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PREFACE 

The idea of concrete wind turbine towers originates from department manager and civil engineer Niels 

Tornsberg in Rambøll Denmark. Civil engineer and Ph.D. Jens C. Kirk have, in his time in the department, 

designed more concrete chimneys than he can remember - some more than 190 meters tall. The local presence 

of wind power plant producers around the Aarhus area of Denmark motivated a business case of tower concepts 

for wind turbines, and soon the contracting company MT Højgaard became involved, due to their expertise in 

slip forming the chimneys. The local university, Aarhus University had recently formed the department of 

engineering under the graduate school of science and technology, as the project started. Professor Rune Brincker 

quickly became part of the project. With his background in operational modal analysis, random vibration and 

fracture mechanics, he was the obvious choice for the subject. Rune introduced the structural health monitoring 

concept to the project group and so the project title came to be Incorporating Structural Health Monitoring in 

the design of slip formed concrete wind turbine towers.  
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SUMMARY 

The design of most civil structures follows the partial-safety-factor format. The partial-safety-factors are 

coefficients written in codes and guidelines, i.e. decided by administrative societal organs. They ensure that all 

new structures have similar and sufficient safety levels. When civil engineers use the term optimization, they 

typically refer to minimizing the material use for deterministic limit state expressions where material strengths 

and load values have been modified by partial safety factors. An alternative to this approach is the probabilistic 

approach, where statistical models are employed to represent all variables, and the verification of limit state 

equations by true/false statement is replaced by the calculation of a probability of failure. The probabilistic 

approach allows for optimization of life-cycle cost, i.e. not only initial costs but also cost of various 

maintenance actions. The Bayesian pre-posterior analysis enables optimization of life-cycle cost, taking the 

unknown outcome of various actions into account. This has been practiced for several decades in the planning of 

maintenance actions for offshore structures. Recently, monitoring data have begun to be included into the 

maintenance planning, as the data adds information concerning the reliability.  

Parallel to the evolution of this applied science, the disciplines of condition monitoring, fault detection, non-

destructive evaluation and damage prognosis, have spawned the topic of Structural Health Monitoring (SHM). 

Formally speaking, SHM is the discipline of transforming sequential information of a structure’s dynamic 

response, typically obtained during normal operating conditions, to real-time decisions of actions regarding 

maintenance and operations. This being said, very little effort has been put into the value-creating decision-

making aspects of SHM, whereas most of the effort has gone into finding damage sensitive features. As the gap 

has never been fully bridged, SHM has not gained the implementation one would expect, after four decades of a 

global effort resulting in thousands of scientific publications. It would seem that, where the development of risk-

based inspection for offshore structures has been economically motivated, the economic value added by SHM 

has been somewhat neglected.  

With a starting point in the business case of wind turbine towers made of concrete, this thesis sets up the 

framework for the assessing the value of SHM.  

The framework of Bayesian pre-posterior analysis is utilized to define the common optimum of expected life-

cycle costs, w.r.t design variables and decision variables. Although there are many similarities to the offshore 

inspections planning, the type and frequency of the information is different which require a different approach. 

As exact solution is intractable, various approximations using surrogate objective functions from detection 

theory, filters, decision rules and Limited Memory Influence Diagrams (LIMID) are investigated. The main 

focus is on damage detection but the value of localization is also investigated. Both levels of SHM are 

investigated numerically, and the damage sensitive features, as well as the detector performances, are 

investigated experimentally. The value of SHM is calculated for both a wind turbine tower of steel, a wind 

turbine tower of concrete and for an experimental blade-like structure. When the presented framework was used 

and the SHM system, as well as the structure, have been co-optimized, it is found to depend largely on the 

following extrinsic parameters 

- the costs of performing a manual inspection 

- the critical damage severity 
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SUMMARY IN DANISH 

Dimensioneringen af de fleste konstruktioner forgår efter partialkoefficient-metoden. Partialkoefficienterne er 

faktorer i normer og anvisninger som løbende fastsættes af normkomiteer. Partialkoefficienternes rolle er at 

sikre at alle nye bygværker opnår omtrent samme tilstrækkelige sikkerhedsniveau. Når bygningsingeniører 

bruger udtrykket optimering, refererer de typisk til minimering af materialeforbruget ved brug af deterministiske 

ligninger for grænsetilstande, hvori parametre såsom karakteristiske værdier for materialestyrker og laster er 

modificerede med partialkoefficienter. Som et alternativ til denne tilgang, findes de probabilistiske metoder. 

Heri anvendes statistiske modeller til at repræsentere variable som stokastiske variable, og eftervisningen af 

grænsetilstandsligningerne overgår til en udregning af svigtsandsynlighed, fremfor en sandt/falsk erklæring. 

Den probabilistiske tilgang tillader optimering af levetidsomkostninger, herunder initialomkostninger samt 

omkostninger vedrørende det løbende vedligehold af bygværket. Ved at medregne det usikre resultat af 

forskellige tiltag vedrørende drift og vedligehold, danner den Bayesiske præ-posteriære beslutningsanalyse 

grundlag for optimering af levetidsomkostningerne. Denne metode har været anvendt i flere årtier ved 

planlægningen af forskellige vedligeholdelsestiltag på offshore konstruktioner. I de senere år har inklusionen af 

data fra moniteringssystemer begyndt at vinde frem ved planlægningen, eftersom dataene tilfører værdifuld 

information vedrørende konstruktionens sikkerhed. 

I parløb med udviklingen af denne anvendte videnskab, har de faglige discipliner tilstandsovervågning, 

fejlfinding, ikke-destruktiv evaluering og tilstandsprognose, fusioneret i disciplinen Strukturel Helbreds 

Monitering (SHM). Formelt set er målsætningen med SHM at oversætte sekventiel information, i form af 

dataregistrering af et bygværks svingninger og vibrationer, til realtids beslutninger vedrørende drifts og 

vedligeholdelsestiltag. Disse data opsamles med varig hyppighed, typisk under normale tilstandsbetingelser for 

bygværkets funktion og formål, under hele levetiden. Med dette er sagt, så er der kun ydet en begrænset indsats 

på kvantificering af SHM’s værdiskabende beslutningsrelaterede egenskaber, hvorimod en langt større indsats er 

ydet imod identifikationen af såkaldte skadesfølsomme størrelser. Eftersom der endnu ikke er bygget bro over 

denne kløft, har SHM ikke nået den grad af anvendelse som man kunne have forventet, efter fire årtiers global 

indsats, udmundende i tusindevis af videnskabelige publikationer. Det syntes at, hvor udviklingen af risikostyret 

inspektionsplanlægning for offshore konstruktioner har været økonomisk motiveret, så er den økonomiske 

gevinst ved brug af SHM blevet overset. 

Med afsæt i business casen vindmølletårne i beton, opsætter denne afhandling rammerne for beregning af 

værdien af SHM. 

Den Bayesiske præ-posteriære beslutningsanalyse anvendes ved definitionen af et fælles optimum for 

forventede levetidsomkostninger, med hensyn til både designparametre samt beslutningsparametre. Selvom der 

er mange ligheder med offshore inspektionsplanlægning, så er typen og hyppigheden af information forskellig, 

og dette gør at en anden tilgang bliver nødvendig. Eftersom eksakt løsning ikke er mulig anvendes forskellige 

tilnærmelser og forenklinger. Blandt disse er surrogat objektfunktioner fra detekteringsteori, filtre, 

beslutningsregler og begrænset-hukommelses influens diagrammer (LIMID). Det primære fokus er på 

skadesdetektering, men værdien af lokalisering er ligeledes undersøgt. Begge disse niveauer af SHM er 

undersøgt numerisk og de skadesfølsomme størrelser, såvel som detekteringsalgoritmernes virkningsgrad, er 

undersøgt eksperimentelt. Værdien af SHM er beregnet for både et vindmølletårn af stål, for et vindmølletårn af 

beton, samt for en eksperimentel vinge-lignende skala konstruktion. Når den angivne procedure bruges og SHM 

systemet, såvel som konstruktionen, er optimerede, er værdien af SHM fundet til primært at afhænge af følende 

to ydre parametre 

- omkostningen ved at fortage en manuel inspektion 

- størrelsen af den kritiske skade 
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CHAPTER 1 
 

 

“Engineering is the art of modelling materials we do 

not wholly understand, into shapes we cannot 

precisely analyze so as to withstand forces we cannot 

properly assess, in such a way that the public has no 

reason to suspect the extent of our ignorance” 

A.R. Dykes in a speech to British Institution 

 of Structural Engineers, 1976. Cited in Downer [1]. 

 

 

1 INTRODUCTION 
Health monitoring is the pain you feel when your toes collide with the dinner table. As such, it’s not a new 

technology as much as it’s a recent application. Furthermore, the latest civil Structural Health Monitoring 

(SHM) technology is likely 1 million times less evolved than the nervous system of the human body. After 4 

decades of intense global research in the field, at best a very small fraction of structures are equipped with the 

technology. So how do we progress from here?  

First of all, the implementation of a high-end technology such as SHM to a (very) low-end technology such as 

civil structures is not without complications. Compare a jumbo jet with the building you’re sitting in. We spend 

most of our lives inside buildings and most of us feel completely safe inside them. Concerning the jumbo jet, 

most of us spend, perhaps a few weeks over the course of a lifetime, inside a plane. So which poses the greater 

risk ? According to Thoft-Christensen & Baker [2], the annual rate of people killed in a plane crash is 60.000 

times larger than in a structural failure. Where life-safety reasons have created demand of monitoring 

technology for e.g. aviation, this is not the case for more than, perhaps, a few very large civil structures. In the 

end, selling SHM technology using the life-safety argument to a building owner will be like selling life rafts to 

desert nomads.  

We need a different argument and one thing, that building owners understand, is cost. Can an SHM system 

lower the cost of a structure?  

 

Figure 1. Can an SHM system lower the total costs of a structure? 

To answer this simple question we must consider both the structural design and the SHM design. In the simplest 

case, a structure is designed to safety level called the “acceptance criteria”. The acceptance criteria is given by a 

maximum annual probability of failure for the structure. In order for the structure to comply to this required 

safety level, the designer selects dimensions, material properties and deterioration protection so that the 

requirement is met in the most economical way. If the required safety level was lower, then the structure would 

be less expensive to build. The addition of SHM influences the probability of failure, but adds costs for 

developing, installing and maintaining the SHM system. The surface sketched in Figure 2 shows the idea behind 

combined SHM-structural design: 
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Figure 2. Principal sketch of the common optimum of structural design and SHM design. The expected 

failure costs, and thus the total costs, tend towards infinite when the initial material costs are low  

This is of course a heavily simplified outline of the problem, but one that facilitates visualizing the problem at 

hand. In actuality, the object function that forms the surface has many more dimensions than the two that are 

given here and cannot be visualized to the ordinary mind. Furthermore, besides having countless local minima, 

it has non-linear constraints, bounds on most variables, and it can, at the present, only be approximated or 

sampled. The introduction to the thesis provides background to the topics that are included in the formulation of 

the object function in Figure 2.  

1.1 STRUCTURAL HEALTH MONITORING 

The process of implementing a damage detection strategy for aerospace, civil, and mechanical engineering 

infrastructure is referred to as Structural Health Monitoring (SHM), as defined by Sohn et al. [3]. SHM should 

not be confused for Usage Monitoring (UM), which is the process of collecting information of load effects and 

environmental data with the purpose of prediction and prognosis of damage.  

1.1.1 BACKGROUND OF SHM 

In the following, I have attempted a brief introduction to SHM in the context of the thesis. A more 

comprehensive insight is provided in the four reviews: Doebling et al. [4] covered the time up to 1996, later 

extended to the period 1996-2001 by Sohn et al. [3]. Carden and Fanning [5] covers material up to 2003 and, 

most recent, Fan and Qiao focus on simple structures in their more recent review from 2011 [6].  

In the last decade, several books that cover various aspects of vibration based SHM have appeared. Among 

these are Farrar & Worden from 2013 [7] where statistical pattern recognition is the focus, both Adams from 

2007 [8] and Balageas et al. from 2006 [9] focus on sensor technologies as well as feature selection. The 

encyclopedia of SHM from 2009 [10] contains a selection of publications.  

Society spends vast resources on the maintenance of the ageing machinery and civil infrastructure. From bridges 

to offshore platforms and from coastal protection to rotation machinery, society relies on the reliability of 

operation of numerous advanced structures. All of these assets are characterized by large societal or economic 

consequences in the event of fault or failure. Consequences can be economic, or in terms of life-safety. Various 

approaches to translate loss of life into economic consequence exist, e.g. the Life-Quality Index (LQI) by 

Nathwani et al. [11], the Societal Willingness To Pay (SWTP) by Rackwitz [12] and the Societal Value of a 

Statistical Life (SVSL) by Pandey & Nathwani [13]. Events with societal consequences are event on a scale that 

has societal impact regarding loss of lives and economic consequences to society – collapse of a highway bridge 

is an example hereof. As the asset approach the end of intended service life, the probability of occurrence of 

large damage increases. One approach to maintaining the reliability at the acceptable level; the acceptance 

criteria, is to inspect the asset frequently. Inspections are however expensive and time consuming for large civil 

 

 

Material costs 

SHM costs 

Total costs ( = Failure costs + Maintenance costs +                                 

Material costs + SHM costs) 
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structures or for complicated machinery if it must be dismantled at each inspection. Looking to other fields of 

asset management, similar disciplines are: 

 Condition monitoring (CM) has been in implementation for several decades to detect the onset of damage in 

rotation machinery.  

 Usage Monitoring (UM) of load effects, implemented in offshore structures to update the predictions of 

Remaining Useful service Life (RUL) based on probabilistic deterioration models. 

 Non-Destructive Evaluation (NDE) and Non-Destructive Testing (NDT) originates from aviation and 

aerospace, but is widely implemented. NDE is often carried out offline, in a laboratory, contrary to CM 

methods where the testing is performed during operation. 

 Health and Usage Monitoring Systems (HUMS) in rotorcraft aviation. 

Many of these closely related disciplines share common trades: they represent some form of sequential
1
 source 

of discrete information, and they supplement an inspection and maintenance strategy, which is implemented for 

economic or life-safety reasons. 

Such strategies serve mainly to reduce risk associated with structural failure or operational fault, whether the 

risk is mainly concerning life-safety (as is the case for buildings, aviation and automotive) or mainly economic 

(as is the case for machinery in production plants). The design and implementation of a monitoring technology 

is a supplementary to human inspection, motivated by the high cost related to inspections and of temporarily 

taking the asset out of service.  

The 1970s and 1980s marked the start of the ongoing research in SHM. Inspired by successful implementations 

of CM for rotating machinery, the offshore business set out to investigate feasibility of vibration based damage 

detection for offshore platforms. The motivation was the very high life-safety-, economic- and environmental 

risk associated with failure of these structures. Simultaneously, the aerospace sector started with the space 

Shuttle Modal Inspection System (SMIS), Farrar & Worden [7], which reached implementation. SMIS targets 

fatigue damage in the hull of the shuttle, using Experimental Modal Analysis (EMA). The aviation industry has 

similarly made large progress in the application of SHM. Boller and Buderath [14] provide an overview of SHM 

systems for fatigue monitoring in aerostructures. 

The emergence of various different technologies and approaches to damage detection incited the definition of 

Benchmark structures. Among these are the well-known IASC–ASCE large steel frame structure, described e.g. 

by Johnson et al. [15], and the more recent full-scale cable stayed bridge by the Harbin Institute of Technology, 

Li et al. [16]. They provide a basis on which to demonstrate the capabilities of a damage detection algorithm on 

an example that’s not tailored for the purpose of that single technology. 

Recent real-world applications are few, but among the most equipped structures very large structures are 40 long 

spans bridges, hereof 20 in China, according to Ko & Ni [17]. 

1.1.2 MOTIVATION FOR SHM 

From the application examples given above, it is evident that the design and implementation of any monitoring 

effort must be made in a risk-based decision framework. In the following, I focus on primarily on civil 

structures, including support structures for wind turbines. A comprehensive review of the motivation for SHM 

of civil structures is provided by Brownjohn [18]. Among the benefits of SHM are: 

 Facilitates rapid structural reassessment after occurrence of extreme events.  

 Inexpensive reassessment provides support for life-extension and decision support regarding 

replacement. 

 By using the SHM output to trigger Operations & Maintenance (O&M) decisions, health monitoring 

enables reactive (rather than the usual preventive) maintenance based on inspection updating.  

 Sensors for Usage Monitoring can also be used for health monitoring. Both types of information can be 

used for Risk Based Inspection planning (RBI). 

                                                           

1
 Or continuous if the systems streams data, rather than discrete samples 
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 Monitoring provides feedback to the designer. This enables engineers to better understand structural 

behavior and improve future designs. 

 Health monitoring affects the reliability of the structure. By thinking the SHM into the design of new 

structures, a risk-optimum can be achieved.  

 SHM could become a political requirement for structures associated with large life-safety 

consequences. For instance, the number of SHM implementations in Japan, due to the bridge retrofit 

and seismic assessment program, is growing rapidly, according to Fujino & Siringoringo [19]. 

On the downside, the cost of implementing SHM can be high. It was investigated by Rice & Spencer [20], who 

refer the Bill Emerson Memorial Bridge, instrumented with 84 accelerometers with an installation cost of more 

than $15.000 per channel. Lynch et al. [21] estimate the cost at 5.000 $ per channel for buildings. 

1.1.3 RYTTER’S DAMAGE DETECTION HIERARCHY  

The purpose of damage detection is treated in the thesis by Rytter [22]. He defined five levels of questions to be 

answered in hierarchical order: 

1)  Is there damage in the system (existence)? 

2)  Where is the damage in the system (location)? 

3)  What kind of damage is present (type)? 

4)  How severe is the damage (extent)? 

5)  How much useful life remains (prognosis)? 

Text box 1. Rytter’s [22] damage detection hierarchy  

Rytter’s hierarchy of levels allows for a ranking of SHM technology capabilities. The first level is treated in 

paper IV of the appendix of this thesis. Level 2 is treated in paper V. The hierarchy is depicted as a partial 

decision tree in Figure 3. 

 

Figure 3. Partial decision tree depicting the damage detection hierarchy. Decision nodes are square and 

random nodes are round 

Due to the propagation of error through the decision tree, the level of uncertainty on the answer rises through 

each level in the hierarchy, with level 1 having the smallest uncertainty and level 5 having the largest. Most 

damage detection aim at level 1 and 2, while the levels 3-5 are, to my knowledge, yet not accomplished for any 

SHM technology.  

1.1.4 THE STATISTICAL PATTERN RECOGNITION PARADIGM 

The large variations in environmental conditions, as well as the numerous model and measurement uncertainties 

and biases, as well as incorrect assumptions, encountered in structural damage detection, in 2000 caused a group 

of prominent researchers, headed by Chuck Farrar at Los Alamos National Laboratory, to claim that SHM is a 

problem of Statistical Pattern Recognition (SPR) [23]. Their paradigm states that SHM is a process of four 

integrated steps: 

1. Operational evaluation 

2. Data acquisition & networking 

3. Feature selection & extraction 

4. Probabilistic decision making 
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SPR requires statistical model building of the SHM output to a given input, as well as statistical models for the 

structural response. The paradigm was demonstrated by Sohn et al. [24] and has, since its emergence, had a 

large impact on the direction of search.  

1.1.5 THE FUNDAMENTAL AXIOMS OF SHM 

In the 1990s and 2000s, some general principles began to form in the field of SHM research. The fundamental 

axioms of SHM by Worden et al. [25] are an attempt to “sum up” the acting definitions and thus provide 

newcomers to the topic with a starting point. The axioms are given below: 

Axiom I. All materials have inherent flaws or defects. 

Axiom II. The assessment of damage requires a comparison between two system states. 

Axiom III. Identifying the existence and location of damage can be done in an unsupervised learning mode, 

but identifying the type of damage present and the damage severity can generally only be done 

in a supervised learning mode. 

Axiom IVa. Sensors cannot measure damage. Feature extraction through signal processing and statistical 

classification is necessary to convert sensor data into damage information.  

Axiom IVb. Without intelligent feature extraction, the more sensitive a measurement is to damage, the more 

sensitive it is to changing operational and environmental conditions. 

Axiom V. The length- and time-scales associated with damage initiation and evolution dictate the required 

properties of the SHM sensing system. 

Axiom VI. There is a trade-off between the sensitivity to damage of an algorithm and its noise rejection 

capability. 

Axiom VII. The size of damage that can be detected from changes in system dynamics is inversely 

proportional to the frequency range of excitation. 

Text box 2. The fundamental axioms of SHM, from Worden et al. [25] 

The axioms are fundamentally building on the SPR paradigm, stating that damage detection is a problem of 

statistical model building and testing. This is evident from axioms III and IVa, as Machine Learning and 

statistical classification are directly referred. 

1.1.6 DAMAGE DEFINITION 

One singularly important thing about damage detection, is an operational definition of damage – and of critical 

severity. Without such a definition, it is simply impossible to design an effective detection system as a cost 

function cannot be adequately defined, and without a cost function, performance based decisions and risk 

optimization is impossible. Nevertheless, there is no widely accepted definition of critical damage in the SHM 

environment, as one will observe from the vast literature covered in the reviews [3] [4] [5] [6]. Drawing an 

analogy (that will be revisited later in the thesis) to offshore inspection updating, described by Skjong [26], and 

to aviation NDE, described e.g. by Yang & Trapp [27], a physical model of the progressing damage is required, 

along with a mathematical model of the inspection performance. In a large part of SHM publications, a smeared 

region stiffness reduction of several percent is used for numerical verification. For the IASC benchmark 

structure, whole structural members are completely removed, see Johnson et al. [15]. Few publications deal with 

the physical mechanisms of damage or of the topic of Damage Prognosis (DP). A distinction between defect, 

damage and fault is provided by Worden et al. [25] and the influence of time scale (damage growth rate) is 

investigated in Worden & Farrar [7]. 

1.1.7 FEATURE SELECTION 

Historically, research in SHM has been primarily focused on the search for damage sensitive features. Features 

for damage detection are quantities that may be retrieved from the structure with sensors, e.g. accelerations 

sampled at fixed intervals over a finite length period. Through further processing of the data, other features may 

be derived from the data, e.g. eigenfrequencies. A damage sensitive feature is a feature that correlates well with 

damage in structure, while in turn having good noise rejection and insensitivity to changes in the response that 

are not caused by damage, but by changes in the environmental and operating conditions, e.g. changes in 

temperature.  
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The premise of vibration based damage detection is that damages cause changes in the mass and stiffness 

properties, which in turn cause changes in the modal parameters, i.e. frequencies, mode shapes and damping, of 

the structure. Some non-modal based approaches exist, but they are not discussed in this thesis.  

Most of the damage sensitive features that have been presented in the research community are vibration-based, 

see Doebling et al. [4], using the measured global response of the structure at sensor locations. Localized 

measurements, that require knowledge about the approximate location of the damage, are not investigated in this 

thesis.  

System identification is the topic of extracting a structures modal parameters from response measurements. 

Experimental Modal Analysis (EMA) has been used since the 1950s for system identification and with the 

emergence of various techniques in the 1970s and 1980s, the possibilities for system identification under 

operational loading increased. Operational Modal Analysis (OMA) originated from the use of the correlation 

function as a free decay, to enable the techniques for random loading. The background of OMA is presented by 

e.g. Brincker & Ventura [28].  

The main part of vibration-based methods can be partitioned into the following categories: 

 Resonant frequency-based  

 Mode shape-based  

 Curvature/strain mode shape-based  

 Flexibility-based  

 Modal damping-based 

 Time history model-based 

1.2 PROBABILISTIC STRUCTURAL DESIGN 

Structural design is rule of thumb and experience passed down through generations of architects and builders. In 

the 17
th

 century the Hooke’s and Newton’s laws of physics provided the background of structural failure. A 

century later Euler and Bernoulli formulated the basic beam theory. In 1827 Navier founded of modern 

structural analysis, by defining the elastic properties to be independent of the inertial properties. Failure could 

now be explained with mathematics, and rules could be devised. The rules were based on failure modes and 

mechanisms, and they contained factors which accounted for the uncertainties. With the introduction of the 

safety concept in the 1950s, by e.g. Freudenthal [29], the heuristic elements could be explained by probability 

theory, but the absence of tractable methods as well as of experimental data, prevented implementation. 

Structural Reliability Analysis (SRA) appeared in the 1970s, see e.g. Thoft-Christensen & Baker [2] and 

Madsen et al. [30]. Like its sibling reliability analysis, known from electronics and aviation, it is based in 

reliability theory. SRA merges probability theory with engineering optimization though the concepts of limit 

state, safety margin and the central probability of failure. Probabilities enable societal organs to devise 

acceptance criteria for safety levels of structures. The code-writers have calibrated the deterministic structural 

codes with the aim that complying structures would satisfy the criteria. Most structures are still designed after 

deterministic rules while probabilistic analysis rarely is applied. The probabilistic codes, e.g. JCSS [31] and  

standards, e.g. ISO [32], have not reached broad utilization in civil engineering and their applications have been 

limited to high-consequence structures with life-safety concerns, e.g. nuclear installations and major bridges. 

Structural engineering suffers from resistance toward change, perhaps driven by comfort of the deterministic 

codes. Probabilistic methods are only used in a broad scope in the offshore business, pioneered mainly by Det 

Norske Veritas (DNV).  

1.3 DECISION THEORY  

Decision theory is the analysis of decision-making under uncertainty with purpose of optimizing the utility of 

the decision maker. While Berger [33] provides an insightful review, the topic is briefly introduced in the 

following where I discuss the background and development of statistical tests, statistical decision analysis and 

detection theory.  

There are three main types of statistical tests: Fisherian [34], Neyman-Pearson Likelihood ratio [35] and 

Bayesian. The Bayesian test is the core of the statistical decision theory, developed by Wald [36] by treating 
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statistical problems as a type of game. Wald’s theory followed the mathematical theory of games and utility 

maximization, described in Von Neumann & Morgenstern [37]. Fisherian testing was used for SHM in e.g. 

Worden et al. [38] and Döhler et al. [39], Neyman-Pearson testing in e.g. Farhidzadeh et al. [40] and Bayesian 

testing by e.g. Flynn [41]. 

As this is the first time we encounter the Bayesian concepts, which are used throughout the thesis, involving 

probability updating, risk based decision-making and design of experiments, I find it fitting to provide a brief 

introduction to the Bayesian class of statistics. Bayesian probability is a school of probability theory, named 

after reverend T. Bayes, but mainly accredited to Laplace [42] from 1812. Bayesian theory is centered around 

Bayes theorem, in verbose form: 

posterior ∝ likelihood × prior 

The theorem relates posterior probability to prior probability though the likelihood of the observation. It is 

central to Bayesian inference, which is the probability updating given observations. 

Bayesian and frequentist are the two primary schools of statistics. 

 For the frequentist, probability is a proportion of outcomes - it is defined by the observations. 

 For the Bayesian, probability is a degree of belief - it changes with observations. 

The importance of the Bayesian prior is demonstrated in the example by Bishop [43]: The frequentist infers 

that, after three tosses of a coin all landing heads, the distribution of the fourth outcome is unity for heads and 

zero for tails. The Bayesian would use a discrete uniform distribution as prior and reach a less extreme 

conclusion. 

For the frequentist, data is a repeatable sample and the underlying parameters are fixed, whereas, for the 

Bayesian, the data are fixed and all underlying parameters are random. 

Text box 3. Bayesian statistics 

The Bayesian decision analysis is mainly accredited to Raiffa & Schlaifer [44], which also provides the 

foundation of the decision analysis used in this thesis. However, the Bayesian concepts were well-known in 

decision theory, by the concepts of the Bayes Risk and the Bayes decision, before [44] was published. Pre-

posterior analysis is the generalized Bayesian Experimental Design (BED), as pointed out by Lindley [45], who 

developed the BED directly from Bayesian decision theory, by considering Design of Experiments (DoE), as a 

case of pre-posterior analysis. To provide civil engineers with a theoretical framework for making decisions, 

Benjamin & Cornell [46] introduced the Bayesian decision theory to engineering decision-making, with the 

argument that decision-making is the ultimate use of probabilistic methods. The use of the prior has caused the 

Bayesian approach be considered as rational, thus making it easier for decision makers to accept mathematical 

decision-making. Bayesian decision analysis forms the basis of RBI, see Madsen & Sørensen [47] and was 

applied by Nielsen [48] for maintenance planning for offshore wind turbines. Raiffa & Schlaifer [44] also 

introduced the concepts of Value of Information (VoI) and Expected Value of Perfect Information (EVPI), 

which enable the calculation of the benefit of an experiment, before it is performed. 

1.3.1 DETECTION THEORY 

Detection theory, see e.g. Kay [49], is a system of metrics and functions for performance based evaluation of 

detectors. Among these are the Receiver Operating Characteristic (ROC), the Area Under the Curve (AUC)
2
 the 

Probability of Detection (PoD), the Probability of Indication (PoI), the confusion matrix and the Deflection 

Coefficient. The theory has its origins in radar and sonar development in the US during the Second World War. 

The basic theory was published by Peterson, Birdsall and Fox in 1954 [50] as a framework to evaluate the 

performance of statistical tests and classifiers, and was later adapted in psychophysics, see e.g. Swets & Green 

in 1966 [51].  

                                                           

2
 Throughout the thesis, italics are used to define variables 
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1.4 LIFE-CYCLE COSTS OF DETERIORATING STRUCTURES  

Life-Cycle Costs (LCC) analysis is the topic of optimizing a structure w.r.t. service life costs, including initial, 

maintenance and, in some cases, the end-of-life costs. It is expected costs optimization, and the realized 

structure may different costs than predicted. The LCC costs encompass initial costs (design and construction 

expenses) as well as running costs, including costs for inspections, operations, maintenance, and finally 

expected failure costs and in some cases also end-of-life costs. The LCC optimum will in cases mean that the 

initial costs are higher than the optimum of ordinary engineering optimization. It is important to include the net 

discount rate of money when operations and maintenance costs are included, due to the varying time value of 

money. LCC analysis enables inclusion of NDE inspection events, modelled by performance functions from 

detection theory, as well as repairs. This makes it possible to include inspection intervals or similar in the 

optimization parameters. Monitoring systems and SHM systems may as well be included as optimizations 

variables. Frangopol et al. [52] treated LCC optimization of deteriorating concrete structures. Enevoldsen & 

Sørensen [53] showed that LCC optimization is basic Bayesian pre-posterior decision analysis. 

The closely related topic Life-Cycle Assessment (LCA) considers environmental impact, as well as costs. 

1.4.1 RISK BASED INSPECTION 

The topic of Risk Based Inspection (RBI) is probably the most widely implemented subtopic of LCC analysis 

for structures. It has been used in the offshore business for more than 3 decades, see e.g. Skjong [26]. RBI has 

received considerable attention in the technical literature during the past 4 decades, and can be said to have 

reached a mature level of development. Pre-posterior analysis is the basis of optimization and the event 

probabilities are found by structural reliability methods. Inspection strategies are implemented to reduce the 

number of branches in the event tree and to simplify optimizations. Examples of strategies are minimum annual 

reliability or fixed inspection intervals. For the initial inspection plan, the total expected costs are calculated 

based on an assumption of never finding a crack. Decision strategies further reduce the calculation cost by 

implementing fixed decision rules, e.g. indication triggers repair. Alternatively, the crack can be sized and the 

information can be used in Bayesian updating, following the method described in Lassen & Recho [54]. 

 

Figure 4. Decision tree of inspection updating, repeated at each inspection. The total number of branches 

is 6
n
 where n is the number of time steps where inspections are possible (paper VI) 

Before RBI can be applied, a physical model must be calibrated to the fatigue design model. The many 

computational difficulties in RBI caused Faber et al. [55] to suggest a generic method, from which optimal 

inspection plans of similar details can be interpolated. 

1.5 STATE OF THE ART IN VALUE OF  SHM  

The need to evaluate the benefit of SHM, was realized by Wong & Yao in 2001 [56]. They based their 

conclusions on the need for risk-based decision support, and the, at the time current gap between the SHM 

efforts and the owner’s decision-making. Their observations were spawned by panel discussions at the 

International Workshop of SHM, so there is no doubt that the scientific community has been aware of the need 

for work concerning the value of SHM – not least because such work would guide the direction of search in the 

scientific community.  

10 years later, in 2011, Pozzi and Der Kiureghian [57] were the first to calculate the Value of Information (VoI) 

for SHM. Their example is simulation of an observable linear degradation law, which although it models a 

sequence of information, is actually a static decision problem, where only one decision is made. The VoI was 

calculated for a fictitious sensor type that directly measure degradation state, and a sensitivity analysis was 
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performed that shows the development of the VoI as a function of sensor precision. Their approach is based on a 

Monte Carlo Simulation (MCS) of the cost outcome. 

Bayesian detection theory is the special case of Bayesian pre-posterior analysis that deals with utility-optimal 

detection. It was applied by Flynn & Todd [58] and by Flynn [41] in 2010 for optimization of the number of 

sensors applied to an aircraft wing, w.r.t localized damage detection. They used a parametric response model, 

rather than  an FE model, to obtain the sensor response, and the sensing system was of the active sensing piezo-

electric type. The risk-optimal detectors were verified experimentally on a scale model of a blade structure. The 

work was also focused on one-shot detection, with no sequential decisions and time-dependencies taken into 

account. 

Uncertainty quantification plays a major role in the value of SHM. Mao [59] treated the uncertainties from fault 

detection, using estimation of transmissibility and frequency response function, in a detection theory setting. He 

used the Neyman-Pearson likelihood ratio lemma to optimize the detectors for maximum detectability for a 

fixed false alarm rate.  

Most recently, the COST program ‘Quantifying the value of structural health monitoring’ [60] has been initiated 

just as the last sentences of this thesis were being written. Taking basis in the same approach as used in this 

thesis, it represents a large economic commitment to the value of SHM topic.  

The related discipline of monitoring strains and loads effect with the purpose of updating the deterioration 

models is known as Usage Monitoring (UM). Using strain measurements and RBI, the value of Usage 

Monitoring was demonstrated for the case of a numerically simulated offshore fatigue detail by Kierkegaard et 

al. in 1990 [61] and, more recently, by Thöns & Faber in 2013 [62]. 

1.6 EXAMPLE STATING THE DETECTION PROBLEM 

As large parts of this thesis dive into the mechanics of the damage detection problem, I hope that this example 

may serve as an illustrative introduction to the subtopics and definitions. Consider the simply supported beam 

with a crack propagating vertically, shown in Figure 5. The crack has length a and the beam fails if it reaches 

the critical length ac. The crack growth is modelled by the differential equation da/dt = C1a
C2

, where C1 and C2 

are random variables with a known joint distribution. 

 

Figure 5. The beam in the example. The 3 blue squares are vibration sensors  

Using sensors, the resonance frequencies f1, f2 and f3 are extracted at fixed time intervals and a damage indicator 

DI is calculated from the frequencies. The DI is subject to variation due to variations in loading, environmental 

variations and measurement uncertainties.  

 

Figure 6. The typical example of sequential SHM damage detection 

Notice that the left plot depicts expected values. The random scatter of the features can be very high compared 

to the damage related change of the expected values. The middle plot shows the Probability Density Function 

(PDF) of time to failure p(Tf) with a realized crack growth shown. The SHM detection problem is to, at every 

sensing instance, transform the damage indicator, shown in the right plot, into maintenance actions. Among the 
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approaches to the decision-making are Bayesian detectors and fixed and variable thresholds. If, as shown, a 

fixed threshold is used, then the optimization takes the shape sketched in Figure 7. 

 

Figure 7. Area plot of cost contributions from false alarms and failures for the example 

A high threshold brings us on the right plateau, corresponding to the expected cost in case of not performing any 

maintenance. A low threshold means performing maintenance at every sensing instances, i.e. a too low threshold 

can result in severely increased costs. The background to the problem, further elaboration of approaches to 

decision-making, as well as results for realistic numerical application and experimental validation are all 

presented within this thesis. 

1.7 OBJECTIVE OF THESIS 

The aim is to use damage detection for decision support regarding preventive operations and maintenance 

actions. By combining the SHM decision-making with the structural design optimization, the expected Life-

Cycle Costs (LCC), from both operations, maintenance and up-front initial costs, can be reduced. 

1.7.1 APPROACH AND STRUCTURE OF THESIS 

Incorporating SHM in the design of slip formed concrete wind turbine towers is the title of this thesis, but the 

main scientific focus is on the value of SHM. The wind turbine towers are considered as a business case, and 

steel towers have been used to a larger extent than concrete towers. There are two main reasons for this: 1) the 

steel towers were easier to approach as the damage models were more developed, and 2) SHM is not nearly as 

valuable for concrete towers, as was discovered in the work relating to paper II. In parallel with the work 

performed in the context of this thesis, work has been performed in the development of concrete tower concepts. 

The outcome of said work is not included, nor referred to, in this thesis. 

Assessing the value of SHM spans multiple research areas and correspondingly, the papers appended this thesis 

span multiple different subjects. To tie them together at this early stage, the following mission breakdown 

provides a visual overview of the span of the thesis.  

 

Figure 8. Visual synopsis of the span of the thesis and as an overview of the progression of the papers 

The thesis revolves around Bayesian pre-posterior decision analysis. It is intended that paper I is the keystone 

that chains the elements of the remaining papers together. 

Papers II + III deal mainly with deterioration models 

Papers IV + V deal mainly with SHM system design  

Paper VI deals mainly with probabilistic decision making 

Paper I deals with combined SHM / structural design  

Following this structure, the remaining part of the thesis is divided into chapters as follows: 
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 Chapter 2: Structural design 

 Chapter 3: SHM design 

 Chapter 4: Combined structural / SHM design (pre-posterior analysis) 

1.7.2  SCOPE AND GENERAL ASSUMPTIONS 

 The study of the consequence model for SHM decision-making has been left out of this work. A simple 

consequence model has been applied when relevant, and a sensitivity analysis performed. 

 Data acquisition, cleansing, compression and fusion have not been considered specifically. For some 

algorithms, the modal parameters, obtained using Operational Modal Analysis (OMA), have been used. The 

modal identification scripts were written and tested by my colleagues Rune Brincker and Peter Olsen at 

Aarhus University.  

 Only fatigue damage has been considered for the numerical examples in this work. Although fatigue 

damage is not the easiest type of damage to detect (mass change, e.g. due to corrosion, icing, spalling etc. 

has a larger impact on the modal properties than stiffness change), it is a well-known design driver for 

dynamically loaded structures.   

 Reliability for extreme loads and the impact of SHM is not treated. Value of SHM for reassessment after 

catastrophic events or similar has not been treated either. In both cases, the same framework applies, 

although the calculation of benefit must be based on different SHM strategies. 

 Utilities are assumed to be additive and separable. No sensitivity analysis has been carried out to investigate 

the influence of this assumption. 

 The decision maker is assumed risk neutral. No sensitivity analysis has been carried out to investigate the 

impact of this assumption. 

 Only finite-risk decision rules and consequence models have been considered.   
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CHAPTER 2 

2 STRUCTURAL DESIGN 
The design of a civil structure is dependent of the forces acting on it and on the targeted safety level of the 

structure. We define one limit state for each combination of failure mode and single load effect. A complex 

structure can thus have a very large number of limit states, whereof few of them are decisive for the structural 

dimensions. It is the civil engineers task to identify the critical limit states and to ensure sufficient reliability in 

each of them, by selecting dimensions and materials. I restrict the scope to deterioration failure modes for 

targeting by SHM as they cause repair and inspection costs.  

Structural deterioration in steel structures can be fatigue cracking, corrosion abrasion or erosion. Table 1 

provides an overview:  

Type Damage type Impact on initial 

costs 

Impact on 

inspection costs 

Fatigue Crack Varies Large 

Corrosion Loss of material Large Small 

Abrasion Loss of material Small Small 

Erosion Loss of material Small Small 

Table 1. Life-cycle cost sensitivities of the most common deterioration types of structural steel  

In concrete structures there are several types of deterioration, all of which fall into one of two categories: 

concrete deterioration and reinforcement corrosion. The first category includes chemical reactions of 

constituents e.g. Alkali-Silica Reactivity (ASR), Alkali-Carbonate Reactivity (ACR), freeze-thaw induced 

scaling, abrasion due to contact wear and fatigue. Table 2 provides an overview: 

Type  Damage type Impact on initial 

costs 

Impact on 

inspection costs 

Reinforcement 

corrosion 

Spalling, loss of 

resistance 

Small Small 

Fatigue Weakened material Varies Large 

ACR Local scaling Small Small 

ASR Weakened material Small Small 

Freeze/thaw Scaling Small Small 

Abrasion Loss of material Small Small 

Erosion Loss of material Small Small 

Table 2. Life-cycle cost sensitivities of the most common deterioration types of concrete  

I limit the scope to fatigue deterioration in this thesis. Any other deterioration mechanism could, in principle, be 

considered for SHM targeting, but fatigue is the obvious choice as the required deterioration models are well-

known from RBI and because fatigue is a well-known design driver for dynamically loaded structures. 

Furthermore, as is shown in paper V, the value of SHM depends strongly on the inspection costs, with the SHM 

more economic when the inspection costs are high. 

A probabilistic model for the targeted deterioration mechanism is required for the risk based decision making. 

Typically, the design models are based on empirical damage accumulation laws, and are of a deterministic 

nature. As large part of the variables that influence the probability of failure are of a stochastic nature, structural 

reliability- or sampling methods are used to estimate the probability of failure. As damage detection is intended 

for decision support regarding preventive operations and maintenance actions, an observable model of the 

physical damage must be calibrated to the design model - a concept known from RBI. The coupled-model 

concept is sketched in Figure 9. 
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Figure 9. Framework for structural deterioration showing the design model and the observable physical 

model. The physical model calibrated to be reliability equivalent so that the distributions for time to 

failure p(Tf) are identical
3
. I return to the greyed out models later 

2.1 STRUCTURAL RELIABILITY METHODS 

To calculate the probabilities of discrete events, e.g. failure, we may use structural reliability methods. They are 

approximations developed to the purpose of approximating integrals in the low-probability region of the joint 

probability density distribution. Structural reliability methods are categorized in 3 levels of analysis: level I, II 

and III methods. Level I methods are deterministic partial safety factor based, and are discussed no further. 

Level III methods are exact reliability calculations, based on the integration of the full joint PDF of all variables 

x = {x1,x2,…,xn} over the failure domain ωf. This is the evaluation of an n-fold integral: 

The full joint PDF is never obtainable for SHM design and for structural deterioration limit states. Instead we 

may use level II methods, which use some iterative techniques, or alternatively sampling techniques, to 

approximate the probability of failure. Several methods exists to approximate the probability of failure on both 

component- and system level for civil structures. The methods can divided into the categories sampling based, 

linear  approximation based or simulation based. In the first group are Monte Carlo Sampling (MCS), 

Importance Sampling and Latin Hypercube methods. In the second group are First and Second Order Reliability 

Methods (FORM and SORM). In the third group are Directional Simulation and Subset Simulation. Several 

commercial software packages, as well as the open source Matlab toolbox FERUM 4.1 [63], offer these analysis 

types. FORM analysis was used in papers I – III and VI for calculation of the fatigue reliability. Generally, MCS 

was used for verification of FORM results. 

The structural reliability methods are based on the definition of a safety margin M as a function of all basic 

variables x: 

Setting the margin M = 0 defines a hyper-surface in the n-dimensional space of basic variables, called the limit 

state surface. Although the basic variables are random entities, the surface is a purely deterministic concept. It 

divides the n-dimensional space into a safe region ωs and a failure region ωf. In the case of a linear safety 

margin M and normal basic variables, the reliability index β is defined as: 

And the relation to the failure probability is: 

                                                           

3
 I use the simplified notation p(Tf) for fTf(Tf) henceforth. 
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Where Φ is the standard normal Cumulative Distribution Function (CDF). When assumptions of Gaussian 

variables and a linear safety margin are not satisfied, it is still possible to calculate β by linearizing the limit state 

surface in the design point in the standard normal space of variables. This is the background of FORM, further 

elaborated in [64]. 

Monte Carlo sampling can be used to estimate Pf by simulating the PDF of M with random samples drawn from 

the joint distribution of the basic variables x. If n is the total number of samples and k is the number is the 

number of samples for which M ≤ 0, then: 

As the sampling distribution of fP̂ is a sum of independent samples, it is asymptotically Gaussian
4
, following 

the central limit theorem. The coefficient of variation on the estimate fP̂ is dependent of the number of samples 

n and thus the number of samples required to estimate Pf, to a reasonable precision, is inversely proportional to 

Pf . As a thumb rule nrequired ~ 100 / Pf to obtain a coefficient of variation of approximately 10%. More elaborate 

insight is provided by Melchers [64].  

2.1.1 SYSTEM ASPECTS 

A civil structure is modelled as a system of series- or parallel connected components, each representing a 

structural member. The two types of connections are shown in Figure 10. 

 

Figure 10. Schematic representation of series and parallel systems, from JCSS [31] 

System reliability is a union of m failure modes, each being an intersection of mi element limits states. This is 

modelled as a series system of parallel systems: 

Naturally, the correlations between component’s limits states have a large effect on the system reliability. In 

general, the reliability of a parallel system decreases with increased correlation. Oppositely, the reliability of a 

series system increases with increasing correlation. Methods for estimating the reliability of systems are given 

by Madsen et al. [30]. 

2.2 RISK-BASED OPTIMIZATION 

The acceptance criteria for civil structures can be set by regulations and codes, which is mainly the case when 

life-safety is involved, but it can also be a requirement from the building owner. The latter is the case if the 

owner has his own risk analysis, and thus restricts the system-level probability of failure. This could also be the 

case if the owner is risk-averse. Reliability based structural optimization, e.g. in Enevoldsen & Sørensen [53], is 

the field of optimizing an object function, e.g. material cost or weight, to the restraint of a given probability of 

failure. If life-cycle expected costs constitute the object function, then the problem becomes a risk minimization, 

subject to linear and non-linear constraints. If initial costs Cinit and failure costs Cf are the only relevant costs, the 

optimization can be written as: 

                                                           

4
 Notice that this is not the sampling distribution of M. 
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Where z is a vector with the parameters of the design variables, e.g. mean values for dimensions and material 

strengths. The principle is sketched in Figure 11: 

 

Figure 11. Principal sketch of structural risk optimization  

The black curve in Figure 11 has two contributions. The first is the contribution from initial design cost, i.e. cost 

of materials, cost of designing the structure and the cost of construction. The second is the contribution of 

expected failure costs, given as the probability of failure w.r.t. the service life and the consequence of failure. If 

the structure has no life-safety relevance, e.g. an offshore wind turbine, then the design can be purely economic-

driven and with no non-linear constraints.  

2.3 FATIGUE IN STEEL STRUCTURES 

Metal fatigue has been the known cause of many structural failures ever since it was first recognized for 

conveyor chains by Albert in 1838. It has gained considerable attention following several catastrophes failures 

attributed to fatigue. Among the most notable are the Versailles train crash (1842), the Liberty ships (1943), the 

Comet airplanes (1954) and the Alexander L. Kielland offshore platform (1980), shown in Figure 12. 

 

Figure 12. Severed leg of the Alexander L. Kielland platform. The protruding brace is where the fatigue 

failure occurred. According to Næsheim et al. [65], the crack had grown to more than 60% circumference 

before fracture occurred during a gale-force blow. Photo: Norwegian Petroleum Museum 

Fatigue failure in structural steels is a brittle, failure type that often occurs with little or no premonition for the 

operators of the structure. As fatigue is associated with multiple large uncertainties, the safety factors must 

necessarily be large to counter the large consequence and, in offshore engineering, a “design” fatigue life of 10 

 

E
[c

o
st

s]
 ,

 S
a

fe
ty

 l
ev

el
 β

 

 

Economic optimum 

Initial costs 

Acceptance criteria 

 

Impermissible safety 
  

 

Permissible safety 
  

 
Economic potential of 

reducing the safety 

 

    

mjzzz

ztosubject

zCzCz

u

jj

l

j

initf
z

,,1,

)(

Emin

min











 (7) . 



 

17 

 

times the planned service life is not uncommon for critical components of jackets and topsides. Fatigue is the 

primary design driver for many structural components of wind turbines, including  blades, tower, foundation and 

hub. According to Lassen & Recho [54], fatigue initiates from microscopic defects in locations with large stress-

concentrations. Both these factors are present in welds, which is why fatigue often happens in welds. The 

environment influences the fatigue life and the presence of corrosion reduces the fatigue life. 

2.3.1 DESIGN MODEL: STRESS LIFE (SN) MODEL 

Lassen & Recho [54] provide a thorough overview of the SN approach, whereas it is briefly introduced in the 

following. Fatigue loading categorizes into three regimes: low-cycle (<10
4
 cycles), high-cycle (>10

4
 cycles) and 

ultra-high cycle (>10
8
 cycles). The low-cycle regime, which can be observed be repeatedly bending a paper clip 

until it breaks, is dominated by nonlinear behavior and large plastic strains. High-cycle loading is the normal 

design regime of the structural codes and several empirical stress-life models have achieved inclusion is the 

international standards. They are based on the log-linear relationship by Basquin [66]: 

Where N is the number of cycles to failure, Δσ is the stress range and K and m are empirical constants. Most 

experiments have been performed with less than 10
7
 cycles. Structural components of wind turbines endure in 

the region of 10
9
 cycles and thus fall into the latter category, where the knowledge of fatigue behavior is very 

limited. The design codes are extrapolated up into the ultra-high cycle region, and some codes implement an 

endurance limit, rather than extrapolate into the regime. The model describes the fatigue damage as a function of 

stress range alone. Corrections have been suggested to account for influence of a non-zero mean stress, but these 

are not discussed here. The values for the constants m and K depend of the type of stress-calculation concept 

used, on the type of alloy, on the surface treatment and on the environmental conditions of the detail, and may 

be given as 5% fractiles for deterministic analysis. For variable amplitude stresses, the linear damage 

accumulation hypothesis by Palmgren-Miner [67] is used to calculate a damage sum D: 

Where ni is the number of cycles and Ni is the number of cycles to failure for stress range i. Palmgren-Miner’s 

model assumes that the order of the loads effects has no influence on the fatigue life. Some SN models, like the 

one used in papers I, III and VI, are bi-linear. The limit state function is: 

Where Δ is the damage sum at failure. Furthermore, some models have an endurance limit, i.e. a stress level 

Δσcut-off, for which stress ranges less than or equal to, do not contribute to the fatigue life. Figure 13 shows a 

bilinear SN curve with endurance limit. 

 

Figure 13. Bilinear SN model with endurance limit for constant amplitude loading  

 

 

lo
g

1
0
(Δ
σ
) 

log10(N) 

    σ
 

t 

Δσ 

endurance limit 

       mΔKNΔmKN  101010 loglog=log  (8) . 

 



k

i i

i

N

n
D

1

 (9) . 

 

 



































otherwise 2,

  1j   ,   )(   ,  

1
12

1

2
i

1

mm

k

i

m

iji

i

i

K

K
ΔifΔKN

N

n
g j   (10) . 



 

18 

 

The uncertainties in the SN model approach are both of the epistemic (model and measurement) type and of the 

aleatory (inherent) type. According to Straub [68], they can be categorized into load-, model- and resistance 

uncertainties. The uncertainties may be represented by random variables, however, due to the nature of the 

underlying experiments, each variable cannot be isolated for statistical analysis and some engineering judgment 

must be applied. The uncertainty model used in papers I,III and VI is provided in paper III. 

2.3.2 MEASURABLE MODEL: PARIS LAW  

The physical manifestation of metal fatigue is a crack. The Miner damage Δ is not an observable variable and no 

experiments can obtain information about the state of Δ. Without a measurable damage variable, inspections or 

health monitoring has no benefit, so for this reason we look to Linear Elastic Fracture Mechanics (LEFM) to 

model the physical crack growth.  

It is commonly agreed upon that there are three stages of fatigue crack growth: initiation, propagation and 

fracture. For damage detection purposes, we consider failure to occur when the growth enters stage III. This is a 

common approach in fatigue reliability analysis, as discussed by Straub [68]. Although mathematical theory has 

been developed for the modelling of the crack initiation, this stage is typically modelled by a random variable; 

cycles to initiation Ninit and/or by the initial crack size ainit. The propagation stage is modelled using Paris law: 

by observing a log-log linear relationship between crack growth rate da/dn and stress intensity range ΔK, Paris 

& Erdogan [69] defined the classic form of Paris law: 

Like the Basquin equation, it is a purely empirical equation, where C and m are empirically fitted constants. 

Paris law is known to overestimate growth because the sequence effects are neglected and because all stress 

ranges contribute to the growth. An endurance limit can be obtained by setting a limit a Kth for which stress 

intensity ranges do not contribute to the growth. ΔK is given by: 

Where Y is the geometry function, a is crack half-length and Δσ is the constant amplitude stress range in the 

corresponding uncracked geometry. In case of variable amplitude of random loading, an equivalent stress range 

S is calculated as: 

Where Δσ is the Rainflow counted stress-range bins from a cycle count matrix and ni is cycle count 

corresponding to stress range bin i.  

The uncertainty model on the LEFM model is similar to the one from the SN model. The parameters C and m 

are random with distributions based on empirical fitting to experimental data. Lassen [70] suggested the linear 

relationship, ln(C) = -15.84-3.34m, which has been used in this thesis. The geometry function depends on the 

boundary conditions of the considered geometry and can be interpolated from FE model results. Direct 

integration of (11) is possible only if Y is constant. However, in most practical cases, Y(a) is empirically 

decided from an FE model and numeric methods are required. This is the case for the use of LEFM for the wind 

turbine tower in papers I, III and VI. The procedure used is an incremental numeric simulation, applying a 

constant value of ΔK for each crack growth increment Δa.  

This approach decreases the computational effort but introduces a bias on the calculated number of cycles to 

failure as the value of the geometry function is underestimated. The bias is quantified by performing a 
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sensitivity analysis of the crack increments influence on the calculated number of cycles to failure. An example 

of a numeric crack growth curve using the method is shown in Figure 14. 

 

Figure 14. Crack growth curves for six different crack step increments in the numeric calculation  

A trade-off between reasonable precision and calculation effectivity is found for an increment selected as 1%, 

which has been used in this thesis. 

The LEFM model is calibrated to the SN design model in Pf-space, i.e. to be reliability equivalent, following the 

procedure described e.g. by Straub [68] : 

Where the service life has been discretized into t = t1,t2,…,tN, and x are the fitted parameters. The fitted 

parameters are C and initial crack size ainit. The calibration can be performed in ß-space, but as my focus is on 

expectations of cost, I target the failure probability. For optimization of eq. (15), the reliability of the SN design 

model was calculated with FORM, but due to convergence problems, the LEFM reliability was approximated 

with MCS. The sampling output causes a noisy object function and makes the optimization time-consuming. To 

accommodate the noisy output, the optimization was performed with the Genetic Algorithm in Matlab. The 

calibrated model is valid only for one stress level and each combination of loads and geometry require one 

model calibration. Due to these high computational costs, the parameter space of tower wall thickness was 

truncated to three values, in paper I. 

2.4 FATIGUE IN CONCRETE STRUCTURES 

Concrete fatigue gained considerable interest with the design and construction of the first Norwegian gravity 

based Condeep offshore platforms in the 1970s, see Holmen [71], but, although many codes (CEB-FIB [72], 

FIB [73], EC [74], DNV [75]) incorporate rules for concrete fatigue design, none to few failures have been 

observed. In a report from 2009 [76], 27 Condeep structures were investigated but no cases of concrete fatigue 

were diagnosed. Concrete fatigue has been under investigation for causing excessive creep of several long span 

box-girder bridges, including the collapsed Palau bridge, see Bazant & Hubler [77], and recent full scale tests in 

northern Germany attempt to provoke fatigue in a gravity base foundation, in Urban et al. [78]. The importance 

of fatigue for future structures is discussed by RILEM Committee 36 [79] as becoming increasingly relevant. 

There is no current RBI approach for concrete fatigue and structures are designed for “safe-life”, i.e. the 

reliability must be sufficient for the whole service life, without inclusion of inspection data.  

Fatigue in reinforced concrete can mean fatigue of the concrete, considered unreinforced, or fatigue of the 

reinforcement. I consider only fatigue of the concrete in this thesis, as preliminary studies indicated that 

reinforcement fatigue would only be relevant if large tensile strains occur and that the concrete fatigue capacity 

would then already be exhausted.  

2.4.1 DESIGN MODEL 

Fatigue design of concrete structures is, although there are some main differences from design of steel 

structures, based on Wöhler-type SN curves, and Miner-sum linear damage accumulation. For metals, Basquin’s 

equation describes cycles to failure for a given stress range, but for concrete, the fatigue life is based two 

parameters: minimum and maximum relative stress: Smin and Smax. The ratio of minimum to maximum stress is 

called the R-ratio. Due to the different tensile and compressive properties of concrete, there are tree regimes: 
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1) Pure compression (0 ≤ R < 1) 

2) Pure tensile (0 ≤ R < 1) 

3) Alternating cycles  (-1 < R < 0) 

Most test have been under constant-amplitude loading and it is tempting to use the Palmgren-Miner hypothesis, 

eq. (9), to account for variable amplitude and random loading. Unfortunately, as e.g. Holmen [80] showed, the 

loading history has an effect on the fatigue life. In the case of random loading however, it seems reasonable to 

assume linear damage accumulation, as the load cycles are randomly ordered. The evolution of the SN models 

started in 1970, when Aas-Jacobsen [81] proposed the following Wöhler curve for pure compression: 

Where the slope of the curve ß is an empirical constant. Most current design codes are based on Aas-Jacobsen’s 

relation for compressive cycles, although they have been modified some times. In the recent Model Code 2010 

[73], a bi-linear model is used. This is developed from the model presented by Stemland et al. [82]. The latest 

modification was motivated by recent results of ultra-high strength concrete experimental trials. The Model 

Code 2010 [73] expression is shown next to Aas-Jacobsen’s original expression in Figure 15:  

  

Figure 15. Wöhler curves for pure compression 

Although Tepfers [83] had stated that (16) was valid for the tensile region, Cornelissen [84] proposed the 

following expression: 

And for alternating cycles: 

Cornelissen’s expressions are shown in Figure 16. 

 

Figure 16. Cornelissen’s Wöhler curves for tension and alternating stress for concentric specimens 
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Cornelissen furthermore showed that the type of test, more precisely defined by the stress distribution in the 

specimen, had a large impact on the cycles to failure. This influences the choice of experimental data to include 

in the same model, and in turn makes the choice of model applications specific. 

2.4.2 CHOICE OF A PROBABILISTIC DESIGN MODEL FOR RANDOM LOADING 

The need for a probabilistic model was promoted e.g. by Oh [85] and McCall [86]. Among the motivating 

reason are the following:  

 The large material uncertainties of concrete create a very large scatter on the fatigue strength and the 

Palmgren-Miner hypothesis is erroneous for variable amplitude loading, e.g. Holmen [80]. 

 Test that use different material properties are gathered under the same model, the scale effects are very 

large, e.g. Bazant & Xu [87]. 

 Very few tests have been carried out in the alternating regime, which is relevant for partially posttensioned 

concrete structures.  

The probabilistic model in paper II for random loading is a combination of the MC2010 [73] model, which is 

the most recent model covering the compressive regime, and Cornelissen’s model for concentric specimens, as 

this is the most recent model covering the tensile- and alternating regime. As both models are deterministic 

models containing parameters fitted to experimental data, subjective model uncertainties were added. The 

uncertainty model used in paper II is shown in Table 3: 

Variable Type Mean Standard 

deviation 

Comment 

µσ , Δσ , n D   Rainflow counted load cycle matrix 

fc  

fct 

LN fcm 

0.3fcm
(2/3)

 

0.15fcm, ρ  = 0.9 

0.3fctm 

From JCSS [31] 

Fp N Fpm 0.05Fpm Post-tensioning force 

XNc LN 1 0.016 Subjective model uncertainty: compressive 

XNt LN 1 0.037 Subjective model uncertainty: tensile  

Δ LN 1 0.3 Model uncertainty on Palmgren-Miner. 

From Holmen [80] 

XS LN 1 0.132 Combined LN load uncertainty. From 

IEC61400-1 [88] 

Xaero G 1 0.1 Load uncertainty. IEC61400-1 [88] 

Table 3. Uncertainty model used for the concrete NREL wind turbine tower  

The model uncertainties for the loads have been included in the table. The expected value of the cycles to failure 

E[Nf] forms the surface that is plotted in Figure 17. 
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Figure 17. Fatigue model. Expected cycles to failure as a function of mean-stress µσ/ fcm and stress-range 

Δσ / fcm 

The uncertainty models, especially concerning correlations, of fc, fct and XNt and XNc remains a topic for future 

research. As the same concentric specimens have not, for obvious reasons, been tested both statically and 

dynamically, additional sources of uncertainty cannot yet be identified or quantified. In a probabilistic analysis, 

prior reasoning as well as some conservatism must be applied in setting the model uncertainties. The probability 

of failure at the tower foot is shown in Figure 18, left. 

 

Figure 18. Left: The probability of failure for the NREL tower with the contribution from the two design 

points (from paper II). Right: Sobol global sensitivity indices with 95% confidence bounds 

The probability of failure is seen to be different in shape that the probability of failure of the steel tower. The 

shape corresponds to results by Petryna & Krätzig [89]. It can be observed that a substantial contribution to the 

expected failure costs fall within the first 5% of the service life. This is due to dominating load uncertainties in 

the probabilistic analysis, as can be seen from the result of a global sensitivity analysis in Figure 18, right. The 

global sensitivity analysis is, unlike the FORM sensitivity analysis (given in paper II), not based on the design 

point but on the full parameter space of basic variables. According to Sobol [90], it is a suitable to evaluate the 

sensitivity of the model, rather than the sensitivity at a specific solution. 

2.4.3 OBSERVABLE MODEL 

In chapter 2.3.2, Paris law was introduced to model a propagating fatigue crack in steel, but Paris law cannot be 

directly applied to model fatigue damage in concrete, as the mechanism is not the same. Where steel fatigue is 

characterized by growth of a single macro-scale crack, the deterioration of concrete is driven by mechanisms at 

the micro-scale over a larger process zone, Bazant & Hubler [77]. At all length scales, the structure of concrete 

is disordered and defects such as both micro-cracks and macro-cracks are present. Under reversed- or tensile 

loading, the cracks interact and join, causing accelerated deterioration, Cornelissen & Reinhardt [91]. From the 

distribution of cycles to failure for the concrete tower shown in Figure 18, it can be deducted that while the first 

fraction of the service life is dominated by tensile fatigue, the main part is dominated by compressive fatigue. 

This means that the feature model must represent the deterioration due to compressive fatigue. 

0

0.5

1

1.5

-0.8
-0.6

-0.4
-0.2

0
0.2

0

10

20

30

 / f
cm



 / f

cm

lo
g

1
0
(N

)

0 5 10 15 20
0

0.5

1

1.5
x 10

-3

P
F

t [years]

 

 

u*
1

u*
2

u*
sys

0 5 10 15 20
3

3.5

4

4.5



t [years]

 

 




annual

Fp fc fct XNc XNt Delta Xs Xaero
-0.2

0

0.2

0.4

0.6

S
i



 

23 

 

In the early 1970s Holmen [80] showed that the secant modulus Es of the concrete decreased during 

compressive fatigue loading and that the size of the reduction increased with reduced minimum stress level Smin. 

Holmen used high stress levels, not likely to be found in civil structures (Smax > 0.675). The phenomenon that 

Holmen observed is known as cyclic creep, which was first observed by Feret in 1906 [92]. A mathematical 

model was recently developed using fracture mechanics on the microscopic crack growth, both in tension and 

compression, by Bazant & Hubler [77]. This model is however valid only at the micro-level and generally too 

involved to model a propagation of damage at the macro level, which is required for SHM purposes. The 

deterioration causes an increase in load-produced strains that follows three stages; 1) an initial period of 

decrease of strain-increase rate, 2) a longer period of constant rate and 3) a final period of increasing rate of 

strain in-crease, shown in Figure 19, left.  

The secondary stage constitutes the larger part of the fatigue life and displays correlation, albeit weak, to the 

deterioration state. Currently used NDE methods for concrete fatigue assessment are ultrasound and acoustic 

emission, as described in e.g. Urban et al. [78]. They target the level of deterioration, based on empirical 

correlations to the damage sum D, through Holmen’s cyclic creep relation.  

           

Figure 19. Left: Principle of cyclic creep, from Hordijk [93]. Right: Sketch of the development of the 

secant modulus with loading cycles. Mean value and coefficient of variation V (paper II) 

The uncertainty model shown in the figure above is for compressive cycles (Smin = 0.05, Smax = 0.675) based on 

research from 2006 at the Ruhr University, and which is presented by Breitenbücher & Ibuk [94]. Where 

Holmen in 1979 conducted his tests at Smax stress level above 0.675, these newer test use lower stress levels, and 

are more representative for the stress conditions in civil structures. The uncertainty model from Breitenbücher & 

Ibuk was adapted for paper II, where a model was defined to link the deterioration state of the Palmgren-Miner 

hypothesis to the secant modulus of the concrete in the damaged region.  

2.5 DETERIORATION MODELLING USING BAYESIAN NETWORKS 

So far I’ve introduced structural reliability methods and Monte Carlo sampling for calculation the probability of 

failure (or any other event probability). I will now introduce a graphical approach to probabilistic calculation, 

called Bayesian Networks (BN). BN’s were used to model deterioration by e.g. Friis-Hansen [95], Straub [96] 

and Nielsen [48]. In the following, I will introduce basic concepts of BNs, with focus on deterioration 

modelling. The books by Kjaerulff & Madsen [97] and by Jensen & Nielsen [98] provide a complete 

background on BN’s in the context of decision-making. The nodes in a BN can be discrete or continuous but I 

consider only discrete BNs in the following, as the use of continuous variables poses many restrictions on the 

application of BNs. 

2.5.1 BAYESIAN NETWORKS 

BNs are Directed Acyclic Graphs and cannot model cyclic dependencies, meaning that no paths from a node can 

lead back to the same node. A BN contains nodes, each representing a stochastic variable, and directed links, 

also called causal arcs, which model dependencies between the variables.  
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Ancestors, parents and children  

A BN is a model of the joint probability distribution p(x) of a set of random variables x = { x1 , x2 ,… xn }. The 

nodes with a link towards node xi are the parents of xi, denoted pai and the nodes with links from node xi are the 

children of xi, denoted chi. The simplest Bayesian Network (BN) contains two nodes and one link. When 

information of a variables state is observed, the other variables are updated according to Bayes rule:  

Where the nominator is the likelihood multiplied by the prior, and the denominator is the total probability of the 

evidence. Consider the following example of a fire alarm and a fire, as shown in Figure 20. Assume that both 

fire and alarm can take the values 1 or 0.  

 

Figure 20. The causality is explained in this way: if you hear the alarm, it changes the probability of fire. 

Likewise, you observe a fire, it changes the probability of the alarm sounding 

Where fire is a parent of alarm and alarm is a child of fire. The node fire contains the discrete unconditional 

probability table P(fire) which has two entries. The node alarm contains the Conditional Probability Table 

(CPT) P(alarm|fire) which has four entries. In this example we have considered fire as an independent variable. 

Had we included a parent to fire, e.g. gas leak, it would become the ancestor of alarm. Due to the conditional 

independence relationship introduced by the links, the child is independent of the ancestors given the parents.  

If the node xi has no parents, it is unconditional and has discrete probability distribution P(xi). If the node xi has 

parents pa(xi ), then it is conditional on the parents and has the probability distribution P(xi| pa(xi )). This way, 

the joint probability distribution P(U) is represented by a set of conditional distributions for the individual 

variables. When all variables are discrete, the discrete joint probability density function is, according to the 

chain rule given as a product of the condition probability tables: 

Each variable has a finite number of states, e.g. a crack length represented by the variable a can be discretized 

into the possible states of a = {1mm, 2mm, …, 40mm}. If the state of a is observed, we say that evidence ea is 

observed, causing a to be ‘instantiated’. This changes the joint probability density function to P(U,ea) and the 

calculation of the posterior of any variable x, P(x|ea) is called inference. This is further elaborated on the 

following page. 

Connection types 

The links introduce some separation properties, which influence the propagation of evidence. The figure below 

shows the three connection types: 

 

Figure 21. Connection types. From left to right: serial, converging and diverging connection 

- In the serial connection, if C is instantiated, then A and B become dependent of C and if B is instantiated, C 

becomes independent of A.  

- In the converging connection, evidence on a parent (A,C) has no influence over the others, but if any evidence 

changes the certainty of the child (B), it makes the parents dependent.  

- In the diverging connection, instantiation of the parent (B) blocks communication the children and they 

become independent. Instantiation of a child influences both parent and the other child. 
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2.5.2 INFERENCE IN BNS 

BNs have many advantages, as I will discuss in the following, but the perhaps most important strength lies in 

the inference algorithms. Inference is generally based on using Bayes rule and marginalization of (summing 

over, if discrete) the irrelevant variables of the joint probability distribution, Jensen & Nielsen [98]. Let ei be a 

vector with observed evidence on node xi, then: 

And the posterior of any variable is calculated by Bayes rule, the theorem of conditional probability and 

marginalizing out all other variables: 

However this quickly becomes intractable for large networks and a conversion of the BN to a undirected tree 

structure can be advantageous.  

Junction tree algorithm 

The application of BNs in this thesis is influence diagrams for decision-making and the application of the 

effective Single Policy Updating (SPU) algorithm. SPU is based on the junction tree algorithm. The junction 

tree algorithm is based on variable elimination, where marginalization is made more efficient by elimination of 

one variable at a time. A junction tree is made in four steps: moralization, deletion, triangulation and connection. 

In the first step, a moral graph, containing the nodes from the BN, is made by adding undirected links between 

all parents with a common child. In the second step, the directions of all links are removed. In the third step, the 

nodes are organized into cliques, where each clique is a subset of the full variable domain U. In the fourth and 

final step, the cliques are connected, whereby the junction tree is formed. A more elaborate introduction to the 

theory is given in Jensen & Nielsen [98] and various examples are provided by Friis-Hansen [95]. 

2.5.3 DYNAMIC BNS 

So far we’ve looked a time-invariant static networks. Moving on the application of BNs to deterioration 

modelling, the Dynamic Bayesian Network (DBN) is introduced: A DBN is, although the name suggest 

something more sophisticated, a BN of inter- and intra-connected time slices. DBNs are also called temporal 

BNs. The simplest type of DBN is of the type shown below, with two time slices: 

 

Figure 22. Examples of two-slice DBNs. The right model is a Hidden Markov Model (HMM) 

As such DBNs are not different from static net, in that they may be “rolled out” to static BNs. Some more 

effective algorithms exist specially for DBNs, of which Murphy [99] provides an overview. In the following, all 

DBNs are rolled out and transformed to junction trees. The model in Figure 22 complies with the Markovian 

assumption (future is independent of the past, given the present). A Hidden Markov Model (HMM), of the first 

order, consist of an initial state distribution P(B0), a transition model P(Bt|Bt-1) and an observation model 

P(Ot|Bt). Letting Z be the variables in the same time slice, and N the number of variables, the transition and 

observation model in the DBN are then defined by the product of the Conditional Probability Distributions 

(CPD): 
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Where the parents to node i may be in the same, or the previous, time slice. The full CPD of the DBN, unrolled 

to T time slices, is given by: 

Wherein the CPDs of the initial time slice (t=1) represent the unconditional initiation model. 

2.5.4 MODELLING DETERIORATION WITH DBNS 

Using the above, a DBN can be constructed to model most kinds of deterioration processes. Friis-Hansen [95] 

uses a time-invariant load model, while Straub [96] also models a time-variant model. He suggests the generic 

model, shown in Figure 23. 

 

Figure 23. DBN deterioration model. x is an observable variable, e.g. the result of an inspection (from 

Straub [96]) 

The network in Figure 24 was used in paper VI to model Paris Law fatigue crack growth, as a time-invariant 

process. 

 

Figure 24. Dynamic Bayesian Network (DBN) modelling Paris Law fatigue crack growth (a) and damage 

indicator (x) for the NREL tower 

In Figure 24, the binary indicator node I enables calculation of the failure probability ΔPf,i = Pr(Ii=1) w.r.t. the 

time between each time slice. As the sensitivity of Pf to the critical crack length ac is very small, it is modelled 

as deterministic, and thus implicitly contained in the indicator node I, which represents the failure limit state g = 

ac - a. Alternative, ac could easily be modelled as a random variable by adding ac as a single node and making a 

link from ac to I1.  

Combining variables  

The variable space has the dimension of d = Πdi, i = 1,2,..,N, i.e. the product of the dimension of all variables. 

Instead of modelling each variable with a node, variables can be combined into new dependent variables. In the 
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example in paper VI, d is reduced from dXs dXaero dXsif dΔσ dm to dS dm by combining the load model uncertainties 

with the geometry function model uncertainty.  

Discretization of the variables 

As the BN is a discrete representation of the variable space, all CPDs must be discretized into CPTs. The 

discretization is discussed by Friis-Hansen [95], who suggests using a linear transformation to a space with 

intervals of equal length, and choosing the transformation so that the interval size is inverse proportional to the 

slope of the PDF of the variable. In the numerical examples in paper VI, the intervals for discretization L were 

chosen so that: 

I.e. the mean-squared error on the prediction of failure probability, compared to MCS, is minimized. The figure 

below shows the discretization of the crack length for the second example in paper VI. In the example, shown in 

Figure 25, the crack length is discretized into 42 discrete states using a logarithmic transformation, making the 

intervals of equal length when plotted on a logarithmic axis. 

 

Figure 25. Left: Discretization of the Lognormal variable a0 for the NREL example in paper VI 

The probability distribution must be truncated at the tails. In the above example, the lower limit a0,lb is set so 

that Pr(a0 < a0,lb) = 10
-6

 and the upper limit a0,ub > ac. The CPTs can be calculated directly if the probability 

distributions are known, as is the case for a0 in Figure 25. If the PDF is unknown, e.g. for combined variables, 

the CPTs can be approximated using MCS. In the example, P(a|at-1,m,S) was sampled using the numeric crack 

growth method described in 2.3.2 and using random sampling from within the boundaries of the parents’ states.  

Observations 

The BNs have their strength in inference and updating using evidence from observations, i.e. instantiating 

observable nodes when evidence is observed. An observation is the event where a variable is observed. The 

outcome of the observation is the instantiated variable. The way that we model measurement uncertainty on the 

observation is through the layered structure of a HMM. In the HMM, the hidden layer models a variable that 

cannot be observed, e.g. the real crack length, and the observable layer models the observations using an 

inspection or monitoring technology. The information from an observation may be of the inequality type (a ≥ 

ad) or of the equality type (a = ad). Both types are easily modelled with a BN, by controlling the number of 

states of the observable nodes. Modelling the observable layer will be discussed in the next chapter (SHM 

design), but a few BN models are introduced here. 

The standard HMM assumption is that the observations are conditionally independent given the hidden state. 

The HMM model cannot model linear filters, e.g. Kalman or moving averages. This is possible by relaxing the 

HMM assumption and letting the observations be conditional on the previous observations. Such a model is 

called an Auto Regressive HMM (AR-HMM). 
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Figure 26. Hidden Markov Model and Autoregressive-Hidden Markov Model. Grey nodes are observable 

Input 

Both types of models can be extended to include observable input. This type of model is a State Space Model. 

An example is shown in Figure 27. 

 

Figure 27. A Markovian State Space Model. The input nodes u can be e.g. measurements of 

environmental conditions that affect the hidden model θ and/or the observable output x  

This type of model is very relevant for damage detection purposes, where the observable nodes model a damage 

indicator that is sensitive to both damage and environmental conditions, e.g. temperature, wind speed and 

relative humidity. The links from the input nodes u to the hidden nodes θ would be less relevant in the case of 

damage detection. 
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CHAPTER 3 

3 SHM DESIGN 
The detection of damage is engineering decision-making under uncertainty. In this chapter we will build up the 

framework that enables SHM based decision-making, following the figure below: 

 

Figure 28. Framework for SHM design continued: feature model and decision model 

We approach the framework in reverse order: In the following section 3.1 we set out with basic decision theory 

and statistical testing, and then move on to Bayesian decision theory. Then, in section 3.2, we create statistical 

models for the damage sensitive features.  

3.1 DECISION MODEL 

The purpose of SHM is decision-making and the purpose of decision-making is cost reduction. There is some 

indication of rationality in the decision concept, and the statistical decision analysis accredited to Raiffa & 

Schlaifer [44] is indeed intended to provide a mathematical model of rational decision-making under 

uncertainty. The basic saying is that decision theory is the ‘marriage of probability theory and utility theory’. 

Following along this line, we aim at making decisions that optimize the expected costs. We start with the cost 

model: 

3.1.1 COST MODEL 

We differ between terminal costs and experimental costs. The semantics are due to Bayesian experimental 

design, which is discussed later in the text, but I find it a necessity to introduce the two concepts at this point: 

a) Experimental costs C
exp

 are the costs of performing the experiment. In the case of SHM damage 

detection, the experimental costs are the SHM system costs, while in the case of inspections, the 

experimental costs are the costs of the inspection. 

b) Terminal costs C
ter

 are tied to the outcome of an experiment. These outcomes are discrete events e.g. 

failure, inspection, repair, evacuation – thus the outcome of one experiment might be the costs of 

performing another experiment. 

Terminal costs: damage detection 

For the example of damage detection, we denote the damaged state θd and the undamaged state θb. A computer is 

fed information from sensors and outputs db if no damage is detected and dd otherwise. Unfortunately, no sensor 

measures damage (Axiom IVa in Worden et al. [25]) and d1 can always only be an indication of damage. If dd  is 

output, then the decision-maker cannot be sure that damage is present, so he orders a technician to inspect the 

structure, at the cost of Cins. If damage is indeed present, the technician will locate it and have it repaired, at the 

additional cost of Crep. If the computer does not indicate the damage, and damage is present, then the cost to the 

decision-maker will be Cdam, which, for practical reasons, can be equivalate with the cost of failure Cf. The cost 

function is shown as a matrix in shown in Table 4. 
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 State = θ0 State = θ1 

Decide 

d0 

True Negative 

C00 = 0 

False Negative 

C01 = Cdam 

Decide 

d1 

False Positive 

C10 = Cins 

True Positive 

C11 = Crep + Cins 

Table 4. Cost matrix for damage detection  

The semantics are taken from detection theory. If the costs are replaced with probabilities, then then matrix is 

the confusion matrix. See e.g. Kay [49] for an elaborate background.  

Terminal costs: damage localization 

The purpose of damage localization is the reduction of the inspection costs associated with a damage indication 

dd. To reflect this, we construct the costs matrices in Table 5, where the left matrix is the detection costs and the 

right matrix is the localization costs. We let damage exist in regions i = 1,2,…,n of the structure and let θb be the 

undamaged state and θ d,i be damage in location i. The cost of repair CRi depends on location of damage. If 

damage location is correctly decided then the cost is CRi. If it is not decided or incorrectly decided, then the cost 

increases with the cost of inspection, Cins.  

 

 

 

 θb θd 

db 0 Cdam 

dd Cins → 

Table 5. Cost matrices for hierarchical detection and localization (paper V) 

The misclassification rate generally increases with an increasing number of discrete classes, covering the same 

data
5
. Alternatively, detection and localization can be done in one single decision. The direct localization 

approach by Parloo et al. [100] associates a cost matrix as the one in Table 6. 

 θb θd,1 θ d,2 θ d,… θ d,n 

db 0 CF CF … CF 

d1 Cins CR1 CR1 + Cins … CR1 + Cins 

d2 Cins CR2 + Cins CR2 … CR2 + Cins 

… … … … … … 

dn Cins CRn + Cins CRn + Cins … CRn 

Table 6. Cost matrices for the case of simultaneous detection and localization (paper V) 

It is tradition to model the costs as deterministic, even though they are quite uncertain and difficult to set. I have 

followed the tradition of deterministic cost, but compensated by including sensitivity analysis of cost ratios.  

3.1.2 DECISION THEORY 

Decision theory generalizes statistical testing. A brief introductions is provided in the following.  

In hypothesis testing, a decision function d selects a hypothesis H from the set of possible hypothesis Hj, j = 

1,2,..,N without including prior belief of the state nor costs of making one type of error compared to another. We 

consider a parameter space ϴ of states and partition ϴ into the subsets ϴ0 and ϴ1, so that ϴ0 ∪ ϴ1 = ϴ and ϴ0 ∩ 

ϴ1 = Ø. Hypothesis H0 is true when the realized state θ ∈ ϴ0 and, correspondingly, hypothesis H1 is true when 

the realized state θ ∈ ϴ1. In the simple hypothesis test, the number of states is restricted to two, {ϴ0 = θ0 , ϴ1 = 

θ1} while in a composite hypothesis test, each of the subset ϴ0 and ϴ1 can contain any number of models. The 

                                                           

5
 Statistical Pattern Recognition semantics: every data point belongs to a class, each class has a unique label.  

 θ d,1 θd,2 θ d,… θ d,n 

d1 CR1 CR1 + Cins … CR1 + Cins 

d2 CR2 + Cins CR2 … CR2 + Cins 

d3 CR3 + Cins CR3 + Cins … CR3 + Cins 

… … … … … 

dn CR4 + Cins CR4 + Cins … CRn 
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case of global vibration measurement damage detection is, in the general case, the composite hypothesis test, 

sketched in Figure 29. 

 

Figure 29. Composite hypothesis test have more than one state in at least one of the hypothesis. The main 

problem of damage detection is the binary composite hypothesis test with an uncountable number of 

states  

The three main types of statistical tests are Fisherian, Neyman-Pearson likelihood ratio and Bayesian. The first 

is fundamentally different from the other two, as is discussed in the following.  

Fisherian test 

The objective of the Fisherian test, introduced by R. Fisher [34], is to accept or reject the null hypothesis; H0. 

The means to do this is by using a Statistic, e.g. X
2
 (chi-square), as a measure of how well the data fits H0. In an 

X
2 
test the sampling distribution of the test statistic is a chi-square distribution when H0 is true. The null 

hypothesis is rejected when the observed value exceeds the probability threshold; the p-value. The p-value is set 

by a selected significance level, e.g. α = 5%, as sketched in Figure 30. 

 

Figure 30. Sketch of a one-sided Fisherian hypothesis test 

The alternate hypothesis; H1 is not considered and this can be an advantage, as only the statistical properties of 

the ‘normal’ data are required to perform the test. This makes the simple Fisherian test suitable for damage 

detection, as it represents the special case of composite hypothesis test, where θ0 = ϴ0 and θ ∈ ϴ1. The Fisherian 

X
2 
test was used for damage detection by e.g. Worden et al. [38] and Döhler et al. [39]. The X

2 
tests asymptotic 

properties and their effect on the detection performance were considered in paper IV.  

Neyman-Pearson test 

The Neyman-Pearson [35] likelihood ratio (NP) test compares the states and selects a hypothesis based on the 

likelihood ratio of the data. 

Where x̄ is the observed data, p(x̄;θ) is the likelihood
6
 and L is the likelihood ratio. The NP Lemma states that 

the optimal detector threshold γ is found for a fixed (accepted) probability of deciding the false hypothesis 

P(d=di ; θj≠i) = α, where α is the significance level. The likelihood functions can be plotted, as in Figure 31, to 

visualize the errors: 

                                                           

6
 The use of ( ; ) indicates that θ is a fixed parameter, and not a random variable. This is a frequentist approach 

and the NP test is typically frequentist.  When I speak of Bayesian testing, I use the conditionality notation ( | ).  
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Figure 31. A simple hypothesis test. Neyman & Pearson defined the two sources of error in a test as type I 

(False Positives) and (False Negatives) type II errors  

The NP tests thus keeps one error-rate constant while minimizing the other. Knowledge of the likelihood in all 

states is a prerequisite, but the hypotheses are treated unevenly, as the choice of significance level depends on 

which error is fixed and which is minimized. The Neyman & Pearson type-I and –II errors are also meaningful 

for the composite hypothesis test. The evaluation of the performance requires a joint model for all states under 

each of the hypothesis, so that θ0,joint = ϴ0 and θ1,joint  = ϴ1. In damage detection this corresponds to averaging 

over the all environmental and operational conditions of ϴ0 and ϴ1 while also averaging over all damage 

configurations of ϴ1. The binary approach can be required if the amount of training data available for estimating 

the feature likelihoods is sparse. This approach was taken in paper I to enable a sequential simple Bayesian test:   

Bayesian test 

The Bayesian test is the core of statistical decision theory. The test selects the state with the highest posterior 

probability P(θ|x̄): 

The posterior probabilities are calculated using Bayes rule, in this case on discrete form: 

Where P(θ) is the prior belief and P(x̄|θ) is the likelihood. As the purpose of decision-making is utility-

maximization, the addition of a utility function U allows for any statistical test to reflect this purpose: 

As the Bayesian test is based on probabilities, the addition of a cost
7
 function enables the decision to be based 

on expected costs; E[C]. If the cost function is uniform, then the test becomes a minimization of total error. If 

the priors are uniform p(θ0) = p(θ1) then the test depends only on the likelihood, and thus generalized the NP 

test. The Bayes decision dopt is the decision that minimizes the expected cost E[C] and the Bayes Risk is the 

expected costs E[C]opt associated with dopt. For the case of damage detection, the test is binary, between two 

structural states θ0, θ1.  

The cost function C
ter

 is of the type in Table 4 (p. 30). Due to the difference between failure costs and false 

alarm costs, as well as typically the very low prior probabilities of damage, the Bayes detector performs 

differently than the NP and the Fisherian test in the damage detection case.  

The example shown in Figure 32 shows the influence of the prior probability. The optimum decision threshold 

is marked by a circle, for different values of the prior. 

                                                           

7
 The concepts of utility, loss and cost have, throughout the thesis, been collected under costs C. This implicitly 

assumes that loss is the equivalent of economic cost and that loss equals negated utility. 
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Figure 32. Simple Bayes test. Top: feature statistic. Bottom: Expected costs, as a function of the decision 

threshold (paper I) 

For SHM damage detection applications, the influence of the costs of ‘true’ decisions (C11,C00) on the optimum 

threshold, is negligible. A Bayesian detector was used in papers I, II and V. 

3.1.3 BAYESIAN DECISION ANALYSIS 

Prior-, posterior and pre-posterior decision analysis generalize the Bayes decision for; a) the case of prior belief, 

b) the case of posterior belief after an experiment, and for c) the special case of pre-posterior analysis where 

both the decision of the experiment z and of the terminal action d must be taken. The latter case is important in 

the Design of Experiments as pre-posterior analysis is the generalized Bayesian Experimental Design (BED), 

which was used by Flynn & Todd [58], Flynn [41] and in paper I.  

The partial decision tree in Figure 33 shows the pre-posterior analysis {z,x,d,θ}. If the z node is left out, then the 

tree represents a posterior analysis {x,d,θ}, which is the generalized Bayes test. If both the z and the x node are 

left out, then the tree reduces to a prior analysis {d,θ}. 

 

Figure 33. Bayesian pre-posterior decision analysis visualized by a partial decision tree. z is the choice of 

test, x is the test outcome, d is the decision to make based on the outcome and θ is the unknown state 

As for the Bayes test, we seek to minimize the total expected cost: 

In Figure 33 the decision process is chronologically directed from left to right. In analysis however, the direction 

is reversed; first we average over θ, given x and z and we then select d as the decision that minimizes the 

resulting expectation. The steps up to this point constitute the posterior decision analysis. We then average over 

the features x given z and select z to minimize the resulting expectation: 

The Value of Information (VoI), from Raiffa & Schlaifer [44] is the function of z that gives us the expected 

value of an experiment, before the experiment is performed.  

Which can be written as: 
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Where we have separated the cost function into terminal costs and experiment costs, so that C(d,θ,x, ) = 

C
ter
(d,θ)+ C

exp
(x,z). The VoI allows us to determine the expectedly most economic SHM system, as SHM is 

economic when: 

In most SHM applications, C will not depend on x, and the VoI reduces to: 

Following this, a SHM system is economic only if the expected reduction in costs exceeds the costs of the 

system. 

Example use of BED for engineering application 

The most well-known risk-based decision-making application in engineering is RBI. However, the framework 

that has been applied for many decades for inspection planning is easily shown to also encompass UM (load and 

strain monitoring), as well as vibration-based SHM. The generalization of the pre-posterior analysis {z,x,d,θ} is 

sketched in Figure 34. 

 

Figure 34. Pre-posterior analysis as the framework of engineering decision-making under uncertainty for 

multiple civil engineering disciplines 

In this thesis, the bottom row; feature extraction, is explored. Alternatively, the response expansion is a method 

of prediction the load response, down to strain level, in all locations of the structure, by using a numeric 

response model and the measured response in few Degree-Of-Freedom (DOF). This method is valuable because 

the high number of sensors from local UM can be reduced to few sensors. Furthermore, the sensors used can be 

in easily accessible and less aggressive locations and will generally have a longer lifespan than strain gauges or 

similar. Due to these large advantages, usage monitoring by response expansion is the natural companion to 

vibration-based damage detection when the same sensors are used for both purposes. 

3.2 FEATURE MODEL  

The quest for the perfect damage sensitive feature has lasted several decades. As discussed in the introduction, 

the perfect feature has correlation to damage, noise rejection and insensitivity to environmental effects. 

Unfortunately, as stated in Axiom IVb of Worden et al. [25]: “Without intelligent feature extraction, the more 

sensitive a measurement is to damage, the more sensitive it is to changing operational and environmental 

conditions”. While the axioms are a good starting point to selecting features, we may choose whichever features 

we like as input to the probabilistic decision-making. Even the most ridiculous features, e.g. phase of the moon, 

will not return negative expected costs, when the decision-making is based on accurate statistical models and a 

Bayesian detection rule.  
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This being the case from a purely hypothetical view, the selection of damage sensitive features is the premise of 

economic SHM and thus the attention given to feature selection in the technical literature is not unwarranted. In 

this section I focus on  

- statistical model building of the features, 

- analogy to manual inspections and 

- feature pre-selection, based on classical detection theory. 

3.2.1 STATISTICAL MODELS OF THE FEATURES 

The ideal statistical models of the features is true the joint CDF of the feature vector in every relevant (discrete) 

state, as this enables composite Bayesian testing. An example of a CDF for two states and a univariate feature, is 

sketched in Figure 35. 

  

Figure 35. The simplest feature statistic has two discrete states. The left plot is a control chart where the 

state changes from baseline to damaged, indicated by the color  

Ideally, statistical models for the features are estimated from samples from the structure, acquired under all 

operational conditions and in all classes – i.e. in all possible damage configurations. There are two main cases: 

a) The structure has been realized 

b) The structure has not been realized 

Focusing on damage detection by a statistical composite hypothesis test (decide {H0, H1} for observed x), the 

framework for estimating the statistical feature model is presented in the following. There are three uncertainty 

contributions to the response model, shown in Figure 36.  

 

Figure 36. Framework for synthesizing the statistical feature model 

a) When the structure has been realized, the response covariance in the baseline state can be sampled. Under 

normal assumptions, the input model represents time-variant parameters. These include all environmental 

conditions as well as actual loading of the structure. The noise model accounts for time-invariant measurement 

noise. The geometry model is a deterministic bias from the ‘real’ world, both in the baseline and in the damages 

states. If the geometry model is a FE model or similar it models the damage in a finite number of discrete states. 

By averaging over samples from a narrow spectrum of operational and environmental conditions, the geometry 

model bias in the baseline state can be estimated. It is not possible to estimate the bias in the damaged states 

without data from the damaged states. The input and the noise model are both independent of the damage 

severity, which means that they can be assessed from the baseline state alone, but they are generally inseparable, 

as training data from exactly identical input conditions cannot be obtained. If the training data is very sparse, 

then a common unconditional model can be used for input and noise, where all the operational and 
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environmental conditions present the in training data are averaged out. This approach is less data intensive than 

the joint model approach, at the cost of a decreased detection performance. This approach was used in papers IV 

and V, and is further elaborated in section 3.4. 

b) When the structure has not been realized, we will need to base the joint model on simulations of operational 

conditions. This introduces very large uncertainties from the simulation assumptions, and the response of the 

feature should be verified against measurements from a similar structure. After the design phase, when the 

structure has been realized, the models should be updated using new measurements, given the assumption of 

baseline state for a given period of time. This is the case for combined SHM/structural design (chapter 4). The 

approach was used in papers I,II,III and VI, although no validations against a real structure were performed. 

3.2.2 RESPONSE MODEL – NREL TOWER 

A wind turbine tower was used for numerical examples in papers I,III and VI. The basic response measurements 

were acceleration time series and the estimation of the statistical feature model was done by combining the three 

models shown in Figure 36. 

Discrete geometry model 

The wind turbine was modelled as a FE model with lumped rotor-nacelle-assembly inertia. Cracks were 

modelled by releasing the horizontal interface between shell elements. No contact elements were inserted, 

meaning that the response was kept linear. The smallest crack length modelled was between 0.34 m and 0.52 m. 

An example of the model, with a damage outcome, is shown in Figure 37. 

 

Figure 37. Deformed shape of NREL tower model with an approx. 1.7 m long crack (paper I) 

The modal parameters have a low sensitivity to overall mesh-size, allowing for a coarse FE model. Naturally, 

stress prediction would require a much finer mesh in the vicinity of the crack. 

To preserve the eigensolution in the response, each model was reduced using SEREP by O’Callahan et al. [101] 

to 30 ‘active’ DOFs, representing the locations and orientations of the sensors. The modal basis is used to 

simulate the global response in a linear simulation using the Frequency Response Function. To get the picture of 

how small the induced changes are – even from a very long crack, Figure 38 shows the changes in modal 

properties of the first four modes as a function of the location of a crack. The modes in the figure are projected 

onto the unperturbed modes, as the crack causes local asymmetry and mode shape rotation. 
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Figure 38. Sensitivity of eigenfrequencies (top) and of the MAC-values (bottom) for the first four flexural 

modes to a through-crack of length = 10% circumference. Angle defines the location in 72 angle 

increments and Height is the elevation in meters above foundation 

The sensitivity of the mode shapes is given as change of Modal Assurance Criterion, ΔMAC. MAC is a well-

known measure of mode shape similarity, often employed for FE and experimental mode shape pairing. It has 

also been investigated for damage detection, see e.g. Sohn et al. [3]. From the figure, the frequencies are seen to 

be more damage sensitive than the MAC values. The FE shell model was used for paper I and VI and similar 

models, described in sections 3.3 and 3.4,were used in papers IV and V. FE beam models of the NREL tower 

were used in Papers II and III, but I found these to have incorrect sensitivity to damage, making the output of the 

applied damage vector algorithm unrealistic.  

Input model 

To simulate the varying operational conditions, I used aeroelastic simulations in the commercial software 

LACflex. Multiple wind speeds and multiple random ‘seeds’ of turbulence generation were used as input model 

(variance between measurements). As the perturbed tower could not be adequately modelled in LACflex, the 

tower response was simulated separately. This separation of dynamical models builds on the assumption of 

small changes in the modal parameters, which is valid for small damages a mainly linear behavior. It is arguable 

if this assumption is fulfilled or not when a 2 m crack is simulated, but as the appearance of non-linear effects 

benefit a novelty analysis damage indicator, as observed by Figueiredo et al. [102], I consider the assumption 

conservative in the calculation of expected costs. 

Noise model 

Measured accelerations are contaminated by measurement noise. The noise was modelled as random Gaussian, 

with as RMS level of 1 – 10 %. These noise levels exceed the dynamic range of modern high quality 

accelerometers – Brüel & Kjær would be insulted - but as was found in paper IV, high noise levels may be used 

to account for influencing factors that are neglected in the simulations. 

3.2.3 FEATURE SELECTION 

The feature types shown in Table 7 were investigated for SHM decision-making. 
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 Paper I Paper II Paper III Paper IV Paper V Paper VI 

AR coefficients SIM   SIM, EXP SIM, EXP SIM 

Eigenfrequencies    SIM, EXP SIM, EXP  

Mode shapes    SIM, EXP SIM, EXP  

Subspace angles    SIM, EXP   

Damage vector  SIM SIM    

Table 7. Features used in the papers. SIM: Simulated. EXP: Experimentally obtained  

Eigenfrequencies & mode shapes 

The equations of motion for a linear Ndof -DOF system with viscous damping are, on matrix form: 

Where x is the input vector, y is the response vector and M,C and K are the mass, damping and stiffness 

matrices. The dynamic properties are obtained from the eigenvalue decomposition: 

Where B is a matrix with the mode shapes in the columns and Ω is the diagonal matrix holding the eigenvalues. 

As damage effects the physical properties of structure, due to the above, the modal properties are affected. In a 

numeric environment, the stiffness and mass matrices are directly available and the modal properties can be 

directly extracted. For a realized structure, structural identification and modal analysis are used to estimate the 

modal parameters. If the tests are performed under low-amplitude vibrations, so that the structure does not 

exhibit significantly non-linear behavior, then a linear dynamical model is normally acceptable. The modal 

parameters can be extracted using forced excitation and EMA but, in the case of large structures and SHM, they 

must be estimated using OMA identification techniques. The identification introduces error and bias on the 

estimates and the modal parameters are sensitive to environmental conditions, which all reduce the 

discriminative performance. 

Principal subspace angles 

Principal angles are the angles between the mode shapes in the subspace spanned by the mode shape vectors. 

They are a potentially powerful condensation of the information in mode shapes, as the Nm estimated mode 

shapes in Nd DOF form a feature vector of length Lv = NmNd, potentially reduced to Lv = Nm/2, as each pair of 

modes shapes form one angle. The largest angle is related to a notion of the distance between subspaces. The 

baseline data are taken e.g. as the sample averages. The mode shape pairs can be made from any two or more 

modes, not necessarily adjacent in the frequency band. In paper IV the principal angles are calculated using an 

Singular Value Decomposition of the product of the orthonormal modes, obtained by QR factorization. This 

follows the method in Golub & Van Loan [103]: 

Where Φ is a matrix with the subset of mode shapes, for which the angles are calculated, and subscript b 

denotes the baseline state. 

AR model coefficients 

The scalar AR model with p autoregressive parameters, AR(p), is given by 
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The model is fitted to the time series of a sensor using a least-squares formulation. The parameters of the AR 

model are called the auto regressive coefficients. The AR parameters are directly related to the discrete system 

poles, λi, i = 1, 2,…,2N, where N is the number of modes in the response, through the companion matrix, see e.g. 

Brincker & Ventura [28]. Thus, eigenfrequencies and damping factors may be determined directly from the AR 

coefficients, meaning that the coefficients also hold information of damage. For the AR model to model a 

random response, p > 2*N, i.e. an oversize model is required. The various criteria described in Figueiredo et al. 

[102], provide an estimate on the appropriate model order. AR models have been used for damage detection in 

many publications, a recent review of which are provided by Yao & Pakzad [104]. 

Damage vector 

The method described by Parloo et al. [100] is briefly summarized in the following. The sensitivity equation for 

mode shape bi of Nm modes, to some change parameter u is given by 

Where m is the modal mass, given by the inner product over the mass matrix: 

For finite size changes Δu, a sensitivity matrix ΔB is constructed from mode shape sensitivities Δbi , 

i=1,2,…,Nm. Each column in the sensitivity matrix contains vec(Bk), k = 1,2…,Nk, where Nk is the number of 

scenarios and vec() is a reshape to column vector operator. Each scenario k is modelled mass and stiffness 

perturbations of the baseline system ΔMk and ΔKk: 

Where subscript b denotes the baseline state. The scenarios are predefined and the change matrices are typically 

obtained from a FE model. The damage vector is given by: 

Where + denotes the pseudoinverse, A is the measured mode shape matrix and Ab is the mode shape matrix in 

the baseline state. The methods assumes that vec(ΔA) is a linear combination of the k scenarios in ΔB. The 

damage vector is a change vector, indicative of the contribution of each scenario. This type of algorithm is 

deterministic and it outputs simultaneous detection and localization.  

The damage vector feature was used for calculations in papers II and III where the identified modal propertied 

has been synthesized by simply noising the modal properties obtained from the FE model. To keep the equations 

well-conditioned, a certain number of mode shapes must be identified and this places some requirements on the 

number of sensors to be used. The algorithm was found to fail when actual OMA system identification was used 

and I subsequently abandoned it to instead focus on robust statistical algorithms.  

3.2.4 FEATURE PRE-SELECTION 

In the end, we are trying to minimize risk. To do that, we need a cost function, a statistical model of the features 

and a model for co-optimization of decision variables, feature variables and structural variables in a probabilistic 

framework. The development in computational power might follow an exponential law, but, due to the size of 

the full variables domain, this optimization problem will remain intractable for years to come for any real world 

application. This is where engineering rationality comes into play: by substituting the true objective function 

(risk) with something a more computationally tractable, we can hope to get close to the true risk minimum. One 

such substitution is the optimization of the Area Under the Curve (AUC). 
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The Receiver Operating Characteristics (ROC), shown in Figure 39, is obtained by plotting the true positive rate 

as a function of false positive rate. The AUC is a well-known model metric in detection theory, Bradley [105]. It 

is defined by the data alone and it is invariant to any choices of prior probabilities or decision functions.  

 

Figure 39. Area Under the Curve (AUC) 

The AUC was used for feature selection in papers I, II and IV. 

3.3 DAMAGE DETECTION USING MACHINE LEARNING 

I have now defined the features that are output by the SHM system at each sensing instance, and now face the 

task of making decisions based on the acquired data. As discussed in previous section; if the full joint 

probability function of the data and all environmental variables are know, we could base out decisions on simple 

Bayes tests, which is the risk-optimal test under assumptions of prior distributions and likelihood of the 

observed data. The absence of sufficient data to obtain the full joint PDF however make it relevant to look at 

other areas of the world where decisions are made using sparse data.  

The are two main forms of statistical learning: regression and classification. The first kind has output of 

continuous kind while the second has discrete output, in the form of class labels. As all decisions are discrete, 

continuous output must also be transformed into a decision, typically by using a statistical test. Machine 

Learning is the overall framework for statistical pattern recognition, wherein regression is in the category of 

unsupervised learning and classification is in supervised learning. The main difference is that the supervised 

algorithms require class labels for training, while the unsupervised algorithms do not. Some well-known 

algorithms are listed in the overview in Table 8. 

Type Novelty detection Classification 

Examples of use Outlier analysis, Clustering Pattern recognition, Speech and image 

recognition 

Algorithms used 

in papers 

Mahalanobis Squared Distance (MSD) 

Gaussian Mixture Models (GMM) 

Principal Component Analysis (PCA) 

Factor Analysis (FA) 

Multi-Layer Perceptron (MLP) 

Support Vector Machines (SVM) 

Naïve Bayes (NB) 

Linear Discriminant Analysis (LDA) 

Other examples of 

algorithms 

Kernel Density Estimator (KDE) 

Nonlinear Principal Component Analysis 

(NLPCA) 

 

k-Nearest Neighbor (kNN)  

One-class SVM (1-SVM) 

Decision Trees (DT) 

Application in 

papers 

Damage Detection 

 

Damage Detection 

Damage Localization 

Table 8. Types of statistical learning algorithms and their applications for SHM 

Novelty detection is the detection of unusual data. It is a common discipline for statistical multivariate outlier 

detection (MSD, density estimators), which are strictly unsupervised, and for some pattern recognition 

algorithms (1-SVM), which require labels (and data) of the data in both baseline and unusual class for training.  

In the following, the algorithms used in the papers a briefly introduced in the context that they appear in the 

papers and along with the principal results. For further background reading, Niu et al. [106] provide a 
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comparison of different classifiers in SHM context, including some of the above. Bishop [43] and Hastie et al. 

[107] provide the full background on Statistical Learning Theory. 

3.3.1 DAMAGE DETECTION USING NOVELTY ANALYSIS 

In the section, detection is cast as outlier analysis. The three main types of parametric outlier analysis output is 

discordancy, likelihood density score and prediction residual. In SHM context, a continuous output variable is 

called a score. By plotting the score on a time axis in a control process chart, a graphical way to evaluate the 

structures condition is created. In Figure 40 below, a control chart shows the value of a score for training and 

testing data. From the class labels, the ROC curves are plotted in the center plot and in the right plot, the AUC 

values are plotted.  

 

Figure 40. Example of a novelty detection score (paper IV)  

In paper IV the following algorithms were compared: 

The Mahalanobis squared distance 

The Mahalanobis Squared Distance (MSD) is a discordancy metric. It is a multivariate generalization of the 

Euclidian distance of a data point to the center of the distribution. By normalizing by the variance in the 

direction of the data point, the distance is taken along the principle directions: 

Where x is the observed feature vector and (μx,b, Σx,b) are the mean vector and covariance matrix of the feature 

in the baseline state. If the d-dimensional data is Gaussian, then the MSD is asymptotically a X
2
-distribution 

with d degrees of freedom. This makes hypothesis testing, by a simple Fisherian test (section 3.1.2) possible. 

Gaussian Mixture Models 

A Gaussian Mixture Model (GMM) is a weighted sum of M d-dimensional Gaussian densities: 

Where N is the d-dimensional Gaussian probability density function with mean value vector μi and covariance 

matrix Σi and w is a weighing vector of length M. As a GMM is a density estimator, the damage score is the 

likelihood of the data.  

Principal Component Analysis 

Principal Component Analysis (PCA) is based on representing n vectors of d-dimensions as a linear 

combination of a set of p orthogonal vectors of p dimensions, where p < d. The p vectors are the eigenvectors 

corresponding to the largest singular values diag(S0) of the sample covariance matrix:  
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The number of eigenvectors required to maintain significant information are the vectors corresponding to the 

largest singular values. The projected vectors y, of p uncorrelated variables are: 

An example of this is shown in Figure 41, where 6 frequencies are mapped unto the two first principal 

components. The data from the damaged states is observed to lie apart from the baseline cluster. 

 

Figure 41. The lowest 6 frequencies of a blade structure, mapped unto the first two principal components 

The projected data y could be used directly for a multivariate statistical test, but better results are obtained by 

considering changes in the null-space. The null-space is defined as the smallest singular values ( ~ 0 ), as can be 

seen in Figure 41. As projection unto the smallest singular values is would lead to singular covariance matrix, 

we instead project the data back into original space: 

The sum squared prediction residual represents changes in the null space. This approach was used in paper IV: 

Factor Analysis 

In Factor Analysis (FA), the observed variables are modelled as linear combinations of underlying unobservable 

“factors” added error terms.  

Where μ is the mean vector, Λ is a matrix of factor loadings, f is a vector with the independent factors and e is a 

vector of independent error terms. A predefined number of factors are tested to the training data and the 

maximum likelihood estimator of the factor loadings matrix is calculated from the sample correlation matrix. 

The number of factors can estimated as the number of principal components of the sample covariance matrix. 

Impact of the amount of training data 

All four algorithms are based on sampling statistics of the baseline training data. According to the curse of 

dimensionality, the required amount of training to obtain a constant coefficient of variation on the sampling 

estimates, increases exponentially with the feature dimensions. This limits the feature dimensionality that can be 

used, when sparse data is available. A study of the impact of the amount of training data on the detection 

performance was performed in paper IV. By increasing the amount of samples drawn from the same population, 

the discrimination performance, taken as E[AUC], was sampled for each of the four algorithms MSD, GMM (2 

mixtures), PCA (2 singular components) and FA (2 factors). The coefficients of a AR(40) model was used, but 

while the full dimension was used for PCA, only the first 10 coefficients were used for the remaining 

algorithms. The result is shown in Figure 42. 
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Figure 42. Discrimination performance, given by E[AUC] as function of the amount of training data 

(paper IV) 

It is observed that PCA benefits the most from increased training data. 

Example: NREL tower  

I used novelty detection was used in papers I and VI for damage detection of fatigue cracks in the NREL tower. 

The response model and the damage model were described in section 3.2.2 (p.36). An AR model was fitted to 

the response time histories of a biaxial accelerometer placed in the nacelle, all in numerical simulation domain. I 

applied MSD novelty detection to the AR feature model by combining the features of the two channels. The 

sensitivity of the AUC to measurement noise and damping ratio was investigated with MCS. Generally, enough 

data was used to discard the effect of sampling uncertainty. The results are shown in Figure 43.  

 

Figure 43. Sensitivity to noise and damping, for AR + Mahalanobis Squared Distance 

The gradient of AUC is seen to be negative in both, but the sensitivity to damping is the strongest: the numerical 

gradient is approx. 5 times higher for damping that for noise, when averaged over the values up to 5%.  

The sampled AUC at 87 locations for 9 damage severities are shown in Figure 44. This type of plot is essential 

to SHM design, as blind spots are revealed, which enables the designer to position welds at optimal locations. 

 

Figure 44. Sampling estimate of AUC for crack size = icl times 1.4 % circumference, for 3 levels of 

measurement noise (paper I) 
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I resume the  NREL example in section 3.5 (p.48). 

Experimental validation 

In order to test all combinations of the four feature types with four novelty detection algorithms on experimental 

data, I used two near-identical blade structures, shown in Figure 65. These were cantilevered and tapered 

wooden box girders, with dynamical properties in resemblance of blade-like structures. The thin stretched skin 

on a center spar cross section is sketched in Figure 45.  

 

Figure 45. Sketch of the blade structure cross section 

Over the height of 2.4 m, the cross section tapered linearly from 300 x 150 mm
2
 to 200 x 100 mm

2
. Horizontal  

6 mm plywood partitions were inserted every 0.6 m to reduce warping. The structure was epoxy-glued to a steel 

support plate and bolted to a test bench. 18 accelerometers were mounted as sketched in Figure 46. 120 seconds 

were sampled with a rate of 4096 Hz. The experiments were, for each blade, performed over 30 days, during 

which both temperature and relative humidity  varied substantially in the laboratory. Both were logged during 

the test period, and eigenfrequencies were followingly normalized according to a linear regression on the 

measured relative humidity. The dependency was strong, due to the wood absorbing moist, thus changing the 

density. No regression was performed on the temperature.  

 

Figure 46. The blade structure. Right top: damage in blade A, Right bottom: damage in blade B 

The cut in blade A varies from 2.5 cm to 12.5 cm in 5 severities. The cut in blade B varied from 6 cm to 30 cm 

in 5 severities. 60 datasets were acquired, hereof 30 from the baseline state and 6 from each damaged state. 

Some novelty detection results is shown in Figure 47. 
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Figure 47. AUC histograms for the two feature models from the experimental data (paper IV) 

The histograms are of the AUC outcome, produced by randomly sampling training data from the full set of 

baseline data and using the remaining data for testing. This makes the estimates conditioned of the full dataset 

and not just on a subset of the dataset. The estimators cannot be considered unbiased on the actual detection 

performance, as the underlying tests represent sampling from the input model of time variant effects (i.e. non 

stationary), as I described in section 3.2.1 (p.35). From the results, the best performing algorithm appears to be 

applications specific. Of the novelty algorithms, MSD and PCA were the best performing. 

3.4 DAMAGE LOCALIZATION USING CLASSIFICATION 

To refresh where I set out; the first question was: “is there damage?” As no sensors measure damage, we can 

never with certainty answer this. However, using the novelty detection approaches from the previous section, we 

can answer a surrogate question: “does the data look strange?” As I showed earlier, decision-making regarding 

O&M can just as well be based on answering such a question, as long as the cost of erroneous output is 

included.  

We now come to the second question: “where is the damage”. I call the topic localization and apply the 

framework of classification. As opposed to clustering, which is the field of identifying clusters in the data and 

assigning data points to a cluster, classification assigns labels to the data. This is useful for the purpose of 

localization, as the label assigned to the data can represent an area of the structure. In Figure 48 below, data 

from damaged states in 6 different regions of a structure are clustered together.  

 

Figure 48. Mapping of FE eigenfrequencies for blade A used in papers IV and V unto the three largest 

principal components reveals how the data clusters within the classes  
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Naturally, as mentioned before, classification is a substitution of likelihood testing using the full joint CDF. The 

substitution is required, as data for estimation of the full joint CDF is unavailable. As a classifier outputs 

discrete labels, it is implicitly a decision function. If outputs are probabilities
8
, they can be treated as likelihood 

of the data. The addition of prior probabilities and a cost matrix obtains an approximated multiclass Bayes 

detector. Some algorithms are native multiclass, e.g. LDA, MLP and NB while others, e.g. SVM, are natively 

binary, but can be transformed into multiclass classifiers by using One-Versus-All (OVA) or All-Versus-All 

(AVA) methods. Bishop [43] provides the background. 

Localization approach 

Classification is supervised learning and required data belonging to each label. For a numerical simulation it is 

easy to produce the training data, but for a realistic experimental case, the data belonging to the damaged state 

does not exist. To overcome this, a novel approach was suggested in paper V: Having only baseline data and a 

reasonable response model, damage localization is possible using the following assumptions: 

 The data response model is biased from the experimental data in the baseline state 

 Damage causes a migration of the mean of the feature distribution 

 

Which are based on the response model framework discussed in section 3.2.1 (p.35). It is thus assumed that the 

response covariance is independent of the state. The concept is sketched for a 1-dimensional Gaussian feature in 

Figure 49. 

 

▬ p(xexp | θb) ~ N(μexp, Σexp) ▪▪▪  p(xfe,eq 
| θb) ~ N(μexp,b, Σexp) 

▬ p(xfe | θb) ~ N(μfe,b, Σfe) ▪▪▪  p(xfe,eq | θd) ~ N(μfe,d-(μfe,b-μexp,b), Σexp) 

▬ p(xfe 
| θd) ~ N(μfe,d, Σfe)   

Figure 49. Concept used to synthesize data for localization using classification (paper V) 

In the figure above, the estimation of p(xfe,eq | θd) from the experimental covariance Σexp ,the bias = μfe,b - μexp,b 

and the finite change Δμ = μfe,d  - μfe,b. The flow chart in Figure 50 visualizes the process of damage localization 

using statistical pattern recognition and the concept described in the previous. It is a 3-stage process: in the 1
st
 

step the FE model is calibrated to the modal data and the covariance matrix of the experimental modal 

parameters is estimated. In the 2
nd

 step, the damage is modelled and the classifier is trained, using data simulated 

with the FE model. In the 3
rd

 step the new (testing) data is classified.  

 

                                                           

8
 Or can be transformed to probabilities using one of the various methods discussed in Wu et al. [116]. 
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Figure 50. Flow chart for damage localization using classifications (paper V) 

The following classification algorithms were applied: 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is also known as Fisher’s discriminant analysis. It is considered the 

supervised version of PCA, because the data are projected into lower-dimensional space using eigenvectors of 

sample scatter matrices. The goal of LDA is to project into a space where the data are linearly separable. Thus 

LDA cannot be expected to perform well when the discriminatory information is not in the mean of the data or 

when the data is significantly non-Gaussian. 

Multi-Layer Perceptron 
The Neural Network Multi-Layer Perceptron (MLP) is perhaps the most widely used pattern recognition 

algorithm for damage detection and localization, see e.g. Doebling et al. [108] and Sohn et al. [3]. The full 

theory is given e.g. in Bishop [109]. MLPs are layers of series of nodes, where the output of one layer serves as 

the input to the next. The simplest MLP has a input layer, a hidden layer and an output layer. This is called a 

two-layer perceptron. The input layer consists of a number of nodes corresponding to the number of inputs. 

Thus, for a damage sensitive feature of dimension d, the input layer has d nodes. The number of nodes in the 

output layer is equal to the number of class labels, e.g. the number of damage locations, severities, etc. In the 

hidden layer, the nodes are sigmoid functions. These functions consist of weights and biases that are trained to 

the data. I apply the scaled conjugate gradient backpropagation method in the Matlab Neural Network toolbox 

for training of pattern recognition MLPs.  

Support Vector Machines 

Support Vector Machines (SVM) attempt to maximize the margin between the decision boundary and the data 

of each of the classes that is closest to the boundary, rather than optimize classification performance of training 

data, such as the case for the MLP. The data points on the boundary are the support vectors. Classification 

performance of non-linearly separable data is increased through the use of a kernel, i.e. a function that maps the 

data into a higher dimensionality space. SVMs are initially binary classifiers, but the open source Matlab SVM 

toolbox LIBSVM [110], which was used in paper V, implements the one-against-one algorithm from Knerr et 

al. [111] for multiclass classification. 
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Naïve Bayes 

Naïve Bayes (NB) assumes conditional independence between features and uses Bayes rule to calculate the 

posterior probability of the classes. Labels are selected according to the maximum a posteriori rule. As the 

feature likelihood is estimated from the training data, typically using a maximum likelihood estimator, 

knowledge of the underlying distribution is required. NB cannot be expected to perform satisfactory when the 

classes are significantly correlated or when the assumed distributions fit the data poorly.  

Principal results 

Damage was introduced as a 2% reduction of all stiffness properties within a finite region. The selected regions 

are shown in Figure 51. 

 

Figure 51. The FE model used for localization. The red areas are weakened by 2 % 

Three types of features were tested and eigenfrequencies were found to give the best performance. In 

combination with a linear-kernel SVM, the classification rates were 85% for FE and 80 % for experimental data, 

although significant statistical uncertainty can be associated to this result, due to the very spare testing data. 

Both a two-step and a one-step approach were considered, where the baseline was an additional class in the 

latter. To effectively compare the approaches, the value of information (VoI) is calculated using the 

experimental testing data in a MCS setup. The MCS approach thus implicitly accounts for the (unknown) 

correlation between detection and localization algorithms. While using FE data would give a slightly better 

performance, experimental data is used as these more likely reflect actual performance. For the two-step 

approach, the prior probability for the Bayesian detector is given as the ratio of damaged and baseline datasets. 

The results are shown in Figure 52. 

 

Figure 52. Value of Information (VoI) analysis of the three detection approaches for varying costs of 

inspection, using experimental data (paper V) 

From the right graphs, the value of localization can be directly found as the difference between the detection and 

two-step approach. The VoI is seen to be strongly dependent on the ratio of inspection-to-failure costs. 

3.5 SEQUENTIAL DECISION-MAKING 

The Bayes detector provides the decision that minimizes expected cost for the static detector. We now move on 

the time-domain, where many sensing instances are planned and sequential decision making is relevant. We 

consider the following approaches: 
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 RBI approach, using structural reliability methods 

 Fixed decision policies 

 Influence diagrams 

3.5.1 SEQUENTIAL BAYES DETECTOR 

In the previous sections, statistical models of damage sensitive features and decision making has been 

introduced. In the localization example, which I just presented, the value of information was calculated using 

various SHM approaches for a “static” detection problem. To facilitate the transformation to time-domain, I first 

generalize expressions for a static detector: A detector δ(x) transforms features x ∈ X to discrete decisions dk : 

For discrete states θj ∈ Θ, j = 1,2,…,J and outputs dk ∈ D, k = 1,2,…,K . The expected cost E[C] for a static 

detector is: 

Where C
ter

 is the cost matrix (e.g. Table 4, p.30) with rows corresponding to detector outputs and columns 

corresponding to states.  

I now roll the problem out as sequential decision-making in time domain, and consider the case when multiple 

sensing instances are planned at times t = ti , i=1,2,…,N. It is intuitive to discretize the time t to corresponding 

time slices t1, t2,…,tN. At each time slice the SHM system will acquire features xi and select di. As the decision at 

time ti has payoff at ti+1, the probabilities must be with regards to the time interval [ti, ti+1]. Defining ΔPi() = Pi+1() 

- Pi(), the expected costs are given by:  

Where ti is inserted in years. The expression is similar to the static case, but where the terminal costs are 

summed over all time intervals, and the interest rate r is included. 

The decision that minimizes expected cost is the sequential Bayes detector:  

δopt(x) is a time variant set of hyper-surfaces in the feature space, making the Probability of Detection (PoD) 

time variant.  

The posterior; ΔPi(θi|x1:i) is a sequential Bayesian filter, which estimates the current state given past and present 

observations. In paper I, a MCS time-series simulations approach was used to compare the Bayes detector with 

various static threshold detectors, including static thresholds on the observations and on an Exponentially 

Weighted Moving Average (EWMA) of the observations.  

A weakness of a sequential Bayesian filter is appears when the damage evolution follows an exponential law. 

Unless a limited history of observations is used, the prior tends towards Pr(H0 = 1). This creates a substantial 

filter-lag, and due to the accelerating growth rate of the damage, the detector may fail to react before the damage 

is critical.  

3.5.2 RBI APPROACH TO SHM 

Optimally, decisions of O&M actions should be risk-based, using the pre-posterior decision analysis. This 

approach has been used for decades for RBI, using parallel, mutually exclusive events and structural reliability 

methods for the risk calculations. I investigate if the approach can be directly transferred to risk-based detector 

design.  
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Manual inspection performance is modelled by a PoD curve, known from detection theory. PoD is the CDF of 

the detectable damage size Fad(ad), estimated from numerous experiments. It is possible to derive PoD curves 

for damage detection, by using the four detector outcomes and the relationship for the Probability of Indication 

(PoI) P11(a): 

If P10 and PoD are independent (ρ=0), which seems like a reasonable assumption: 

An example of the detector outcomes is given in Figure 53:  

 

Figure 53. PoD and the four detector outcomes from simulated damage detection, averaged over 8 

damage locations using the damage vector feature (paper III)  

Observe that P11(ad → 0) = P10 and P11(ad → ∞) = 1. With the PoD, it should be straightforward to use the SHM 

output and structural reliability methods to update the fatigue reliability. The significant differences are: 

a) The level of uncertainty is much higher than for inspections 

b) The PoD of SHM is conditional on damage location, meaning that one PoD curve must be calculated 

for each detail in the structure and that the limit states of all details in the structure must be updated 

when new SHM output is available. 

c) The dependencies between the detection performance of damage locations is unknown 

d) The dependencies between the detection performance of sensing instances is unknown 

Regarding c), it is usual in inspection updating to assume independence between sequential inspections, even 

though Straub & Faber [112] showed that there is some correlation. For SHM damage detection, e.g. the 

technologies presented in paper IV, the dependencies of the probability of detection between sensing instances 

(in time) has not been investigated, but as a first assumption they could be considered independent.. 

Regarding d), for damage localizing SHM systems, e.g. the one presented in paper V, the dependencies between 

the probability of localization for each potential damage location has not been investigated, but as a first 

assumption they could also be considered independent.  

So far, we have not encountered any restriction to applying the RBI approach. I now consider the calculations 

aspects of an RBI approach. In RBI, the optimization variables is the inspection-times. For SHM design, the 

number of sensing instances will be restricted by economic reasons of operation, whereas the free optimization 

variables relate to the detector decision function δ(x). Unlike the PoD of inspections, the PoD of SHM is 

function of δ(x). If a Bayesian decision approach is employed, then δ(x) is inherently time-variant, and an 

iterative optimization procedure is unavoidable. 
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Figure 54. An event tree of a simple decision strategy used in RBI: inspection times are fixed and 

indication triggers a repair which is assumed to restore the initial damage distribution (paper II) 

Such a decision strategy is not economic for SHM, as high false positive rates and the lack of (exact) 

localization information will lead to high expected repair costs.  

The approach is tractable for the relatively few inspection events in RBI, but calculation becomes intractable for 

frequent sensing: for the 480 system runs used in paper I, 10
145

 parallel systems would need to be analyzed. 

Instead, I look to other approximations. 

3.5.3 FIXED DECISION POLICIES 

A simple approximation is to use fixed, or static, decision policies. They include thresholds on observed 

quantities, e.g. damage indicators, or on updated quantities, e.g. the failure probability. This greatly reduces the 

number of optimization parameters, but does not utilize decision theory and cannot be expected to perform as 

well as a Bayesian detector. However, they have advantages in terms of simplicity and computational cost and, 

as we saw in paper I, it may also prove more efficient than a detector based on sequential Bayesian filtering. The 

outcome of three detectors to the exact same realizations of the observable variable and crack growth, is shown 

in Figure 55. 

    

Figure 55. Random realization of crack growth and the corresponding decision histories of 3 approaches 

to detection (paper I) 

A fixed decision rule outperformed a Bayes detector in paper I, due to the updating-lag, described in a previous 

section. As the damage-growth velocity increases, the failure probability is biased by the low prior. To reduce 

this effect, a reduced ‘updating-window’ of length Lw was used. The value of Lw that gave the best performance 

was of 5 time steps. The conclusion questions the use of a sequential Bayes detector for damage detection 

purposes and a similar conclusion was reached by Beck et al. [113], where it was observed that a larger Lw 

increases the reaction time of the detector. The addition of Lw as an optimization variable reduces the advantage 

over static detectors. The optimum of Lw was found to be rather flat, indicating that a rational choice of Lw could 

suffice for implementation. 

 
  T1                  T2            T3                  T4                 T5             t 

N

R

Variable threshold

0 10 20
0.5

1

1.5

t [years]

 

 

x

threshold

012
  

Constant threshold + EWMA

0 10 20

0.8

1

1.2

1.4

t [years]

 

 

EWMA(x)

threshold

Constant threshold

0 10 20
0.5

1

1.5

t [years]

 

 

x

threshold

0

0.5

1

Bayes

c
ra

c
k
 l
e
n
g
th

 [
m

]

0 10 20
10

-30

10
-20

10
-10

10
0

t [years]

 

 

P
F,post

P
F,prior

crack growth

failure

repair

false alarm

Variable threshold

0 10 20
0.5

1

1.5

t [years]

 

 

x

threshold

012
  

Constant threshold + EWMA

0 10 20

0.8

1

1.2

1.4

t [years]

 

 

EWMA(x)

threshold

Constant threshold

0 10 20
0.5

1

1.5

t [years]

 

 

x

threshold

0

0.5

1

Bayes

c
ra

c
k
 l
e
n
g
th

 [
m

]

0 10 20
10

-30

10
-20

10
-10

10
0

t [years]

 

 

P
F,post

P
F,prior

crack growth

failure

repair

false alarm



 

52 

 

3.5.4 INFLUENCE DIAGRAMS 

As the numerical burden of performing the MCS optimizations, described in the previous section, is very large, 

an alternative is investigated, in the form of influence diagrams. The influence diagrams can model the whole 

decision problem, taking all dependencies into account.  

An influence diagram is a Bayesian net extended with decision and utility nodes, intended to solve decision 

problems. The influence diagram in Figure 56 model the pre-posterior decision analysis. The node z models the 

decision of making the experiment. ue models the negated experimental cost function C
exp

. The node x models 

the outcome of the experiment. The node d models the decision to make after the experiment has been 

performed, the node θ models the unknown state and the node u
t
 models the negated terminal cost function C

ter
. 

 

Figure 56. Influence diagram of Bayesian Experimental Design (BED). Following common notation 

chance nodes are round, decision nodes are square and utility nodes are diamond shaped (paper VI) 

The utility nodes each contain a utility table with one value for each possible configuration of the parents. The 

utility nodes are childless. The parents of each decision node is all the nodes that provide past evidence for the 

decision. The decision nodes contain policy tables, with one value for each possible configuration of the parents. 

There is a directed path leading through all decision nodes, indicating a sequence of decisions. Links to decision 

nodes are called information links – when a decision is made, the states of all parents are known. In the above 

example of an influence diagram, the only node that can receive evidence (be observed) is x, and the following 

decision d is a 1-dimensional policy table. When the influence diagram models a sequence of decision in time, 

then each decision has every previous node that can receive evidence as parents, making the decision problem 

intractable. 

3.5.5 LIMITED MEMORY INFLUENCE DIAGRAMS 

As the full posterior of an Influence Diagram quickly becomes intractable, relaxing some assumptions enables a 

Bayesian filter decision function can be modelled. This includes linear filters. A Bayesian filter was investigated 

in paper I, but, as MCS was used to obtain the posterior, the numerical cost was very large. As the expected 

costs are needed for the Value of SHM, the following alternative method is investigated. 

Limited Memory Influence Diagrams (LIMID), by Lauritzen & Nilsson [114], relax the requirement of memory 

links to all previous nodes that can receive evidence. This makes the solution of the optimal policy tables more 

tractable, at the cost of approximating the full optimal solution. Typically, only the links to the most recent 

parents are modelled. LIMIDs were used for engineering decision making in Nielsen in [48] and by Luque & 

Straub [115], both from 2013. 

The approximation error was investigated in paper VI for the LIMID in Figure 57:  

 

Figure 57. Simplified version of the LIMID used in paper VI. A decision of repair is made in time slice 9, 

based on previous results (paper VI) 
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The higher the number of parents that are included, the higher the value of information at the expense of 

increased calculation cost. 

 

Figure 58. VoI and relative calculation cost using Bayes Net Toolbox (BNT) 

The rate of change of VoI is seen to exponentially decreasing, while the calculation cost (memory and time) are 

exponentially increasing, for increased number of memory links. The calculation for 5 links was the highest 

possible, as it required more than 60 GB of physical memory in the computer. 

Single Policy Updating (SPU) by Lauritzen & Nilsson [114] is a solution algorithm for LIMIDs that 

successively updated one at the time all decision policies until convergence of the Maximum Expected Utility 

(MEU). As the algorithm optimizes one policy at the time, the obtained solution may not be the global optimum, 

which puts limitations on the complexity of decision problems that may be solved with SPU, as was observed 

by Nielsen [48]. For SHM detection problems, the Partially Observable Markov Decision Process-type 

(POMDP), is the simplest model:  

 

Figure 59. Three time slices of a partially observable Markov decision process  

The POMDP is first order Markovian, with inter-slice links only between consecutive slices. The approaches to 

modelling SHM damage detection, shown in Figure 60, are suggested.  

 

Figure 60. Two models for SHM decision-making (paper VI) 

1 2 3 4 5
14.5

15

15.5

16

16.5

V
o
I

 

 

1 2 3 4 5
0

100

200

300

400

number of memory links

VoI

size of largest potential

calculation time

 

x
i-1

 x
i
 

d
i-1

 d
i
 

POMDP 

θ
i-1

 

  

θ
i
 

  

x
i+1

 

d
i+1

 

θ
i+1

 

  

 

x
i-1

 x
i
 

u
f
 

u
re

 

u
f
 

 

di
i-1

 di
i
 

u
re

 

Explicit inspection model 

θ
i-1

 θ
i
 

I
i-1

 I
i
 

dr
i-1

 dr
i
 

xi
i-

 
xi

i
 

x
i-1

 x
i
 

u
f
 

u
t
 

u
f
 

  

di
i-1

 di
i
 

u
t
 

Perfect inspection 

θ
i-1

 θ
i
 

I
i-1

 I
i
 

    

x
i-1

 x
i
 

u
re

 u
re

 

Always repair 

θ
i-1

 θ
i
 

I
i-1

 I
i
 

dr
i-1

 dr
i
 

R
i-

 

R
i
 

u
f
 u

f
 

  

u
in

 

u
in

 

    

    



 

54 

 

The models was compared in paper VI. The most effective in terms of the [VoI / (calculation time*memory 

usage)] ratio is the simple POMDP model, which is a LIMID based on a hidden Markov (HMM) model. 

Memory usage is determined by the size of the largest utility potential. A higher VoI, using the same number of 

sensing instances, is found for an autoregressive hidden Markov model (AR-HMM), but at the expense of a 

greatly increased calculation cost (more than 200 GB of physical memory was required).  

Example: NREL tower 

The results for 100 time slices using a HMM + direct repair, a HMM + perfect inspection and a AR-HMM + 

perfect inspection models, are shown in Figure 61. The top plots visualize the decision policies as a decision 

threshold and the bottom plots are area plots of the expected cost contributions in each time slice. 

 

Figure 61. Results of LIMIDs for the NREL tower case (paper VI). Top: decision threshold. Bottom: area 

plots of expected costs at each time slice 

The expected costs of the LIMIDs were compared with the results of the numerical investigations performed in 

relation to paper I. The results are shown in Figure 62. 

 

Figure 62. Relative expected costs of LIMIDs compared with MCS results (paper VI) 

The approximation is seen to be good, although the sampling results show lower expected costs. This is because 

decision nodes in the LIMID only take account of the direct parents, and not of all evidence up until the 

decision. The expected costs of the LIMID thus approximates the actual expected costs, with the advantage that 

no MCS simulations are required. The expected costs can be closer approximated using the method discussed by 

Nielsen [48]: At every time slice the current observable node is instantiated by sampling from its marginal 

distribution. With the evidence inferred in the current and all previous slices, the current and future decision 

policies are updated by SPU. The procedure is repeated until all observable nodes are instantiated, and the 

expected costs, dependent on the observable outcomes, are stored. This is repeated in a MCS sampling of the 

expected costs.  

BNT runs in Matlab and the transparency and flexibility of the code makes it attractive for research purposes, 

although, at the present time, SPU is costly, both concerning time- and memory.  
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CHAPTER 4 

4 COMBINED STRUCTURAL / SHM DESIGN 
It is safe to say that damage detection is valuable when the expected failure costs are high. Let the vector z hold 

all design variables of the SHM-equipped structure (geometrical dimensions, mean values of material strengths, 

number of sensors, dynamic range of sensors). The original structural design set is denoted z0. 

The expected failure cost are given by the product of Pf and Cf, which are both function of z. Since the cost of 

failure is decided mainly by factors extrinsic to the design variables, e.g. life safety or loss of benefit from 

operation, we can approximate that Cf ~ constant. The same applies to inspection cost and repair cost. The 

intrinsic costs are the costs directly related to z. Since we are considering the design of new structures in this 

chapter, they are the initial costs of the structure, Cini. Without SHM, the total expected costs of the structure, 

E[C]´, are the sum of intrinsic and extrinsic terms: 

The original optimum of the set of design variables is found by optimization: 

The expected failure costs are found by marginalizing the time to failure tf out. If there are no scheduled 

maintenance events, then the expected cost are given by: 

If the cost of making the right decision is zero (Crep = 0), and perfect information is assumed (i.e. P01 = P10 = 0) 

then there are only two contributions, which are sketched in Figure 63.  

 

Figure 63. Expected Value of Perfect Information (EVPI) is the upper bound of the VoI. Before the 

structure is realized, z is free to be chosen between the simple bounds and the EVPI is large. After the 

structure is realized z = z0 and the EVPI is smaller 

The Expected Value of Perfect Information (EVPI) is the upper bound of the VoI for the SHM system, as it 

corresponds to the perfect detector. Naturally, Crep ≠ 0, but as Crep << Cf, the overall picture is the same. The 

lower simple bounds on the design variables are typically given by other non-deterioration driven limit states, 

e.g. reliability against extreme loads. The upper bounds may be relevant for designs that cannot be designed as 

safe-life, i.e. sufficient reliability without inspections. This is relevant for offshore structures and components in 

rotorcraft and avionics. 

Inclusion of planned inspections may be an economic alternative to material-bought-safety. The inspection 

variables (number of inspections, quality of inspections, etc.) are simply included in z. The expected cost 

relation is visualized in Figure 64 by fixing initial costs and finding the optimum of the subset zinsp of z that is 

related to inspections. 
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Figure 64. Expected Value of Perfect Information (EVPI) for the case on planned inspections in the 

original design 

The expected inspection and repair costs are a sum of the expected costs at each sensing instance i, i = 1,2,…,Nt. 

For a structure with implemented damage detection, a critical damage is the damage that leads failure in the time 

between two sequential sensing instances [ti , ti+1]. A decision is made at the time ti, and if the damage is 

incorrectly decided non-critical (false negative), the structure is assumed to fail. Assuming that the sensing 

instances are frequent, we can approximate the integral over time to failure by the sum of expected false 

negative costs. For the time between sensing instances, the expected failure costs are: 

With SHM, the total expected costs of the structure, E[C]´´, includes terms for false positive, true positive and 

false negatives. Using the BED semantics, the initial costs are experimental costs C
exp

 : 

If a “indication triggers inspection” decision strategy is used, then the event costs are known: 

If the SHM system provides localization as step two of a two-step process, then the first term in the sum is 

separated into two terms for correct localization and incorrect localizations. Several methods for calculating the 

expected costs have been applied in the papers. In paper I, a MCS approach was used. In paper VI, a Bayesian 

network approach was used.  

Returning to BED, the optimal design is given for: 

This is visualized by the partial decision tree in Figure 65. 

 

Figure 65. Partial decision tree for the SHM process. The last 7 nodes are repeated for every instance of 

sensing 
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According to BED, the experiment (z) and the terminal decision (d) should be chosen as the set {z,d} that 

minimizes the total expected costs. This is two-layer optimization which can be numerically approached. This 

was done in paper I, where the choice of z was limited to one SHM technology and three values of material 

thickness. The detector optimization (d) was discussed in section 3.5.1 (p.49). 

The BED approach was investigated on component and on system level in paper I. The principal conclusions are 

given in the following.  

4.1 SHM BASED DESIGN 

The foundation of SHM based design, is risk-based optimization. A structural component can be seen as a series 

system of infinitesimal sections. All the safety margins are identical, and thus the expected costs are determined 

by the location with the highest probability of failure (the weakest link). A global SHM system provides 

information in the form of a global indicator. As damage can occur in any location of the structure (if we with 

certainty knew where, global response monitoring  would not make sense), the information impacts all finite 

number of limit states, which must be updated with the new information using Bayes theorem. As the likelihood 

p(x|θ;location) is generally not constant, i.e. p(x|θ;location) ≠ p(x|θ) as exemplified by the variation of AUC in 

Figure 44 (p.43), the updated safety margins are no longer identical. Naturally, they remain correlated as the 

same evidence is inferred. The principle is sketched in Figure 66, where 3 possible damage locations {A,B,C} 

on a cantilevered beam are assumed. The structure is optimal for no inspections. The initial (intrinsic) cost 

function Cini(z) is a simple linear function of the beam thickness Cini(t) = c1 + c2 t. For each of the three locations, 

the expected cost given damage at said location is optimized with regards to t. 

 

Figure 66. Expected cost analysis for system level SHM design. Top: feature likelihood. Middle: cost 

contributions of prior optimized design. Bottom: cost contributions of SHM based design 

For location B, the value of damage detection is negative. The overall expected costs of the whole component is 

found by averaging over the damage location distribution. In RBI, this distribution is typically discretized to 

only have a value in hot-spots where fatigue cracks originate. The same approach can be taken to SHM design, 

wherein the SHM system must be designed so that blind-spots, for which the AUC approaches 0.5, are placed in 

the low density regions of the damage location PDF. This has an impact on all aspects of SHM design, including 

location, number and quality of sensors. 

Had the prior optimum of the design included inspections, the principle is the same, although most likely with 

greater benefit, as SHM reduces the expected costs of inspections. 

The concept was numerically validated on the NREL tower. The initial costs function was calibrated to ensure 

that the prior optimum was actually the real optimum, and damage was assumed to occur only at the flange weld 

at the foundation interface. Significant increases in VoI were achieved when the SHM was taken into account on 

the initial design. This reflects that the EVPI is larger when the initial design is less safe, as sketched in Figure 

63 (p.55).  
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CHAPTER 5 

5 CONCLUSIONS AND FUTURE DIRECTIONS 
Under the cover of investigating design of concrete wind turbine towers, this project set out to investigate the 

Value of SHM. To that end, a simple conclusion can be given: To calculate the value of SHM, one need simply 

perform an Bayesian pre-posterior analysis. This is a two-layer optimization of design variables and decisions, 

but, easy at it sounds, the problem is intractable without simplifications, as the number of configurations of the 

optimization variables is substantial. This makes the ‘real’ problem the choice of simplifications, in obtaining a 

tractable version of the pre-posterior analysis. The following were investigated and concluded in the thesis: 

- The Value of SHM depends on whether the structure is already realized. It can be significantly higher 

if a combined design can be achieved.  

- The calculation of the value of SHM is based in Life-Cycle Costs (LCC) analysis and Bayesian pre-

posterior analysis. According to the Bayesian pre-posterior analysis, the Bayes decision is the risk-

optimal decision, at every time step. 

- The Bayes decision is based on the sequential Bayesian filter, but Monte Carlo Simulation (MCS) 

show that, due to the updating lag, the detector is sub-optimal compared simpler filters. 

- Elimination of variables by preselecting the SHM technology reduces the optimization problem 

substantially. 

- Using the Area Under the Curve (AUC) as a substitution for the detection cost, enables performance 

based pre-selection SHM technology. 

- Using Rytter’s original hierarchal method is the most economic form of SHM based decision support, 

compared to a one-step approach. Following existing trends in SHM, novelty detection algorithms were 

applied to answer the detection question and classification algorithms were applied to answer the 

localization question, using few sensors. 

- A damage detection system has blind spots which affect the system reliability of the structure, which in 

turn may affect the expected costs negatively. The knowledge of blind spots enables the designer to 

place damage sensitive details in optimal places. 

- The use of a Hidden Markov Model (HMM) in a Limited Memory Influence Diagram (LIMID), based 

on a Bayesian network model of the deterioration process enables the efficient single policy updating 

(SPU) to calculate the expected costs and the value of SHM. The LIMID solution approximates the 

MCS solution conservatively. 

- The value of SHM has been calculated for fatigue deterioration in steel and in concrete, in both cases 

using four linked models: a design model, a physical model, a response model and a decision model.  

- Due to the very large uncertainties of the physical model in concrete, the value of SHM is small and a 

system may likely prove uneconomic for the owner. A larger knowledge of the global scale physical 

manifestation of high-cycle fatigue in concrete is needed for SHM applications. Steel fatigue is a 

suitable targeted deterioration type, as the model for physical manifestation is well understood. 

- Several feature types were investigated numerically and experimentally, and the frequencies were 

found to give the best performance, even for experiments where the temperatures varied substantially 

over the period of baseline data acquisition. The result indicate that frequency measurements along 

with ambient temperature measurements, fused in a probabilistic model of the joint probability function 

is a good damage sensitive feature. A HMM Bayesian network with an input stage, i.e. a type of state-

space model, may support such an approach, in combination with Bayesian decision-making. 

- The influence of the cost function was investigated by sensitivity analysis. The impact of repair costs is 

negligible but the impact of inspection costs is large. For the example in papers IV and V, the Value of 

Information (VoI) of SHM was negative for detection for inspection/failure costs ratios below 2%.  

- By using the VoI, the initial and running costs of maintaining the SHM system can be neglected from 

the calculations. 
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5.1 TOPICS FOR FUTURE RESEARCH 

The thesis has sought to uncovered the validity of the pre-posterior approach by coupling probabilistic decision-

making to Life-Cycle Costs and optimization. There are many parameters that have left unattended in the 

choices that were made of models. Among these are: 

- Reliability of the SHM system has not been investigated but may have an adverse effect the value of 

SHM.  

- When a calculation is based on optimizing Life-Cycle Costs, all uncertainties should be accounted for 

in the probabilistic modelling and this includes uncertainties on the cost function. Following the trend 

in the scientific literature, the sensitivities to the deterministic function have been investigated in this 

thesis. but future research could implement probabilistic formulations of the cost function. 

- In this thesis, the cost functions have been estimated from the experience in Risk Based Inspection 

(RBI). This reflects the lack of experience of SHM decision-making. Future investigations should be 

performed into application-specific cost functions. 

- LIMIDS have been found to show large potential to SHM decision-making but the current 

implementations in Bayes Net Toolbox (BNT) are computationally demanding in terms of memory 

used for utility potentials of very large networks. Also BNT, at present time only incorporates 

smoothing inference and not filtering. Filtering is important for application where evidence is inferred 

at every sensing instance and the model is updated. This is however not important for prior calculation 

of the Value of Information. 

- For SHM damage detection to gain economic motivation for large concrete structures, a macro scale 

physical model must be developed. The lack of fatigue failures could indicate that the design models 

are overly conservative, thus indicating an economic potential of damage detection. 

- The Bayesian approach to sequential decision-making is vulnerable to the dominance of the prior, 

causing a lag in the damage sensitivity. Advanced algorithms from the topic of statistical tracking 

could prove efficient in estimating the posterior, as the sequential updating is basically a tracking 

problem . Examples are of likely suited algorithms are the unscented Kalman filters and particle filters.  

- A major potential threat is in the definition of critical damage severity. As axiom VII of Worden et al. 

[25] states, the size of detectable damage is inversely proportional to the frequency band of excitation. 

This means that large damage must be accepted for SHM to be economic. If the loading is well 

specified, the critical damage size may be as well, but for time-dependent loading, the critical damage 

size is time variant. Even with this effect incorporated, greatly enhancing the complexity of the 

modelling, the critical damage severity may be set by outside instances, e.g. structural codes or the 

asset manager. Such limitations would greatly diminish the value of SHM with the current levels of 

detectability.  

- The risk neutrality of the decision-maker is also an important assumption that might not hold true. It is 

relevant when technology replaces the human inspections, and even though the risk is reduced, the 

decision-maker will not accept to completely replace planned inspections with SHM based decision-

making. A topic for further research could be how to combine SHM with planned  inspections, as a 

transition technology that still has some economic benefit of SHM.  
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