νm)
(3.5)

where νm is chosen according to table 3.1. Em, σy and n are found by
curvefitting using (3.5) to an in-situ measured shear stress vs. shear strain
curve obtained from tensile tests on [+45/ − 45]s laminates. The fitting
can be seen in Fig 3.12. Forces and constraints are applied on the DOFs
that were kept from the condensation as can be seen in Fig. 3.11. The
nonlinear commercial solver MSC Marc is used for the analysis. The arc-
length algorithm introduced by Riks (1979) is used for the incremental
solution. The J2 flow theory of plasticity is applied.

3http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-Sheets/8552_

eu.pdf
4http://www.hexcel.com/resources/datasheets/carbon-fiber-data-sheets/

im7.pdf
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3. Failure in a notched beam
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Figure 3.12: Curve fitting using (3.5) with measured in-situ matrix properties.

3.3 Results

In the post observations of the unloaded specimens from the experiments,
two main types of failures were observed. Five specimens failed by mi-
crobuckling at the notch tip and in some cases followed by splitting while
three specimens failed by splitting with no microbuckling at the notch tip
observed. The competition between splitting and kinking has been ad-
dressed by Prabhakar and Waas (2013). The force at which damage initiates
was found by looking at the pictures taken by the camera and compared
with the time the picture were taken to be FE,cr = 765 ± 41N . A com-
parison between the forces, FE , from the experiments and the critical force
from the analysis with straight fibers, FA,cr, can be seen in Fig 3.13. The
force/displacement curve from the experiments has a stiffness drop in the
beginning due to compliance of the test setup and crushing of the fibers
under the rollers. It shows a degradation in bending stiffness when damage
occurs when observing the externally applied force from the analysis with
straight fibers, FA, normalized with the critical average force from experi-
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Figure 3.13: Externally applied force from experiments, FE , normalized with
critical force from the analysis, FA,cr with straight fibers vs. displacement tracked
by the testing machine, UE . The color shows if the failure was splitting or mi-
crobuckling.

ments, FE,cr, in Fig. 3.14. This corresponds to a lowering of the moment of
inertia of the beam. Due to this, the depth of the initial damage affects the
remaining bending stiffness highly. As can be seen in Fig. 3.10 the dam-
age depths in the experiments differ so the degradation of bending stiffness
would not be directly comparable if the tests were continued after damage
has initiated. A more clear indicator of when damage initiates is obtained
by tracking the compressive force in the first fiber next to the notch tip.
Since a contact condition is used between the beam and the local region,
the contact force, FC , is used as an indicator when damage initiates. FC
measured in the middle node in the fibers is shown as a function of position
along the top contact edge in Fig. 3.15 for initial straight fibers and with an
imperfection. The coordinate system is placed at the notch tip here. The
measurement is made in the increment when the contact force is highest,
i.e. when the critical externally applied force, FA,cr, is reached. FC is shown
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Figure 3.14: Externally applied force as a function of external displacement from
the finite element analysis with straight fibers.

as a function of FA/FE,cr for straight fibers and for fibers with a waviness
in Fig. 3.16. Microbuckling occurs when the force drops and FA,cr can be
noted. An imperfection is introduced to see what effect this has on the
critical load and on the deformation profile. The imperfection is imposed
as a fiber waviness in a specified region as shown in Fig. 3.17. The imper-
fection is applied as a decreasing cosine function in the area constrained by
the height, b, and the offset from center, k, as

x2 =
h

2

(
1− cos

(
2πx1
b

))
xd (3.6)

where h is determined from the misalignment angle, φ0

h =
2b tan(φ0)

π
(3.7)
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Figure 3.15: Contact force in the fibers as a function of position along the top
contact edge measured in the increment when the contact force is highest.

and xd is a decaying function similar to the one used by Kyriakides et al.
(1995)

xd = exp

[
ζ

(
x2
αW0

)2
]

(3.8)

Two types of imperfection are made; (I) centrally located imperfection
(k = 0) and (II) imperfection offset from center with k = L0/20. The reason
for making an offset is to see if an asymmetric imperfection will result in
a different critical load and deformation profile. Common parameters used
are

b = 0.2 , ζ = ln(0.01) , α = 0.3 (3.9)

It is clear that introducing a fiber waviness decreases the critical force.
Introducing the offset of the waviness does not have a big effect on the
results compared to no offset. It should be noted that changing the sign of
φ0 will result in a critical force comparable to the one with straight fibers.
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Figure 3.16: Contact force in the fiber just after the notch tip measured in the
middle node as a function of externally applied force.

Comparison of the deformation profile of the specimens failed by mi-
crobuckling at the notch tip (e.g. Fig. 3.10(d)) and the analysis in Fig.
3.18 shows similar behavior. A microbuckle at the free edge in the notch
tip can be observed in both figures. In the experimental pictures, the fibers
are broken though, but the deformation profile is comparable to the de-
formation profile from the analysis. In the analysis with fiber waviness,
the deformation profile at the critical force is comparable to the one with
straight fibers.

3.3.1 Compressive crack approach

According to Laffan et al. (2012) the mode I critical energy release rate,
GI,cr, were found when treating the damage as a compressive crack under
plane stress conditions. To compare this result with the critical load found
in this study using plane strain condition, FE,cr, the J-integral approach
introduced by Rice (1968) is used. When a rounded crack tip is present,
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Figure 3.17: Imperfection parameters shown with 30 fibers.

the relation between the critical stress intensity factor KI,cr and the notch
tip radius ρ is

KI,cr ≤ σmax
√
ρ (3.10)

If a constant stress along the edge exist, the equality in (3.10) holds true.
Using the relation between GI,cr and KI,cr from Paris and Sih (1964)

GI,cr =
K2
I,cr√

2E11E22

√√
E11

E22
+

E11

2G12
− ν12 (3.11)

a comparison with the results by Laffan et al. (2012) can be made. The
maximum stress at the rounded notch tip with the radius, ρ, is found using
a Voigt estimate of Young’s modulus for the composite, Ec, as

Ec = cfEf + cmEm (3.12)

which is suitable in this analysis since the fibers are in the direction of the
loading. For Poisson’s ratio, a Voigt estimate is used as well. The critical
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3. Failure in a notched beam

Figure 3.18: Deformation upscaled 3 times from the finite element analysis with
straight fibers at critical force where fiber elements are hidden. The darker region
indicates plastic strains in the matrix elements.

applied force from the analysis with straight fibers, FA,cr, is applied to the
model and a linear elastic analysis is conducted to extract the maximum
stress, σmax, at the notch tip boundary. The compressive stress profile at
the notch tip boundary can be seen in Fig. 3.19. The maximum stress,
σmax, is noted and GI,cr can be calculated using (3.10) and (3.11) to be

GI,cr = 28.3 kJ/m2 (3.13)

This is a higher critical energy release rate than the averaged value estab-
lished by Laffan et al. (2012) which is 25.9 ± 4.8 kJ/m2 but within the
deviation. This result is very satisfying since two different approaches of
calculating GI,cr and different experiments gives an almost identical result.
Using (3.10) results in a lower bound of KI,cr but since the upper bound

54



3.4. Conclusion

1000 1500 2000 2500 3000 3500 4000 4500
0.35

0.4

0.45

0.5

0.55

0.6

−σ1 [MPa]

x1

[mm]

Figure 3.19: Compressive stress −σ11 as a function of position x1 in the notch
tip.

estimate for Ec (Voigt estimate) is used in the extraction of σmax, this will
increase KI,cr. If fiber waviness was introduced, a lower σmax would also
be observed.

3.4 Conclusion

By using a unidirectional lay-up of a composite single-edge notch beam in
a four-point bend setup, it is shown that it is possible to observe a kink
band instability across the fibers. In some cases splitting happened along
the fibers at a load comparable with the fiber kinking load. In the setup
used, fiber kinking would happen out-of-plane if plane stress conditions were
used. To apply an approximately plane strain condition, glass plates were
clamped on to the sides to provoke the kinking to happen in-plane. When
kinking happens, the failure initiation shows indication of fiber instability
at the notch tip followed by kink band formation with fiber breakage at the
kink band boundary.
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3. Failure in a notched beam

By observing the load/displacement curve, when splitting occurs a big
load drop is observed. When kinking happens only a small load drop is seen.
As a consequence of kinking, the stiffness of the beam decreases while the
load bearing effective height is reduced.

Through the comparison of the experimental and the finite element
analyses, it is shown that using an individual fiber and matrix discretized
finite element model, it is possible to predict an initiation force when mi-
crobuckling occurs. The finite element analysis overestimates the critical
force by 4% in the analysis with straight fibers compared to the experimen-
tal critical force for microbuckling which is very satisfying. When observing
fibers near the notch tip before the test, it is only possible to observe very
small fiber misalignment. If initial fiber waviness is introduced, a decrease
in the critical force can be observed. This is only present if the waviness is
made with φ0 being positive in Fig. 3.17. If φ0 was negative a critical force
similar to the analysis with straight fibers is observed.

By using the maximum stress at the notch tip when the critical force
is applied in the analysis, a comparison is made with the model of Laffan
et al. (2012) where the damage is seen as a compressive crack. A 9%
difference in the critical energy release rate for a mode I crack is calculated.
This is again very satisfying since two different approaches and experiments
provide similar results. This shows that the critical energy release rate
for this system repeated by Laffan et al. (2012) appears to be accurate.
Consequently, the four-point bend method, as analyzed, has been used to
measure the ”equivalent” critical energy release rate for a fiber-reinforced
laminate.
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Chapter 4

Slenderness and imperfection
sensitivity

A long slender column exposed to compression will result in column buck-
ling also known as Euler buckling. This is an elastic macro buckling mode
controlled by the aspect ratio of the geometry and the stiffness of the col-
umn. Euler buckling can occur for all types of materials and the failure
mode is similar independent of the material. Increasing the aspect ratio will
violate the assumptions describing a column and, as a consequence, plastic
buckling can occur. This is still a macro buckling mode, and can also be
seen for many types of materials. By further increasing the aspect ratio, a
difference starts to show for different materials. An isotropic material like
steel will fail by yielding, while a unidirectional fiber composite, with the
fibers located in the direction of the load, will fail by a material instabil-
ity in most cases. This can be either elastic- or plastic microbuckling as
discussed in chapter 2.

The buckling stress in Euler buckling is known to be rather insensitive
to imperfections while it was shown in chapter 2 that kinking stress was
highly sensitive to imperfections. In this chapter an imperfection sensitivity
study of different aspect ratios is conducted. The scope of this parametric
study is to understand what happens in the transition from a long slender
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4. Slenderness and imperfection sensitivity

column to a wide panel. The comparison parameter is the critical applied
stress.

4.1 Analysis

It was found by Jensen (1999) that there was a deviation in the load/displacement
curve when using J2 flow theory compared to J2 deformation theory for
small imperfections. The deviation was localized near the critical load. It
is well known that using J2 flow theory in bifurcation analyses often over-
estimates the critical load in e.g. analysis of shells (Tvergaard, 1983). In
this study small imperfections are considered so the J2 deformation theory
describing the plastic flow of the matrix is applied. In chapter 2, the com-
mercial finite element code Marc from MSC Software was used. However,
the J2 deformation theory is not an option in Marc so in this chapter, a
self-developed finite element code written in MATLAB is used instead.

The constitutive tensor for J2 deformation theory for small strains de-
scribed in Tvergaard (2001) is

Lijkl =
Es

1 + νs

(
1

2
(δikδjl + δilδjk) +

νs
1− 2νs

δijδkl

−3

2

Es/Et − 1

Es/Et − (1− 2νs)/3

sijskl
σ2e

)
(4.1)

where δij is the Kronecker delta. Et is the tangent modulus and Es is the
secant modulus. νs is a parameter defined by

νs
Es

=
ν

E
+

1

2

(
1

Es
− 1

E

)
(4.2)

A small strain theory is chosen here for simplicity and since the comparison
parameter is the critical load, only small strains would be expected. The
material parameters used in this chapter are consistent with those used in
chapter 2. A Ramberg-Osgood relation was used for the matrix material
described by

ε =
σ

E
+

3σy

7E

( σ
σy

)n
(4.3)

58



4.1. Analysis

The material parameters, fiber volume fraction and fiber diameter is shown
in Table 4.1.

Ef/Em 35
νf 0.263
νm 0.356
σy/Em 0.013
n 4
cf 0.6
df 5.2µm

Table 4.1: Parameters used in the analyses.

The model is similar to the model in chapter 2 but the geometry is
different. The changing aspect ratio is defined by

λ =
W0

L0
(4.4)

Since the size of λ is investigated, an algorithm changing λ in a way such
that the results are comparable must be found. In Fig. 4.1, three different
approaches are introduced where the fibers are orientated along the x1
axis. In Fig. 4.1(a), the length, L0, is kept constant while the width, W0,
increases. Keeping the fiber diameter, df , and the fiber volume fraction,
cf , constant therefore increases the number of fibers and due to this the
number of elements. In Fig. 4.1(b), W0 is kept constant while L0 increases.
For the results to be valid when λ is large a certain amount of fibers must
be included. This increases the number of elements when λ is small. In
Fig. 4.1(c) the area, A, is the same when λ is small and large. This means
that the number of elements is approximately the same in every analysis
controlled by the value of A. This is desirable since the analysis time will
be similar for all values of of λ while still giving an accurate result. Due to
this, configuration 4.1(c) is chosen for further study.

An imperfection is imposed in the same way as in chapter 2 by

x2 =
h

2

(
1− cos

(πx1
b

))
(4.5)
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Figure 4.1: Different approaches in changing the aspect ratio λ. In (a) L0 is
constant, in (b) W0 is constant and in (c) the area A is constant.

which is the same equation as (2.25). b is the width of the kink band, and
the amplitude, h, is determined from the initial misalignment angle, φ0, as

h =
2b tan(φ0)

π
(4.6)

which is the same as (2.26). The imperfection is made as a global imper-
fection meaning that b = L0 in all analysis. Using the method of constant
A as shown in Fig. 4.1(c) will induce different values of h because b is
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4.2. Results

changing as λ is changing. This effect will be discussed in section 4.2.
The geometry of the model is calculated by A, λ and df which is pre-

specified parameters. To get comparable results when changing λ, a fixed
df is chosen in all analysis. W0 is found by first introducing a specified
value of λ∗

W ∗0 =
√
Aλ∗ (4.7)

which leads to the number of fibers in the model, nf ,

nf = round

(
W ∗0 c

f

df

)
(4.8)

By the rounding to the nearest integer, the actual value of W0 can be found
by

W0 =
dfnf

cf
(4.9)

and then the actual value of λ can be found by (4.4) using L0 calculated as

L0 =

√(
A

λ∗

)
(4.10)

This means that λ is a function of a rounded value. When plotting the
results, the actual λ is used instead of λ∗.

The edge at x1 = 0 are fixed in the x1 direction and the point x1 =
y1 = 0 is fixed in the x2 direction as well. The edge at x1 = L0 are fixed
for rotation using Lagrange multipliers to enforce constraints (Cook, 2001).
This means that when λ is small a deformed state similar to buckling of a
fixed-fixed column, where symmetry applies at x1 = L0, is expected. The
arc length solution technique is chosen again, so that it is possible to pass
an eventual limit point.

4.2 Results

Initially, the size of A must be established. A convergence study is con-
ducted in order to observe what effect changing A has on σcr11. This is done
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Figure 4.2: Convergence of the critical load as a function of model area for
different aspect ratios.

for four different aspect ratios. The result is shown in Fig. 4.2 where it can
be seen that changing A from 0.05mm2 to 0.2mm2 has a negligible effect
on σcr11. Due to these findings, A is chosen to be 0.05mm2.

In Fig. 4.3 the critical load as a function of the aspect ratio is shown
for several initial fiber misalignment angles, φ0. The critical Euler buck-
ling stress, σEuler11 , for a fixed-fixed column is shown for comparison and is
adopted from Chau and Rudnicki (1990) as

σEuler11 = −Ē
3
γ2m (4.11)

In the above expression, Ē was found in Pane and Jensen (2004) by using
the Voigt estimate for σ11 as

σ11 = cfσf11 + cmσm11 (4.12)

and then Ē becomes

Ē = cf

(
Lf1111 −

Lf1122
2

Lf2222

)
+ cm

(
Lm1111 −

Lm1122
2

Lm2222

)
(4.13)

62



4.2. Results

0 0.5 1 1.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

λ

σcr
11

G

φ0 = 0.001◦

φ0 = 0.01◦
φ0 = 0.1◦

φ0 = 1
◦

φ0 = 0.001◦

Elastic matrixBifurcation

Elastic matrixEuler

Bifurcation

Plastic matrix

Figure 4.3: Variation of critical applied stress as a function of aspect ratio for
different sizes of imperfection. An asymptotic value for the bifurcation kink band
stress for plastic matrix found by Jensen and Christoffersen (1997) is included as
well. A result with elastic matrix is included for comparison with a bifurcation
analysis by Pane and Jensen (2004).

for small strains, elastic behavior and initial values of cf and cm. The
constitutive values for elastic material parameters are found using Hooke’s
law. In (4.11), γm is the critical wave number given by

γm =
π

2
λ (4.14)

From Fig. 4.3 it can be seen that for small values of λ the critical stress
for all φ0 is approximately equal to (4.11). This was expected since only
geometrical nonlinearities are present leading to elastic Euler buckling. In
Fig. 4.4(a) a part of the load/displacement curve for λ = 0.027 is shown
with a zoom-in view in Fig. 4.4(b). For the small imperfections it is clear
that a stable postbuckling behavior is reached shortly after the sharp bend
in the curve, while the larger imperfections converge to the approximately
same value by continuing the analysis. This is a well known behavior for
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Figure 4.4: Applied stress as a function of end-shortening for λ = 0.027 in (a)
and (b) and λ = 0.057 in (c) and (d).

Euler buckling event. Increasing the aspect ratio to λ = 0.057 in Fig. 4.4(c),
with a zoom-in view in Fig. 4.4(d), shows the same tendency but this time
the postbuckling is not stable, i.e. the applied stress decreases while the
displacement increases. However, the deformation is still dominated by
geometrical nonlinearities. σcr11 is a little lower than σEuler11 but still very
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close when λ is close to 0 as can be seen in Fig. 4.3. Increasing the aspect
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Figure 4.5: Applied stress as a function of end-shortening for λ = 0.093 in (a)
and (b) and λ = 0.29 in (c) and (d).

ratio to λ = 0.093, σcr11 starts to deviate from σEuler11 . By observing the
applied stress as a function of displacement in Fig. 4.5(a), with a zoom-in
view in Fig. 4.5(b), a larger load drop after the critical stress is seen. This
tendency looks more like a classical kink band load/displacement curve, and
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4. Slenderness and imperfection sensitivity

by increasing λ to 0.29 this trend is even more evident as seen in Figs. 4.5(c)
and 4.5(d). The well known snap-back behavior for kink band formation
with small imperfections is also seen in Fig. 4.5(c). Continuing the analysis
in Fig. 4.5(c) for all imperfections, a convergence to the same steady state
load would be expected. This has been addressed by e.g. Kyriakides et al.
(1995) and Sørensen et al. (2009), to be the case.

The critical applied stress still increases when λ increases as can be
seen in Fig 4.3. In Jensen and Christoffersen (1997) they found the critical
kink band stress to be σcr11/G = 0.61 for a bifurcation analysis with the
same material parameters as used here by using the constitutive model as
described in chapter 2. Expanding the curve for φ0 = 0.001◦ to larger
values of λ a convergence close to the finding in Jensen and Christoffersen
(1997) would be expected. The asymptotic value is marked in Fig. 4.3 as
well.

In Fig. 4.3 two curves for elastic behavior of the matrix are shown. One
for bifurcation analysis from Pane and Jensen (2004) using the constitutive
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Figure 4.6: Variation of critical applied stress as a function of aspect ratio for
initial imperfections by φ0 and amplitude in % of fiber diameter df .
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model explained in chapter 2 and one with φ0 = 0.001◦ using the present
analysis. The model with φ0 = 0.001◦ has in general a little lower value of
σcr11 than the bifurcation analysis. This is expected because a bifurcation
analysis, in general, always give an upper limit for σcr11. The two curves
converge towards σcr11/G = 1 for large values of λ which was the estimate
by Rosen (1965) for a model with no imperfections and elastic material
behavior.

By choosing the method in Fig. 4.1(c) for varying the aspect ratio of
the geometry, the amplitude, h, in (4.6) will change as λ is changing. By
specifying h directly a constant amplitude for all analysis can be derived.
In Fig. 4.6 a suggestion is made by defining h as an initial percentage of
df from 0.1% to 10%. Comparing the curves to the curves with a specified
φ0 there is not much difference in the tendency between the two types of
initial fiber misalignment for small imperfections. The curve for 10% is less
influenced by λ for values above 0.5 than the curves with a defined initial
fiber misalignment angle.

4.3 Conclusion

The difference in the imperfection sensitivity is addressed by conducting a
parametric study on the aspect ratio of the geometry and the size of imper-
fection. In the region of Euler buckling, where the failure is dominated by
geometrical nonlinearities, it is shown that the imperfection sensitivity is
small compared to the region dominated by kink band formation for unidi-
rectional fiber composites. This observation is shown by a relation between
the aspect ratio and the critical applied stress. The load/displacement
curve for four different aspect ratios is shown, and a clear difference is seen.
A stable post buckling in the Euler buckling regime is observed, while a
large load drop and snap back behavior is observed in the kink band regime.
In the transition between the two extremes the load/displacement curves
show a combination of the two types.

A comparison is made with a bifurcation analysis using a constitutive
model by Pane and Jensen (2004) for an elastic matrix material and a
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plastic matrix material in the results by Jensen and Christoffersen (1997).
A good correlation between the two models is observed for the applied stress
vs. aspect ratio space.
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Chapter 5

Discussion and perspective

In structural calculations of composite materials, failure criterion is much
more complex than for example a yield criterion for metals. Many compos-
ite failure criteria exist and they are often based on the state of stress or
the strength of the material. In these failure criteria the micromechanics
are disregarded and it is only possible to determine if the material fails or
not. This means that simulating what is actually going on in a microme-
chanical perspective is not an option. This can be solved by modeling the
fiber and matrix individually, for example in a small area of interest. Doing
this will always increase the number of elements and will in some cases be
impossible to solve. This encourages the need for a way to capture the
failure but without a huge increase in elements. The constitutive model by
Christoffersen and Jensen (1996) was a way to do this. If the developers of a
commercial finite element softwares trust this model, enough to implement
it in their code, the constitutive model is a success. This means that the
model must be verified in different configurations to build this trust. The
work done in this thesis is a way of verifying the model in a standard setup
like a kink band analysis using an individual fiber and matrix discretized
model.

Geometrical considerations in the kink band analysis concerning the
outer geometry have not been taken into account. The aim was to simulate
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5. Discussion and perspective

a kink band of infinite width and to apply the load far away from where
kinking occurs. If the width-to-height ratio is changed from a wide panel to
a long slender beam, competing failure mechanism are observed. The Euler
buckling and the kink band formation are well known in their respective
extreme position. The information found in this thesis is useful in a better
understanding of the micromechanics when there is not a clear indicator of
which failure mode will occur.

The initiation of failure in a non-homogeneous stress field is discussed
as well. In the single-edge notch beam used as example here, it was found
that it was possible to predict the failure load using the individual fiber and
matrix finite element model. It was very satisfying to compare the results
with a compressive crack approach and the experiments and obtain almost
similar results. These results help us understanding which mechanisms
affect the failure initiation.

The superelement technique has had some trouble in finding its place
in everyday use in structural finite element analyses. Mostly because of
faster and faster computers with better and better equation solvers as these
made the technique less interesting, especially in linear static analyses.
The decrease in the system of equations that needs to be solved in the
stiffness equation can rarely account for the matrix operations necessary for
obtaining the superelement in linear static analyses. Using a superelement
in a nonlinear static analysis puts the technique in a whole new perspective.
By dividing the structure into small areas of interest and the rest into one or
more superelements, it is possible to do complex nonlinear analyses without
the need of tremendous amount of computational power. This will provide
the degree of detail wanted while the stiffness from the rest of the structure
is included. Of course this method should be used with caution but when
the area of interest is well known and material or geometric nonlinearities
do not affect the results, you are home safe.

In a perspective of the further development of this area of research,
several things are interesting to address. First of all, it could be an idea
to try to use the constitutive law in a finite element code in the single-
edge notch beam. Since the experimental observations and the numerical
results from the finite element analysis showed similar findings, this would
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be a good place to test the constitutive model. In the work by Veluri and
Jensen (2011) they used the constitutive model implemented in ABAQUS
by Sørensen et al. (2009) as a user subroutine to track failure in geometries
with holes. A similar approach could be used in the calculations of the
critical load in the beam.

In the single-edge notch beam experiments, it was tried out to see if it
was possible to find the state of strain at a very small ares at the notch tip
using digital image correlation. The speckle pattern was made using spray
paint, but the resolution was too poor to get a satisfying result. Motivated
by this work, a similar experiment was later made where the speckle pattern
was made just by sandblasting of the black carbon fiber-reinforced epoxy
composite surface. This showed very promising results so this method is
definitely worth investigating.

In a kink band analysis using an individual fiber and matrix in a finite
element analysis it is necessary to have many layers of fibers and matrix to
obtain satisfying results. Gutkin et al. (2010) and Romanowicz (2013) used
an approach by introducing periodic boundary conditions. This reduces the
number of fiber and matrix layers to one which reduce the computational
time significantly. The disadvantage is that the kink band angle is locked
at zero degrees. By using the findings in chapter 2 where the kink band
angle is approximately half of the fiber angle, it may be possible to use this
relation in the application of the periodic boundary conditions.

As mentioned in the introduction in chapter 1, there is a growing de-
mand on the use of composite materials in many applications. That is why
this area of research maintains its importance in the mechanical field. By a
better understanding of the mechanisms of composite materials, a greater
trust is achieved in the making of constructions with a lower safety factor.
By observing the dramatic load drop in a kink band analyses, it is under-
standable why big safety factors are needed. Designing against the steady
state load, which is in the area around 1/3 of the critical load, is also an
option. If the loading and lay-up is well known, a lot of material could be
saved and a lighter structure would be achieved which in many cases is the
reason for producing the structure in composite material in the first place.
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Abstract

Failure by kink band instability in a unidirectional fiber composite is analyzed. A micro mechanical discretized finite
element model is used and compared to an existing composite constitutive model. The comparison is made in a fiber
angle vs. applied compressive stress space. An investigation on the relation between the kink band angle and the fiber
angle is conducted in the post buckling regime. The criticalkink band angle is examined for different initial fiber
misalignment angles.

Keywords: Kink bands, Strain localization, Fiber composites

1. Introduction

Unidirectional fiber composites subjected to com-
pressive stress may fail by several different modes [1].
One of the main failure modes is plastic micro buckling
which leads to a kink band instability. At kinking, a
narrow band is formed into which strains localize. The
phenomenon is seen in different anisotropic materials,
and was observed in phyllite by Paterson and Weiss [2].
In the early work on fiber kinking, models were formu-
lated treating the fibers as beams on an elastic founda-
tion. Rosen’s [3] model leads to the critical compressive
stress for kink band formation being equal to the shear
modulus of the matrix. Later Argon [4] formulated a
model using the shearing yield stress of the matrix and
the fiber misalignment to determine the critical stress.
Budiansky [5] incorporated the effect of an elastic ide-
ally plastic matrix containing previous results as special
cases.

To analyze kink bands, Christoffersen and Jensen [6]
developed a rate constitutive equation accounting for
the micro structure of a unidirectional fiber composite.
They treated the problem in the framework of localiza-
tion of deformation [7]. The model allowed for arbi-
trary elastic-plastic behavior of the constituents, and it
will be reviewed briefly later in the paper. The model
was applied in a study of initial fiber misalignments [8]
and solutions were obtained by a numerical scheme by
increasing the fiber angle incrementally and satisfying
equilibrium.

Recently Wadee et al. [9] developed a geometrical
kink band model founded on potential energy princi-
ples. It was further developed by Zidek and Völlmecke
[10] to include nonlinear material behavior of the ma-
trix.

Another way of attacking the kink band problem is
by making an individual fiber and matrix discretized fi-
nite element analysis. This was first done by Guynn et
al. [11] where they modeled a fiber misalignment and
by using periodic boundary conditions on the free edges
captured the kinking stress. The disadvantage of this is
that the angle of the kink band is locked at 0◦, which
was recently investigated by Romanowicz [12] to have
a significant influence of the global response of the com-
posite. The same type of periodic boundary conditions
was used again by Gutkin et al. [13] where they contin-
ued the analysis into the post kinking regime.

In [14] a 2D finite element scheme was used to model
fiber misalignment with free edges in a geometrical and
material nonlinear analysis to capture the strain local-
ization in a kink band. They investigated different types
of fiber misalignments, variable matrix volume frac-
tion and the effect of material nonlinearity of the fibers
which was found to affect the critical strain only. In
[15] and [16] they further developed the model to take
3D effects into consideration by individual discretiza-
tion of fibers and matrix in a 3D representative volume
element.

Alternative formulations of kink band instabilities in-
clude the model in [17] based on elastic planar finite
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deformation analysis.
The aim of this paper is to compare and validate the

constitutive model made by Christoffersen and Jensen
[6] with a finite element model comparable to [14].
The comparison is made for the kinking stress, the
global response, the fiber angle in the kink band and
the kink band orientation for different initial fiber mis-
alignments.

2. Constitutive equations

It was observed in [6] and [14] that the critical stress
was only slightly affected by nonlinearity in the fibers.
Due to these findings, it is assumed in this paper that
only the matrix behaves elastic-plastic, while the fibers
remain elastic. It should be emphasized that it does
not impose difficulties in the present analysis to include
fiber non-linearities. However, since the main purpose
of the present analysis is to compare with previous re-
sults where fibers were assumed linear elastic, this as-
sumption is also introduced here. The plasticity of the
matrix material is described by theJ2-flow theory with
isotropic hardening. The time-independent constitu-
tive tensorLi jkl relating the Jaumann rate of Kirchhoff
stresses ˆτi j to strain rate ˙εi j is

τ̂i j = Li jklε̇kl (1)

where the constitutive tensorLi jkl for J2-flow theory
from [18] using a finite strain formulation (total La-
grangian) as in [19] is

Li jkl =
E

1+ ν

(

1
2

(

GikG jl +GilG jk

)

+
ν

1− 2ν
Gi jGkl

−β∗
3
2

E/Et − 1
E/Et − (1− 2ν)/3

si jskl

σ2
e

)

(2)

−
1
2

(

Gikτ jl +G jkτil +Gilτ jk +G jlτik

)

whereGi j are the components of the metric tensor of
the deformed configuration,E is the Young modulus of
elasticity andEt is the tangent modulus.si j are the com-
ponents of the deviatoric stress tensors and is defined by
Kirchhoff stressesτi j as

si j = τi j −
1
3Gi jG

klτkl (3)

σe is the equivalent von Mises stress

σe =

√

3
2GikG jlsi j skl (4)

The relation between Kirchhoff and Cauchy stresses is

σi j =

√

g
G
τi j (5)

whereg andG are the determinants of the metric tensor
of the undeformed and deformed configuration, respec-
tively. β∗ is determined by

β∗ =















1 forσe = (σe)max and ˙σe ≥ 0

0 forσe < (σe)max or σ̇e < 0
(6)

The relation between the uniaxial logarithmic strain
ε and the uniaxial Cauchy stressσ is described as a
Ramberg-Osgood relation for the matrix material by

ε =
σ

E
+

3σy

7E

(

σ

σy

)n
(7)

whereσy is the yield stress andn is the hardening index.
The tangent modulusEt is determined by differentiation
of (7). The actual values for the material parameters
shown later are motivated by experimental findings in
[14] for in-situ PEEK reinforced by carbon fibers tested
uniaxially as well as in shear.

3. The discretized model for fiber composites

The finite element model is built in a comparable
scheme to [14]. The commercial finite element code
Marc from MSC Software is used for the analysis. The
numerical scheme is chosen as an updated Lagrangian
formulation. The model is built of alternating fiber and
matrix layers with one 8 node bi-quadratic plane strain
element per individual fiber and matrix layer. It was
observed by Borg [20] that using 1 element per layer
compared to 3 gave a deviation on the kink stress by
only 3 %. The grid in [14] is also made of 1 element
per layer. A convergence study is conducted to deter-
mine the necessary number of fiber/matrix layers in a
representative volume element that captures the kinking
and the steady state post kinking stress accurately. An
illustration of the model is shown in Figure 1. The im-
perfection to simulate a fiber misalignment is imposed
as a cosine function in the area marked by the dashed
lines in Figure 1

x2 =
h
2

(

1− cos
(

πx1

b

))

(8)

whereh is determined from the misalignment angleφ0

h =
2b tan(φ0)
π

(9)

and b is the width of the imperfection. The angle of
the imperfectionβ determines in combination withb the
area where the imperfection from (8) applies. The fibers
outside this area are straight. Whenb = L0 there are
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Figure 1: Numerical setup.

no straight fibers and the misalignment is applied to the
whole model. This type of misalignment is in this paper
referred to asglobal imperfection. Whenb < L0, the
misalignment is referred to aslocal imperfection.

The fiber volume fractionc f determines the matrix
volume fractioncm by

c f + cm = 1 (10)

which may change during deformation as the strains and
material properties in the fibers and matrix differ. The
width, W0, and the length,L0, are fixed values in the
analysis. This leads to the width of each individual fiber
being a variable determined by the number of fibers in
the model andc f . The fiber width then controls the
mesh of the model while the matrix width also is con-
trolled by the fiber width.

Since the equilibrium path may experience snap-
through and snap-back, the numerical technique for in-
cremental solution is chosen as the arc-length method
first introduced by Riks [21]. A linear constraint is
chosen as described in [22] so that the sub-increment
(δu, δ f ) lies in a hyperplane orthogonal to the current
total increment (∆u,∆ f ) and is expressed by the condi-
tion

(∆u,∆ f ) · (δu, δ f ) = 0 (11)

where(u) is the displacement vector and( f ) is the force
vector. This load factor increment is calculated as

δξ = −
∆uT δur

∆uT∆u1
(12)

whereδur is the sub-increment residual displacement
vector and∆u1 is the initial displacement vector in the
current increment.

4. The constitutive model for fiber composites

An expression is obtained for the composite moduli
as a function of constituent moduli and volume fractions
in [6]. The plane constitutive model is based on conti-
nuity and equilibrium across layer interfaces on a con-
stituent level rather that on a global composite level. In
the following superscriptc denotes constituents (fiber or
matrix) and properties without superscript denote com-
posite properties. Assume that the fibers are orientated
along thex1 axis (see Figure 1) The constitutive relation
between the nominal stress rates ˙si j and the gradients of
displacement ratesvi, j is

ṡc
i j = Cc

i jklv
c
k,l , i, j, k, l ∈ {1, 2} (13)

for the constituents (matrix and fiber individually)
whereCc

i jkl is the tensor of nominal moduli. With the
state of Cauchy stressesσc

i j of the fiber and matrix as-
sumed known, the constitutive tensor can be expressed
as

Cc
i jkl = Lc

i jkl−
1
2δilσ

c
k j−

1
2δikσ

c
l j −

1
2σ

c
ilδk j+

1
2σ

c
ikδl j (14)

written in an updated Lagrangian formulation. Symme-
try conditions apply forLc

i jkl as

Lc
i jkl = Lc

i jlk = Lc
jikl = Lc

kli j (15)

Equation (13) may for convenience be written as

ṡc
α = Cc

αβv
c
,β , α, β ∈ {1, 2} (16)

where the vectors ˙sc denotes the rates of nominal
stresses by

ṡc
1 =

{

sc
11

sc
12

}

, ṡc
2 =

{

sc
21

sc
22

}

(17)

and the vectorvc is

vc =

{

vc
1

vc
2

}

(18)

The matrixCαβ is decomposed as

Cc
11 =

[

Lc
1111− σ

c
11 Lc

1112− σ
c
12

Lc
1211− σ

c
12 Lc

1212−
σc

22−σ
c
11

2

]

,

Cc
12 =

[

Lc
1112 Lc

1122

Lc
1212−

σc
22+σ

c
11

2 Lc
1222

]

,

Cc
21 =

[

Lc
1211 Lc

1212−
σc

11+σ
c
22

2
Lc

2211 Lc
2212

]

,

Cc
22 =

[

Lc
1212−

σc
11−σ

c
22

2 Lc
1222− σ

c
12

Lc
2212− σ

c
12 Lc

2222− σ
c
22

]

(19)

Three assumptions are introduced in [6]:
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(A) Material lines parallel with the fibers are subjected
to common stretching and rotations.

(B) Planes parallel with the fibers transmit identical
tractions.

(C) The material of the constituents is elastic or elastic-
plastic.

Assumption (A) corresponds to a Voigt estimate for ef-
fective material properties parallel with the fibers. It
corresponds to that the displacement gradientsvc

,1 is
common to both constituents

v f
,1 = vm

,1 = v,1 (20)

using the notationv,1 without superscript which corre-
sponds to the overall displacement gradient. For overall
compatibility of a representative volume element

c f v f
,2 + cmvm

,2 = v,2 (21)

wherec f andcm have the relation shown in (10).
Assumption (A) is not realistic perpendicular to the

fibers for which reason assumption (B) is imposed
which is the Reuss estimate for composites. This means
that

ṡ f
2 = ṡm

2 = ṡ2 (22)

and for overall equilibrium

c f ṡ f
1 + cm ṡm

1 = ṡ (23)

Balances of forces together with assumption B gives us

c fσ
f
11+cmσm

11 = σ11 , σ
f
12 = σ

m
12 = σ12 , σ

f
22 = σ

m
22 = σ22

(24)
Assumption (C) indicate that (13) and (16) are valid. By
combination of (16) and (20) - (24) it is shown in [6]
that the overall constitutive equations for the composite
can be written as

Cαβ = c f C f
αβ
+cmCm

αβ−c f cm
(

C f
α2 − Cm

α2

)

C∗−1
22

(

C f
2β − Cm

2β

)

(25)
whereC∗−1

22 denotes the inverse of the matrix

C∗22 = cmC f
22 + c f Cm

22 (26)

The first two terms of (25) is the Voigt estimate. The
rest of the terms is a correction according to assumption
(B) perpendicular to the fibers.

The equations (20) - (24) takes care of the continu-
ity between the fiber and matrix. The use of (25) in
a kink band analysis requires continuity equations be-
tween base material and kink band [23]. The continuity
of displacement gradients across the boundary requires
that

v′i, jt
′
jt
′
i = vi, jt jti v′i, jt

′
jn
′
i = vi, jt jni (27)

where a primed symbol relates to the base material co-
ordinates and an unprimed to the kink band coordinates.
ti, t′i ni andn′i are, respectively, the unit tangent and the
unit normal of the boundary between base material and
kink band expressed in the base material coordinates
and the kink band coordinates. Continuity of traction
rates between the two regions requires that

ṡ′i jn
′
in
′
j = ṡi jnin j ṡ′i jn

′
it
′
j = ṡi jnit j (28)

Note that the kink band analysis using (27) and (28) is
carried out on the overall composite level using (25) as
constitutive equation.

5. Results

In Figure 2 several different stages at the load-
displacement curve is marked. This to illustrate the
deformations. The applied stress,−σ11, is normalized
with the elastic shear modulus,G, of the composite

G =
GmG f

ν f Gm + νmG f
(29)

Stage 0 refer to the initial stage which is shown in Figure
1. The deformation stages in connection with Figure 2
are shown in Figure 3. Stage (a) is where the equivalent

0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

δ/L0

−
σ
1
1
/
G

0

a

b

c

d
e

f

Figure 2: Applied normalized stress as a function of
normalized end shortening.

von Mises stress of the matrix first exceeds the yielding
stress. The zone of yielding is shown as plastic strains
in the darker region for all the stages. At stage (b), the
maximum stress is reached, i.e. the kinking stress.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Deformation plots at different stages illustrating localization of deformation androtation of kink band. The
darker region is showing plastic strain in the matrix elements. The stages refer to Figure 2.
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From stage (a) to (b) it is worth noting that the zone of
plastic strains becomes smaller even before the kinking
stress is reached. It is clear from Figure 2 that the load
drops dramatically from stage (b) to (c) as well as the
current length is increased due to snap-back behavior.
This is due to the localization of deformation into a kink
band which entails elastic unloading of the fibers out-
side the kink band. The amount of load drop and snap-
back behavior is dependent on the imperfection but also
on the material parameters of the matrix and the size of
the specimen. In stage (c) the deformation is fully lo-
calized and the fibers start to rotate more rapidly. As the
load keeps dropping from stage (c) to (d), the current
length of the model decreases again. As the fibers ro-
tate, the kink band angleβ will also rotate. This is clear
if a comparison is made between stage (c) and stage (f),
for example. After stage (f) the load reaches a steady
state value and a continuous compression will result in
kink band broadening or a possible fiber breakage. In
[24] and [25] they suggested a layered model in a fric-
tion layer context for predicting kink band broadening
and kink band progression. Kink band broadening is
also discussed in [23] and [26]. This is for further re-
search and will be left out in the present work.

The material parameters used in the calculations
are those obtained from [14] referring to a Ramberg-
Osgood relation for the constituent uniaxial stress-strain
curve in (7):

c f = 0.6, E f /Em = 35, ν f = 0.263,

νm = 0.356, σy,m/Em = 0.013, nm = 4 (30)

To determine how many fibersn f is necessary in the
calculations, a convergence study is made in the applied
stress−σ11 as a function of fiber rotationφ space. The
analysis is made with a global imperfection whereφ0 =

1◦. It can be seen in Figure 4 that only the critical load
is slightly affected byn f . A number of 100 fibers is
chosen for the analysis.

5.1. Comparison with the constitutive model

In [8] it was shown that the critical kink band angle
βcr

0 was not necessarily 0 in contrast to previous theoret-
ical studies. Experimental obersevations also indicate
inclined bands in most cases. This was shown in a−σ11

vsφ plot for a fiber misalignment angle ofφ0 = 0.5◦ and
φ0 = 3◦ . A comparison with this is made for a global
and a local imperfection. The values ofβ0 andb for the
local imperfection was obtained by the following proce-
dure: The global analysis was conducted, and the point
where the kink band has localized was observed (stage
(c) in Figure 2). Thenβ andb was noted at that stage

0° 5° 10° 15° 20° 25°
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

 

φ

−
σ 11

/G

n
f
=40

180

Figure 4: Applied normalized stress as a function of
fiber rotation,φ, for two different number of fibers,
n f = 40 andn f = 180. Only two curves are shown
becausen f = 80 is almost identical ton f = 180, so this
is believed to be the converged curve.

and used as imperfection values for the local analysis.
This means that the equilibrium from the global anal-
ysis controls the initial configuration of the local anal-
ysis. The comparison can be seen in Figures 5 and 6.
The tendency of the curves is similar, but it can be ob-
served that there is a difference in the values between
the curves from [8] and the global and local analysis.
The reason for this is due to the presence of a finite kink
band widthb in the global and the local analysis which
is absent in [8].

A study on the kink band stressσcr
11 as a function

of initial misalignment angleφ0 was also made by
Jensen and Christoffersen [8]. In addition, the critical
kink band angleβcr

0 was observed. A comparison with
present results can be seen in Figure 7. The global anal-
ysis works as a lower bound, while the local analysis
works as an upper bound. The reason for the increased
deviation between the local and global analysis com-
pared to [8] for smallφ0 is because of theJ2 flow rule
used here. This results in a deviation compared to theJ2

deformation theory at very low imperfections which can
also be seen in [23]. Like in [8] it can be observed that
βcr

0 is increasing with increasingφ0. The critical kink
band angleβcr

0 for the local analysis is measured at the
same time as the critical kink band stress (stage (b) in
Figure 2), while for the global analysis it is measured
just as the kink band has localized i.e. where it is first
possible to observe a kink band (stage (c) in Figure 2).
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Figure 5: Applied normalized stress as a function of
fiber rotation,φ, for initial imperfectionφ0 = 0.5◦.
Jensen is from [8].
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Figure 6: Applied normalized stress as a function of
fiber rotation,φ, for initial imperfectionφ0 = 3◦. Jensen
is from [8].

To clarify the relation betweenβcr
0 andφ0 the relation is

shown in Figure 8.

6. Discussion and conclusion

The relation betweenβ andφ is shown in Figures 9
and 10 for the local and global analysis respectively.
It can be observed in Figure 9 thatβ rotates withφ in
a nearly linear manner whenφ > 10◦ independent of
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0
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5°
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7° 8°
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0
cr=3°

4°
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Figure 7: Applied normalized critical stress−σcr
11 as a

function of initial fiber misalignment,φ0, with critical
kink band angle,βcr

0 , indicated. Jensen is from [8].
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Figure 8: Critical kink band angleβcr
0 as a function of

initial fiber misalignment. Jensen is from [8].

initial fiber misalignmentφ0. An approximate relation
betweenβ andφ has been observed experimentally in
different materials to be [2]

φ ≈ 2β (31)

which is in good agreement with Figure 9 whenφ >
10◦. For the global analysis in Figure 10 the same lin-
earity can be observed. The relation in (31) thus only
seems to apply for small initial fiber misalignmentφ0.
Usually (31) is used as a lock-up condition correspond-
ing to zero volumetric straining of the matrix material
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[27]. In the large strain material response of the matrix
there is no stiffening incorporated. Stiffening is known
to happen for amorphous polymers (e.g. [28]) when ex-
posed to large strain. With this effect included the re-
lation betweenβ andφ would act differently. This is
beyond the scope of this paper and is left out.
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Figure 9: Kink band angle,β, as a function of fiber rota-
tion, φ, with different initial fiber misalignment for the
local analysis.
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Figure 10: Kink band angle,β, as a function of fiber
rotation,φ, with different initial fiber misalignment for
the global analysis .

6.1. Comparison with the constitutive model

The comparison of the two models is made with that
purpose of validating the constitutive model under plane
strain conditions and a homogeneous compressive stress
field in Figures 5 - 8. The discretized finite element
approach has previously shown to be in good agree-
ment with experimental observations and is used as a
reference in the present work. A micro mechanical dis-
cretized finite element model has the disadvantage that
it is impossible to use in a large structure while the con-
stitutive model used in the finite element scheme is pos-
sible to use. Of course this comes with some assump-
tions, which have been outlined.

The widthb in relation with the initial fiber angleφ0

determines the size of the imperfection. With this in
mind, it is difficult to make a direct comparison between
the constitutive model and the discretized model in the
applied stress vs. fiber angle space due to lack of in-
formation on kink band width in the constitutive model.
The approach of introducing a global and then a local
imperfection afterwards is a way of letting the equilib-
rium from the global imperfection analysis determine
the size of the local imperfection. The global imper-
fection analysis works as a lower bound for the critical
stress, while the local imperfection analysis works as an
upper bound. This is valid for all values ofφ0 examined
in the present work and indicates a good agreement be-
tween the two models.

It was shown in the implementation of the constitu-
tive model in a finite element scheme by Sørensen et al.
[29] that the post buckling regime was mesh dependent
in an applied stress vs. end shortening space. The same
applies for the discretized model and is due to the width
of the kink band that forms. This controls the elastic
unloading after the critical stress has been reached. The
load path for the discretized model does converge to-
wards the steady state load though. This makes good
sense since this is mainly controlled by the material
properties of the matrix. In this paper the fiber rotation
is chosen instead of the end shortening as convergence
parameter, due to a fast convergence on the whole load
path.

Previous models e.g. [8] and [27] assume fixed ini-
tial kink band angles which may evolve with the gen-
eral state outside the kink band. The present results,
where a less constrained rotation of the band with in-
creasing fiber rotations are observed, could be applied
in improved simplified models such as these in [8] and
[27].
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Abstract

A four point bend setup is used in observing compressive damage initiation in a unidirectional carbon/epoxy single
edge notch beam. Damage initiation is observed in 8 specimens with a camera during testing and the test is stopped
when damage occurs. Post observation of the polished specimens showed a micro buckling instability at the notch tip
in 5 specimens and splitting in 3. The damage initiation is modeled as an individually discretized fiber and matrix 2D
plane strain finite element model. To reduce calculation time, the superelement approach is used to model the whole
beam except a small local area at the notch tip. A good agreement of the critical force is found between the analysis
and the experiments with a deviation of 4 %. A comparison is made with the compressive crack approach with a
deviation of 9 % on the critical energy release rate.

Keywords: Fiber composites, Kink bands, Superelements, FEM based failure

1. Introduction

Unidirectional fiber composites subjected to com-
pressive stress may fail by several different modes [1].
One of the main failure modes is plastic micro buckling
which leads to a kink band instability. It is difficult to
conduct a pure compression test in an un-nothced unidi-
rectional composite to observe a kink band and its prop-
agation. When the critical kinking stress is reached, a
dramatic load drop will in most cases result in a broken
specimen. If a notched specimen is chosen, the stress
concentration at the notch tip will force the failure to
occur there, while there is still load bearing capacity left
in the rest of the specimen.

Moran and Shih [2] succeeded in tracking the end-
shortening as a function of applied stress in a pure com-
pression setup in a single edge notched unidirectional
IM7/PEEK composite. This behavior was similar to that
observed by Kyriakides et al. [3], where they also indi-
vidually modeled the fibers and the matrix in a unidi-
rectional composite using a 2D finite element scheme.
Vogler and Kyriakides [4] observed the same stable phe-
nomenon in an AS4/PEEK composite in a biaxial test
setup. They captured micrographs showing the evolu-
tion of the kink band as well.

Guynn [5] viewed the damaged zone as crack with a
plastic zone in a carbon/epoxy composite. He applied
the Dugdale [6] model to predict the size of the buck-
led region in multilayered composites. In the Dugdale

model a constant normal stress is applied in the dam-
age zone. It was concluded that this did not accurately
predict the size of the damaged zone. Soutis et al. [7]
applied a stress which varied linearly with the crack dis-
placement and resulted in improved accuracy.

Waas et al. [8] introduced a circular hole in a rectan-
gular multilayered carbon/epoxy composite. This pro-
duced a stress gradient at the hole surface in which the
failure initiated. The failure mode was fiber microbuck-
ling in the 0◦ ply approximately perpendicular to the
loading direction surrounded by delamination.

Sutcliffe and Fleck [9] used a large scale bridging
model for propagating microbuckles in unidirectional
carbon/epoxy fiber composites with a rectangular hole
using a constant bridging stress and a constant crack tip
toughness. The model was an in-plane and out-of-plane
microbuckle as mode II and mode I cracks, respectively.
They compared the microbuckle displacement with ex-
perimental observations. To avoid splitting they cut a
notch along the fiber direction. Fleck et al. [10] further
investigated the idea in multilayered composites both
analytically and experimentally. The materials used was
thermoplastic PEEK matrix reinforced by AS4 and IM8
carbon fibers and Toray T800 carbon fibers in epoxy.
They discovered experimentally that the fiber strength
had a minor effect in the propagation behavior as well.

Laffan et al. [11] measured the fracture toughness
associated with the 0◦ ply in a multi layered IM7/8552
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Figure 1: Four point bend specimen dimensions in mm.

composite. They used compact tension specimens to
track down the critical notch tip radius for a cor-
rect measurement of the fracture toughness. Laffan et
al. [12] used that information to measure the fracture
toughness in a unidirectional IM7/8552 composite us-
ing a single edge notch beam in a plane stress four point
bend setup.

To view the damaged zone as a crack is a way to ob-
serve what happens on a macro-mechanical level. To
know what happens at the micro-mechanical level, mod-
eling of the material instability of the fibers and matrix
individually is an option. Ahn and Waas [13] used a
global-local approach to model the material instability
in a square plate with a circular hole in a biaxial com-
pression setup. They used an approach of a notched
laminate of infinite extent to compute the displacement
field of the rectangular local region. An imperfection
was imposed as a scaling of the first modal vector from
a linear eigenvalue analysis. The size of the scaling was
determined by the maximum angle of the fibers. A sim-
ilar approach was used by Davidson et al. [14] in a rect-
angular plate with a circular cutout. The procedure was
to use the displacement and forces on the boundaries of
the local model from a global linear static analysis as an
input to a local nonlinear static analysis.

In Laffan et al. [12] they viewed the failure as a crack.
The scope of this paper is to see the failure as a ma-
terial instability instead of a crack. The method is to
experimentally detect initiation of fiber micro buckling
in a unidirectional fiber composite. A stable failure is
desired so the deformation of the composite at the ma-
terial level can be observed. A finite element model is
presented to predict the failure initiation and to verify
the failure initiation as fiber micro buckling.

2. Materials and method

The material system used is carbon fiber reinforced
plastic IM7/8552 unidirectional prepreg. Eight speci-
mens were cut using a water jet in the dimensions shown
in Fig. 1. Notched unidirectional carbon/epoxy com-
posites in compression are prone to splitting. Before
the present test, the depth,d, of the the notch was in-
vestigated to see what effect on splitting the depth has.

ρ

θ

Figure 2: Picture taken by microscope before test show-
ing notch tip.

Three depths were examined;d ≈ W/3, d ≈ W/2 and
d ≈ 2W/3. It was found that splitting happened rarely
in specimens withd ≈ 2W/3, and so this configuration
was chosen for further study.

The notch was prepared using a slow rotating disc
saw with a diamond coated disc. Two cuts were made
forming an angle atθ ≈ 67◦. The shape of the disc
and the angle of the cut determines the radius,ρ, at the
notch tip. ρ was measured in a microscope to beρ =
196±15µm. In [11] the critical notch tip radius for mea-
suring fracture toughness was found to beρ ≤ 250µm.
The depth of the cut expressed by the remaining width,
a, was measured as well to bea = 3.82 ± 0.072mm.
The specimens were polished before the test for a better
observation of the failure initiation.

A four point bend (4PB) setup was implemented in
an Instron testing machine. Glass plates was clamped
on the sides using C-clamps for imposing a plane strain
condition and to ensure that failure will happen in-
plane. The clamping force is unknown, but preliminary
tests showed that only a small clamping force was nec-
essary for keeping the deformation in-plane. The test
was quasi static using a loading rate of 0.6mm/min. A
camera was set up to take pictures of the notch tip ev-
ery second for post observations of damage initiation.
The test was stopped just after visual inspection of dam-
age using the camera. After unloading of the specimen,
the notch tip was polished and examined using a micro-
scope.

The failure in all the tests happened rapidly which
means that initiation was not possible to observe. The
camera taking pictures during the test did not have a suf-
ficient magnification to observe micro mechanical initi-
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Figure 3: Four different type of failures after unloading.

ation. Post observation of the unloaded polished spec-
imens showed in five cases one common indicator of
initiation of failure; namely micro buckling at the notch
tip. In the three other cases splitting happened before
micro buckling. In Fig. 3(a), 3(b) and 3(d), a failure
at the notch tip can be observed. It is believed that mi-
cro buckling happens first followed by different types of
subsequent post buckling damage. In Fig. 3(a) a com-
pression crack can be seen at an angle≈ 45◦ which was
also seen by Hancox [15]. In Fig. 3(b) micro buck-
ling appeared first followed by a subsequent splitting.
In Fig. 3(c) splitting happened before micro buckling
and therefore no micro buckling at the notch tip can be
observed. In Fig. 3(d) the most common type of failure
is seen; micro buckling at the notch tip followed by a
kink band formation.

3. Analysis

In the experiments it was shown that fibers break just
after damage has initiated. It is assumed that fiber micro
buckling occurs before fiber breakage. The objective of
this analysis is to predict the load,F, where fiber micro
buckling appears, e.g. before fiber breakage. The geom-
etry is made from the averaged dimensions of the test
specimens, but since only small deviations are present
in the measured value ofρ, θ anda, only minimal devi-
ations in the results would be expected.

A 2D plane strain finite element analysis is conducted
using a two step procedure as shown in Fig. 4.

Step 1: The part is divided into two regions; beam
and local. The beam region is the whole part except
for the local region discretized with a coarse mesh. The
local region is a small region around the notch tip dis-
cretized with one element per fiber and matrix individ-
ually. This is done in order to keep the same local mesh
in step 2 due to degree of freedom (DOF) numbering.
Eight node bi-quadratic elements are used for both re-
gions. The material parameters for both regions in step
1 is 2D orthotropic. The measured orthotropic material
parameters for the composites can be seen in Table 1.

The DOFs associated with the beam region is being
condensed except for the DOFs whereF needs to be
applied. The last band of elements from the beam region
(and their DOFs) adjacent to the local region is being
kept as well. A superelement is made for use in step 2.

In step 2 the previous established superelement is be-
ing used as input. The superelement is linear and will
stay linear in this nonlinear analysis. The superelement
is attached to the nodes on the boundary of the last band
of elements from the beam region shown in Fig. 4. A
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Superelement

Step 1 Step 2

Superelement Nonlinear analysis

Beam: Ortho Beam: Superelement

Local: Ortho Local:
Fiber: Linear elastic
Matrix: Elastic-plastic

Figure 4: FEM workflow.

Orthotropic Isotropic

E11 [MPa] 131090 -
E22 [MPa] 72040 -
G12 [MPa] 48700 -
ν12 0.34 -
E f [MPa] - 276000
Em [MPa] - 4080
ν f - 0.3
νm - 0.38
σy [MPa] - 90
n - 4

Table 1: Material parameters used in orthotropic and
isotropic ananlysis.

node-to-segment glued contact is made on the bound-
ary between the local region and the last band elements.
Applying this approach avoids contact between the su-
perelement and the local region. The mesh in the local
region is the same as in step 1. The local region is built
in a similar way in [16] where the fiber diameter,d f , de-
termines in relation with the number of fibers,n f , and
the fiber volume fraction,c f , the width,W0, of the local
region

W0 =
d f n f

c f
(1)

wherec f = 0.587, n f = 100 andd f = 5.2µm in this
analysis. The length of the local region isL0 = 1mm.
The semi-circle cut-out is made by use of a perfect cir-
cle with tangents corresponding to the cut angle. The
material parameters for the fibers are changed to linear
elastic isotropic with parameters supplied by Hexcel1.
The material parameters for the matrix is changed to
isotropic elastic-plastic material behavior described by
a uniaxial Ramberg-Osgood relation

ε =
σ

E m
+

3σy

7Em

(

σ

σy

)n
(2)

By differentiation of (2), the tangent modulus is ob-
tained,

Et
m =

7Em

3n
(

σ
σy

)n−1
+ 7

(3)

and by linear relation

Gt
m =

Et
m

2(1+ νm)
(4)

Em, σy and n is found by curvefitting using (4) to an
in-situ measured shear stress vs. shear strain curve ob-
tained from tensile tests on [+45/− 45]s laminates. The
fitting can be seen in Fig 5. Forces and constraints are
applied on the DOFs that was kept from the condensa-
tion as can be seen on Fig. 4. The nonlinear commer-
cial solver MSC Marc is used for the analysis. The arc-
length algorithm first introduced by Riks [17] is used for
the incremental solution. TheJ2 flow theory of plastic-
ity is applied.

4. Results

In the post observation of the unloaded specimens
from the experiments, two different types of failures was
observed. Five specimens failed by micro buckling at

1http://www.hexcel.com/resources/datasheets/carbon-fiber-data-sheet
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Figure 5: Curve fitting using (4) with measured in-situ
matrix properties.

the notch tip and in some cases followed by splitting,
while three specimens failed by splitting with no micro
buckling at the notch tip observed. The force at which
damage initiates was found by looking at the pictures
taken by the camera to beFE,cr = 765± 41N. A com-
parison between the forces,FE , from the experiments
and the critical force from the analysis with straight
fibers,FA,cr, can be seen in Fig 6. The competition be-
tween splitting and kinking has been addressed by [18].
The force/displacement curve from the experiments has
a stiffness drop in the beginning due to compliance of
the test setup and crushing of the fibers under the rollers
in the 4PB setup. Observing the external applied force
from the analysis with straight fibers,FA, normalized
with the critical average force from experimentsFE,cr

in Fig. 7 shows a degradation in bending stiffness when
damage occurs. This corresponds to a lowering of the
moment of inertia of the beam. Due to this, the depth of
the initial damage highly affects the remaining bending
stiffness. As can be seen in Fig. 3 there is a difference
between the damage depth in the experiments, so the
degradation of bending stiffness would not be directly
comparable if the tests was continued after damage has
initiated. A more clear indicator of when damage ini-
tiates is by tracking the compressive force in the fiber
just next to the notch tip. Since a contact condition is
used between the beam and the local region, the contact
force,FC, is used as an indicator when damage initiates.
FC is measured as a function ofFA/FE,cr for straight
fibers and for fibers with a waviness in Fig. 8. Micro
buckling occurs when the force drops at the peak force.
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Buckle at tip
Damage initiation
Split

Figure 6: External applied force from experiments,FE ,
normalized with critical force from the analysis,FA,cr

with straight fibers, vs. displacement tracked by the
testing machine,UE . The color shows if the failure was
splitting or micro buckling.
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Figure 7: External applied force as a function of ex-
ternal displacement from finite element analysis with
straight fibers.
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An imperfection is introduced to see what effect this has
on the critical load and on the deformation profile. The
imperfection is imposed as a fiber waviness in a spec-
ified region as shown in Fig. 9. The imperfection is
applied as a decreasing cosine function in the area con-
strained by the heightb and the offset from centerk as

x2 =
h
2

(

1− cos

(

2πx1

b

))

xd (5)

whereh is determined from the initial misalignment an-
gleφ0

h =
2b tan(φ0)
π

(6)

xd is a decaying function similar to the one used in Kyr-
iakides et al. [3]

xd = exp















ζ

(

x2

αW0

)2












(7)

Two types of imperfection are made; (I) central located
imperfection (k = 0) and (II) imperfection offset from
center withk = L0/20. The reason for making an offset
is to see if an asymmetric imperfection will result in a
different critical load and deformation profile. Common
parameters used are,

b = 0.2 , ζ = ln(0.01) , α = 0.3 (8)

It is clear that introducing a fiber waviness decreases
the critical force. Introducing the offset of the waviness
does not have a big effect on the results compared to no

φ0

b
L0

W0

k

x1

x2

Figure 9: Imperfection parameters shown with 30 fibers.

offset. It should be noted that changing the sign ofφ0

will result in a critical force comparable to the one with
straight fibers.

Comparison of the deformation profile between the
specimens failed by micro buckling at the notch tip (e.g.
Fig. 3(d)) and the analysis in Fig. 10 shows similar be-
havior. A micro buckle at the free edge in the notch tip
can be observed in both figures. In the experimental pic-
tures the fibers are broken though, but the deformation
profile is comparable to the deformation profile from the
analysis. In the analysis with fiber waviness, the defor-
mation profile at the critical force is comparable to the
one with straight fibers.

5. Discussion

In [12] they found the mode I critical energy re-
lease rate when treating the damage as a compressive
crack under plane stress conditions. To compare this
result with the critical loadFE,cr found in this study us-
ing plane strain condition, the J-integral approach intro-
duced by Rice [19] is used. When a rounded crack tip is
present, the relation between the critical stress intensity
factorKI,cr and the notch tip radiusρ is

KI,cr ≤ σmax
√
ρ (9)

If a constant stress along the edge exist, the equality in
(9) holds true. Using the relation betweenGI,cr andKI,cr
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Figure 10: Deformation upscaled 3 times from finite el-
ement analysis with straight fibers at critical force where
fiber elements are hidden. The darker region is showing
plastic strain in the matrix elements.

from [20]

GI,cr =
K2

I,cr
√

2E11E22

√

√

E11

E22
+

E11

2G12
− ν12 (10)

a comparison with [12] can be made. The maximum
stress at the rounded notch tip with the radiusρ is found
using a Voigt estimate of Youngs modulus for the com-
posite asEc

Ec = c f E f + cmEm (11)

which is suitable in this analysis since the fibers are in
the direction of the loading. For Poisson’s ratio a Voigt
estimate is used as well. The critical applied force from
the analysis with straight fibersFA,cr is applied to the
model and a linear elastic analysis is conducted to ex-
tract the maximum stressσmax at the notch tip bound-
ary. The compressive stress profile at the notch tip can
be seen in Fig. 11. The maximum stress,σmax is noted
andGI,cr can be calculated using (9) and (10) to be

GI,cr = 28.3kJ/m2 (12)

This is a higher critical energy release rate than the av-
eraged value from [12] which was 25.9± 4.8kJ/m2 but
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Figure 11: Compressive stress−σ1 as a function of po-
sition x1 in the notch tip.

within the deviation. This result is very satisfying since
two different approaches of calculatingGI,cr and differ-
ent experiments gives an almost identical result. Using
(9) results in a lower bound ofKI,cr but since the upper
bound estimate forEC (Voigt estimate) in (11) is used
in the extraction ofσmax, this will increaseKI,cr. If fiber
waviness was introduced, a lowerσmax would also be
expected.

6. Conclusion

Through comparison between the experimental and
the finite element analysis, it is shown that using an
individually fiber and matrix discretized finite element
model, it is possible to predict an initiation force when
micro buckling occurs. The finite element analysis over-
estimates the critical force by 4 % in the analysis
with straight fibers compared to the experimental crit-
ical force for micro buckling. When observing fibers
near the notch tip before the test it is only possible to
observe very small fiber misalignment. If initial fiber
waviness is introduced a decrease in the critical force
can be observed. This is only present if the waviness
is made withφ0 being positive in Fig. 9. Ifφ0 is cho-
sen negative, a critical force similar to the analysis with
straight fibers is observed.

By using the maximum stress at the notch tip when
the critical force is applied in the analysis, a compari-
son is made with [12] where the damage is seen as a
compressive crack. A 9 % difference in the critical en-
ergy release rate for a mode I crack is calculated. This
shows that the critical energy release rate for this system
repeated in [12] appears to be accurate. Consequently,

7



the four point bend method, as analyzed, have been used
to measure the ”equivalent” critical energy release rate
for a fiber reinforced laminate.
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