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Abstract

As people and businesses experience the advantages and capabilities enabled
by increased connectivity and integration between computer systems, a higher
demand arises for the functionality and services that systems must provide.
This necessitates the creation of a type of highly complex systems that them-
selves contain systems, which have a high degree of interconnectivity and
interactions between them. This type of system is known as a System of
Systems, which denotes a system that itself contains a group of heterogeneous
constituent systems that via the interactions between them create a synergistic
collaboration through which a higher common goal can be achieved. The
development of a System of Systems is challenged by a high degree of com-
plexity in the form of diverse stakeholders, geographical distributed develop-
ment, a constant system evolution, an unpredictable emergence of behaviour,
and the heterogeneity between the constituent systems. These challenges are
being addressed in the field of Systems of Systems Engineering. The method-
ologies and tools used for analysis and development are however still in their
infancy. This dissertation is focused on strengthening the Systems of Sys-
tems Engineering field by using a combination of Software Engineering and
Systems Engineering, specifically with a focus on formal model based engi-
neering techniques and tool-support hereof. The dissertation has three focus
areas: managing integration challenges, enhancing the capabilities of Sys-
tem of Systems modelling and enabling collaborative development in formal
modelling. The result is: a range of classification dimensions that characterise
System of Systems; a System of Systems classification for design patterns;
and multiple approaches for improving the tool-support for formal modelling
techniques in System of Systems Engineering.
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Resumé

Som flere folk og virksomheder oplever fordelene og de forbedrede egensk-
aber der bliver muliggjort af forbedrede forbindelser og integration mellem
computer systemer, opstår der et øget krav til funktionaliteten og de tjenester
som systemerne skal levere. Dette nødvendiggør skabelsen af en type meget
komplekse systemer, som selv indeholder systemer, der har en høj grad af
sammenkobling og interaktion mellem dem. Denne type system er kendt som
et System of Systems (System af Systemer), og angiver et system som i sig selv
indeholder en gruppe af heterogene konstituerende systemer der via samspillet
mellem dem skaber et synergetisk samarbejde, gennem hvilket et højere fœlles
mål kån nas. Udviklingen af et System of Systems udfordres af en høj grad af
kompleksitet i form af mange forskellige interessenter, geografisk distribueret
udvikling, en konstant system evolution, en uforudsigelig fremkomst af
adfœrd, og forskelligheden mellem de konstituerende systemer. Disse udfor-
dringer bliver adresseret af System of Systems Engineering, men de metoder
og vœrktøjer, der anvendes til analysering og udvikling er dog stadig i deres
tidlige stadie. Denne afhandling er fokuseret påat styrke System of Systems
Engineering feltet ved hjœlp af en kombination mellem Software Engineering
og Systems Engineering, specielt med et fokus påformelle metoder og model
baseret udviklingsteknikker, samt vœrktøjer til støtte heraf. Afhandlingen har
tre fokusområder: håndtering af udfordringerne i integration, forbedring af
mulighederne i System of Systems modellering og at mulig- gøre kollaboration
i udviklingen af formelle modeller. Resultatet er: en mœngde af dimensioner
der karakterisere System of Systems; en System of Systems klassifikation
for design mønstre; samt flere tilgangsvinkler til forbedring af vœrktøjer der
bruges til formelle modelleringsteknikker i System of Systems Engineering.
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1
Introduction

Computers are useless. They can only give you answers
Pablo Picasso 1881 - 1973

Based on this statement is should be fair to derive that Picasso was neither
a systems nor a software engineer. Not because of the assertion that comput-
ers are useless, but because the creativity and critical reasoning that Picasso
deemed the computers of lacking, actually strives very well among engineers.
Any Systems or Software engineer knows that computers can be a source
of immense complexity and ambiguity, which lead to the development of
systems and computers raising a lot of questions that require creativity and
reasoning at a higher level. Picasso was right about computers on their own
only supply answers, but what he might have overlooked is that it is not the
answers, it is the questions that make the computer a tool for the creative
and eager mind. Computers will faithfully supply answers to the questions
they are asked, but it is the task of the engineer to ask the computer the right
questions.

Computers, in the modern sense of the word, has existed since the late
1940’s [214]. The electronic computers were built in university projects with
funding from government and military sources, leading to the initial steps
of the computer engineering field [107]. In the 1950’s established and new
companies started to enter the field, initiating a race towards improving and
expanding the capabilities of computers. In the late 1950’s the change from
vacuum tube to transistor based computers was a big leap in terms of higher
efficiency and smaller physical size. From the mid-sixties integrated circuits
enabled a new generation of computers due to the advantages it delivered in
cost and performance. Ever since there has existed a constant push on finding
new boundaries for technology in terms of scope, performance, functionality
and complexity. This not only applies to the physical computers, but also
greatly to the programs the computers execute: the software.

3



4 1 Introduction

The development of the software field naturally followed the advance-
ment of computers, leading to increasing functionality and complexity. The
possibilities and flexibility of software allowed for a near endless number of
possible usages and applications. As a result of the growing number of soft-
ware applications needed, software became products in their own might [119].
As people, machines, and businesses became dependent on the reliability and
functionality of software, it raised demands for having methods and tools for
designing, building, and maintain this software, eventually leading to the field
of Software Engineering [182, 20]. Ever since, the computer and software
have gone hand in hand as tools for solving problems and provide value for
businesses, governments, as well as everyday life. The technology has moved
from taking up a government-run multi-storey house to becoming personal
and multi-purpose [31].

It is clear that since Picassos passing in 1973, computers have come a
long way. They have become more resourceful [197], more ubiquitous [246],
more connected and interacting [7] and more accessible [29]. The continued
growth of the sheer number of systems and the expansion of functional-
ity they provide, naturally leads to advances in the field of engineering. It
requires more sophisticated development techniques and creates new engi-
neering paradigms and ways of thinking.

One such way, is to think in the way of systems. Thinking of the inter-
actions and connections between components and sub-systems, as well as
understanding the different parts in relation to the entire system, and seeing
both relations and problems as relevant for the whole [5, 150]. The notion
of a ”System“ can be traced all the way back to the ancient Greeks in their
attempt to form a political entity [76]. When talking about systems within the
field of engineering, a system is a structure or collection of heterogeneous
elements that have been joint together in one form or another, in order to
produce results that are beyond those of the individual elements [170]. As
systems thinking is concerned with the different elements of the system in
relation to the whole of the system, it is to a large degree concerned with
establishing a mind-set that can combine the world of theory and the world of
practice of many different science fields, through the use of interdisciplinary
processes [22].

As computers themselves are systems and systems can contain comput-
ers, the computer engineering field already has close ties with systems think-
ing. Having a systems thinking approach to engineering therefore works as a
complement to traditional computer engineering, by providing a wider scope
than that of pure computational thinking [249]. This allows for an engi-
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neering approach where systems are at the centre of attention, leading to
an “engineering system’s thinking” and consequently the Systems Engineer-
ing field [87, 140]. Systems Engineering is concerned with establishing and
performing interdisciplinary processes to aid the design, construction and
maintenance of complex systems [78].

In the same way as a system can consist of computers, a system can also
consist of systems. This has led to a paradigm within Systems Engineering
known as System of Systems (SoS), which is a type of system that itself con-
tains groups of heterogeneous constituent systems that through the interaction
and synergy between them achieve a functionality for the overall systems that
is greater than what can be achieved by the systems separately [22, 168]. As a
natural result of the challenges that exist in SoS design and construction, the
area of System of Systems Engineering emerged [127]. The SoS Engineering
field is however still in its infancy and the field has many challenges that
need to be addressed. Since Systems Engineering is focused on creating an
interdisciplinary engineering field, it is only natural to search for solutions
and methods in other engineering fields, as a way of approaching the chal-
lenges. Combining Systems Engineering with the methods and tools used in
software engineering [199], business management [216], modelling [95] and
collaborative environments [174] has been proposed.

This dissertation provides a summary of the research performed during a
PhD study on the use of Software Engineering and particularly modelling in
the field SoS Engineering. The research takes its starting point in identifying
key SoS characteristics through a survey of the field’s literature, which pro-
vides a basis for determining future research challenges of Model-Based SoS
Engineering (Chapter 2). These challenges combined with observations made
from case studies provide the basis for several approaches and tools being
developed in order to strengthen the field of SoS Engineering (Chapter 3).
Specifically, the research has been performed with a focus on structuring inte-
gration challenges, enhancing the capabilities of systems modelling and using
collaborative development methods, all within the SoS Engineering field.

The remainder of this introduction will provide a deeper foundation for
the dissertations central subjects: Systems Engineering (Section 1.1), Sys-
tems of Systems Engineering (Section 1.2) and Modelling and Simulation
(Section 1.3). This is followed by an account of the Motivation (Section 1.4),
Research Method (Section 1.5), Research Objectives (Section 1.6), and Eval-
uation Criteria (Section 1.7) for the performed research. Finally, an overview
of the Published Work (Section 1.8) of the author is given, before the Outline
and Reading Guide (Section 1.9) completes the introduction.



6 1 Introduction

1.1 Systems Engineering

History is full of examples where projects and systems have failed with more
or less disastrous results, which have had an impact on both economy and
humans [37, 51]. Many of these were a result of growing customer needs,
products getting increasingly complex, and a rapid increase in technology
and markets. The challenges and failures faced when doing large projects
involving complex systems, brought about a need for establishing a better
understanding of Systems Engineering. In an attempt to deal with the com-
plexity of systems and enable the realisation of successful systems, Systems
Engineering offers tools, processes and mind-sets focusing on the overall
system design, from the conceptual design to its disposal. It also focuses on
embracing the many diverse fields of engineering often involved in the system
life-cycle [108]. As such Systems Engineering is focused on choosing the
most appropriate methods and tools for a given systems development project
and on applying these to improve the decision-making process and ensuring
the correctness of system specification and design [230].

1.1.1 Short History

One of the first records of the “Systems Engineering” term is found in an ar-
ticle from 1949, where it is used to explain the engagements of the U.S. Navy
Electronics Laboratory in turning new ideas into practical equipment [43]. A
deeper account of the history of Systems Engineering is given by Brill [96]
and summarised by Gorod et al. [88]. According to Brill’s chronicle, the
first direct accounts of Systems Engineering originate from the early 1950’s
in the United States. More specifically, Systems Engineering lectures were
given at Massachusetts Institute of Technology, US, by G.W. Gilmam of Bell
Laboratories. The focus on the term increased during the 1960’s and 1970’s,
of which a few significant contributions can be mentioned:

The Systems Engineering pioneer A.D. Hall presented a methodology
for Systems Engineering which was focused on; acquiring knowledge of the
many facets of systems development, concentrating on the customers objec-
tives, and on the systems engineer to examine a system within three areas:
physical or technical; business or economic; and social [94]. All with the
purpose of establishing the operational, economic and performance goals of
the system, to allow for a technical plan to be drafted and executed. Hall pre-
sented the question: “Has mankind evolved to a point that there exists, or that
with creative additions and re-combinations of modest proportions, there can
be shown to be available, a common systems methodology, in terms of which
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we can conceive of, plan, design, construct, and use systems (procedures,
machines, teams of people) of any arbitrary type in the service of mankind,
and with low rates of failure?”. This expressed the need and possibilities in a
common and collective systems methodology to plan and construct systems
on a generic level [103].

G.M. Jenkins advocated for an expansion of the view on systems, from
being purely on physical systems to also include stakeholders, such as gov-
ernments organisations, management and individuals, by describing a sys-
tem as a “complex grouping of human beings and machines”. Jenkins also
presented four phases of systems development: Systems Analysis, Systems
Design, Implementation and Operation, that covers everything from envi-
ronment, sub-system interactions and using models to simulate operational
conditions [115, 111].

In 1976 A.W. Wymore placed a focus on interdisciplinary teams and
the importance of human behaviour in Systems Engineering and presented
a methodology that focused on effective communication in teams and man-
agement [255]. Wymore was also instrumental in establishing modelling and
simulation as way of analysing desired system behaviour, within the Systems
Engineering field. His 1967 book “A Mathematical Theory of Systems En-
gineering” [254] formed the foundation for what three decades later were
presented as “Model-Based Systems Engineering” [256].

In 1990, as a consequence of a lack in qualified engineers who were
capable of doing systems thinking, 35 individuals from numerous US-based
companies and organisations formed the first professional organisation for
Systems Engineering aimed at championing the definition and understanding
of Systems Engineering [105]. Originally, launched as a US-based organisa-
tion it fairly fast expanded beyond the borders of the US, and is now known as
the International Council for Systems Engineering (INCOSE). The purpose
of INCOSE is to bring together all who have an interest in systems being
developed, produced and run more efficiently, and to provide better processes,
methods and tools to systems engineers.

1.1.2 Role in the Dissertation

The research described in this dissertation has its foundation in the author’s
background in Software Engineering and in the modelling of complex sys-
tems, as well as the author’s interest in interdisciplinary engineering teams
and the challenges and possibilities this presents.
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As long as Systems Engineering has existed it has had close ties with
Software Engineering. This has two reasons: 1) the tools used in Systems
Engineering and 2) the amount of software in systems today. An important
aspect of the Systems Engineering field is the tools available for support-
ing the engineering process, and a large part of these tools are developed in
software [21].

As technology has developed over time, software takes up a bigger and
bigger role in complex systems, for instance in the military industry where
software was responsible for 8% of a fighter jet’s functionality in the 1960’s,
a percentage that had grown to 80% in 2000 [62]. This is another reason
software is important in Systems Engineering, and this highlights the inter-
esting aspect that computers and systems themselves have become absolutely
essential in the development of systems and computers.

The close interconnection entails a tighter integration between the fields
of Systems Engineering and Software Engineering [18], and it makes it rele-
vant to investigate how methods of one field can be used in the other.

1.2 System of Systems Engineering

At the time of this writing the Internet search giant Google had just acquired
Nest, a manufacturer of mass-market smart home appliances for $3.2 bil-
lion1. Nest produces products that will enable the “smart home”, via devices
such as thermostats and smoke alarms, that are connected to the internet.
The acquisition gives Google a corner of the growing infrastructure of sen-
sors, devices and systems that are getting interconnected around us. Mobile
phones, televisions, cars and household fridges are capable of communicating
with other systems, creating a highly complex system of interconnectivity
and interactions. The advantages and possibilities of connectivity between
systems that people and businesses are experiencing, give constant growing
demands for the functionality and services that systems must provide.

Machine to Machine interaction and connectivity between computing sys-
tems have practically been on the technological research agenda for nearly as
long as the computer itself. In the same way as for computers, there has been a
constant push for developing and improving computer communication [250].
Evolving from local networks over national to international and interconti-
nental networks, it initially had a military and academic purpose [57]. The

1 Google press release: Google to acquire Nest https://investor.google.com/
releases/2014/0113.html - Last accessed 19-04-2014.

https://investor.google.com/releases/2014/0113.html
https://investor.google.com/releases/2014/0113.html
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further development of computer networks led to many important contri-
butions to the field of computer systems, arguably the establishment of the
internet as the most significant [157]. The capabilities and value of com-
puter networks have resulted in systems becoming increasingly more con-
nected and interacting, progressing to a degree where they are considered
as part of a distributed system [233]. In a distributed system multiple com-
putational entities communicate in order deliver and make use of services
that can solve computational problems. The participating systems can range
from being high-end servers to a mobile phone or small sensor. The de-
velopment in the field of computers has naturally led to further advances
of distributed systems with some of the key subjects currently being: ubiq-
uitous computing [246, 220], cloud computing [240, 260] and “Internet of
Things” [7].

The growing demands for interconnectivity have establish a need for large-
scale and complex systems to be engineered. Many of these interconnected
distributed systems can be regarded as SoS as they: 1) express a large de-
gree of autonomy as a result of having diverse stakeholders; 2) they are
independently designed and not directly meant to collaborate with other het-
erogeneous systems; 3) are separated by great geographical distances; 4) have
detached development cycles and evolution of functionality; but 5) have an
overall common goal that is dependent on the synergy between them.

Examples of System of Systems are often information intensive systems,
such as Air Traffic Management [85], Emergency Management [159], or
more concrete the Global Earth Observations System of System [28] which
is a decision-support tool linking the information from the space agencies of
88 nations.

The many development facets of these systems have pushed the engi-
neering effort towards its boundaries, which consequently led to the SoS
Engineering field. SoS Engineering covers the processes and practices in the
analysis, design and development of SoS, where especially the dynamism and
emergent operational behaviour, combined with the integration of distributed
independent systems are key challenges [127].

1.2.1 Short History

The term “System of Systems” was first used in the mid 50’s in relation with
system theory and the arrangement of theoretical systems [22]. It was not un-
til the late 1980’s that the term was used to describe the challenges and char-
acteristic arising in relation to joining independent systems together [236].
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From here the field saw an increase in both the industrial and academic re-
search taking place. Based on the publications in the literature this increased
during the 1990’s reaching an all-time high midways in the first decade of
the new millennium [128]. The field of SoS Engineering was not formally
established until 2003 [127].

A more detailed historical account is given in Section 2.1.

1.2.2 Role in the Dissertation

SoS Engineering is a cross-disciplinary engineering field that has to address
the challenges inherent in developing a type of system that express both
technical and socio-technical challenges. As such it is a field that has many
challenges, of which many remain unsolved as a result of its youth. This
makes it a field with a large potential for the curious engineer to research and
develop methods and tools that can solve some of these challenges.

During this PhD project the author was working together with a research
group from Aarhus University that works on enhancing existing industry
tools and practices in SoS engineering, through the EU Seventh Framework
Programme research project: “Comprehensive Modelling for Advanced Sys-
tems of Systems”(COMPASS)2. The COMPASS consortium consists of five
universities and three companies that research the field of SoS in order im-
prove the engineering thereof by using a combination of Model-Based SoS
Engineering and guidelines for SoS requirements, architectures and integra-
tion.

1.3 Modelling and Simulation

The use of modelling and simulation as a means of approaching and handling
complexities is instrumental to most fields of engineering.

Models are some type of representation of an object that they are meant
to replicate or express some part of. Generally speaking, models have the
purpose of enhancing the understanding of certain aspects of the object it
represents and can be used to facilitate and document details and specifi-
cations [162]. As such models are often used as a point of reference and
for communicating design specifics to stakeholders. Models enable engineers
to describe designs and concepts in a way that make it easier to study the
functionality and complexities of the modelled object. Therefore, they allow

2 http://www.compass-research.eu/ Last accessed 14-04-2014.

http://www.compass-research.eu/
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engineers to discover possible design flaws and provide better predictions for
architecture and design qualities [99]. Models can have many types of repre-
sentations, such as: physical, mental, mathematical or graphical portrayals of
the object they represent.

A simulation is an estimated imitation or reflection of the behaviour that
a simulated object will have in a given situation. A simulation is performed
on the basis of a model, and it can be used by engineers to show the operation
and performance of a modelled object [258].

Modelling and simulation is used in Systems Engineering, often under
the term Model-Based Systems Engineering (MBSE), to support system re-
quirements and design as well as perform analysis, verification and validation
throughout the development of the systems [256]. Models in Systems Engi-
neering is for instance used to: 1) depict physical systems in which physical
laws often play an important role; 2) to describe a process or an algorithm in
which events occur in a step-by-step fashion; or 3) represent structures and
relationships [26]. The first is denoted continuous systems and are typically
described using differential equations, while the second is known as discrete-
event which describes a sequence of events in time [179, 259]. The third is
generally described in a graphical modelling language, such as SysML [232].

In the context of this dissertation a model is a computer model described
in a textual notation that has a mathematical foundation and is used for de-
scribing discrete-event systems.

It has been proposed that Systems Engineering should adopt the rigorous
modelling and the development of models from the Software Engineering
field [199]. In the software engineering field models are created of soft-
ware design using mathematically founded techniques unified under the term
“formal methods”. Mathematically founded modelling languages are used to
introduce a higher degree of rigor and reliability as means of dealing with
the complexity and unpredictability of software systems. The languages have
unambiguous semantics, such that inherent properties about the models can
be reasoned about. The development of formal methods and their applica-
tion in development projects have been widely encouraged and extensively
researched in both academia as well as in industry [38, 253].

Formal methods are highly suitable in the engineering of SoS character-
istics such as autonomy, evolution and emergence. In connection with both
system specification and design these are all aspects that involve a great de-
gree of vagueness and unpredictability. A stronger analysis of these aspects
can be achieved by using formal methods. In recent years the application of
formal methods in SoS development has been recommended multiple times
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in the SoS literature [30, 58]. This has led to research and development in
concrete formal SoS modelling notations [251, 86, 73].

1.3.1 Short History

Giving a historical account of the general field of modelling and simula-
tion is difficult because of the many diverse fields in which it is used and
because of the wide range of approaches and methods that the term cover.
Consequently, the account given here focuses on giving a brief overview
of computer modelling and simulation aimed at Software Engineering and
Systems Engineering.

Some of the earliest applications of computers were used to perform sim-
ulations of models within the development of military systems during World
War II. The use of modelling and simulation was expanded to non-military
application in physics and engineering in the early 1950’s [173]. Quickly
thereafter computers were being used for creating models and simulations
of computers themselves [219]. Models and simulations of computer soft-
ware got a firm base with the establishment of formal methods. In nearly
five decades formal methods have been used in the analysis and validation
of software systems [74]. Around the same time mathematically based ap-
proaches for Systems Engineering were being developed [254]. Later on,
development methods in which modelling and simulation was at the core
of the engineering effort started to emerge. These matured into development
methods such as Model Driven Development [77] and Model-Based Systems
Engineering [256].

A deeper explanation of the history of modelling and simulation is outside
the scope of this dissertation, but more information on modelling in Systems
Engineering has been covered by Dickerson [55]. A more detailed account
on the use of modelling in SoS Engineering is given in Section 2.3

1.3.2 Role in the Dissertation

The author has a background in the formal modelling and simulation of
software systems, and the use of modelling and simulation has been recom-
mended as an effective means for grasping the complexity of SoS [202]. This
forms the basis for a key part of the research described in this dissertation.

The research makes use of two formal modelling notations: the Vienna
Development Method and the COMPASS Modelling Language, both are de-
scribed in further detail below. The two notations are supported by two open-
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source tools which give this PhD project a basis on which approaches can be
build and tested. The tools are described in further details in Section 3.1.

1.3.3 Vienna Development Method - VDM

The Vienna Development Method (VDM) is a well-established formal method
for specifying, modelling, and evaluating software systems [15, 120, 67]. It
has its origin in the Vienna Definition Language (VDL) developed at the
IBM laboratories in Vienna in the beginning of the 1970’s. Through the
development of the process, with the addition and combination of multiple
techniques, the approach was defined and named as the Vienna Development
Method in 1973 [121, 16]. Since then VDM has been applied succesfully to
a range of industrial projects [70].

VDM models builds on type definitions that are constructed from simple
abstract types, such as booleans, natural numbers, characters, as well as type
constructors for union, product set, sequence and map types. Types can be
restricted by predicate invariants that are enforced by performing run-time
type checks via tool-support.

Typed variables can be used to establish a persistent state, that also can be
restricted by invariants, and operations for modifying the state can be defined
implicitly using standard pre- and post-condition predicates or explicitly us-
ing imperative statements. Additionally, functions can be defined in a fashion
similar to operations, but cannot refer to state variables.

The VDM Specification Language (VDM-SL) notation has a formally
defined syntax and language semantics defined in an ISO Standard [206, 142,
149]. VDM-SL is a language that primarily is aimed at modelling functional
specifications of sequential systems [68]. In order to meet new technology
and the latest industrial challenges VDM has developed over time by intro-
ducing several new language dialects with extended functionality. VDM++
is an object-oriented extension of VDM, in which the models consists of
collections of classes [69]. The research project “VDM++ In a Constrained
Environment” (VICE) introduced a timed extension to VDM++ in order to
model real-time systems with respect to time. Research revealed that neither
the existing VDM++ dialect nor the extension made with VICE was suf-
ficient when modelling distributed real-time systems [241]. As a result an
extension was proposed to enable the modelling of distributed real-time em-
bedded systems in VDM++ [244, 106]. The extension introduced the notion
of CPUs, busses, specific time delays and asynchronous operations. The ex-
tension made it possible to deploy individual distributed systems on separate
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CPUs, which could by connected by busses. The extension named VDM-RT
(as a replacement of the VICE notation) was implemented and validated by
multiple case studies [66, 229, 242].

The existing VDM dialect are:

VDM-SL an ISO standardised sequential language for defining software func-
tionality.

VDM++ which includes the fundamental functionality of VDM-SL but ex-
tends it with concurrency and object oriented design.

VDM-RT which extends VDM++ by adding timing constraints, CPUs and
busses as well as distributed system design and topology.

In their foundation these languages are not executable, as they allow
implicitly defined functions and operations as well as types with infinite do-
mains, however an executable subset exists for all dialects making it possible
to interpret and simulate them [146, 148].

To ensure the validity and consistency of a system specification VDM
models can be validated by analytic methods, ranging from type checking to
execution of the model, via tool support. Further details are given in Subsec-
tion 3.1.1.

1.3.4 COMPASS Modelling Language - CML

A key goal of the COMPASS project is to strengthen Model-Based SoS
Engineering by using formal modelling to precisely describe the complex
structures and interactions of SoS [71]. This is achieved by creating a lan-
guage called the COMPASS Modelling Language (CML), which has a formal
semantic foundation through which SoS architectures and contracts can be
expressed and simulated.

CML combines the strongest elements of the VDM state-based formal
method [68] and the CSP/Circus process-based formal methods [213, 198]
to create a language capable of expressing both the structure, behaviour and
state information of SoS and their constituent systems.

In its foundation, the COMPASS Modelling Language (CML) is built
around collections of types, values, functions, operations, classes, processes
and channels. The type system as well as the values, functions and classes
originate from VDM, while channels are taken from CSP/Circus. The pro-
cess is the main building block in CML and it acts as the constituent system
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in the SoS. An SoS is formed by processes getting connected via channels.
Channels are globally defined and they are used for message passing. Pro-
cesses can react to activities taking place in the overall system model by
reacting to events. An Event means a communication occurring on a channel
that processes can synchronise on. State and operations for modifying the
process state can be defined within a process, and so can actions that are used
to express the reactive behaviour of a process, such as communicating on a
channel.

An example of a very basic CML model is given in Listing 1.1. This
shows the definition of a channel c that can carry a nat type, and three small
systems represented by the processes P , A and B . Process P is a composition
of two processes A and B . In this model, process P is the one that composes
the system at the highest level and as such it can be seen as the one describing
the SoS. This is known as the top process of the model.

channels
c : nat

process P = A [|{c}|] B

process A =
begin
@ c.1 -> Skip

end

process B =
begin
@ c?x -> Skip

end

Listing 1.1: Parallel system of A and B .

The top process P defines a parallel composition between the processes
A and B , meaning in this model they can be considered as two constituent
systems running in parallel. When making a composition, a range of channels
can be given to denote the channels that the composed process can synchro-
nise on, based on the events occurring on the channels. In the given example
the composition defines that the processes will synchronise on events occur-
ring on channel c. Process A and B have a very simple functionality, where
A is a system that defines an action (indicated by @) to synchronise the value
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1 on channel c and then terminates its execution, while B is a system that
synchronise (indicated by ?) a value placed on channel c, assigns it to x and
terminates its execution.

CML is supported by the open-source Symphony tool platform that builds
directly on the Eclipse IDE platform [41] providing project explorer, editor,
interpretation and debug functionality in addition to a range of plug-ins, such
as a model checker, a proof obligation generator and a theorem prover.

1.4 Motivation

Although the “System of Systems” term has been appearing for more than
five decades, the engineering of the field is still in its early stages. With
an increased focus on the field there has been a rapid growth in research
and it has created a voluminous literature [128]. This has led to a rich set
of descriptions and SoS characteristics that makes use of a substantial vo-
cabulary, but there is still a lack of a common ground for a definition and
understanding of SoS. The increased focus on the field from both academia
and industry has also led to the creation of an SoS Engineering field and the
study of this field has resulted in a large number of research challenges being
identified [127, 211, 237].

As any other field of engineering, SoS Engineering has a need for ap-
proaches and tools that engineers can use to approach the design and con-
struction of SoS in the best possible way. A range of methods, processes and
approaches has been transferred from other engineering fields, such as “Soft-
ware Engineering” and “Systems Engineering”, in order to create a strong
foundation for the field [126]. One such example is the use of systems mod-
elling and in recent years the application of formal methods in SoS develop-
ment has been proposed multiple times in the SoS literature [30, 58]. New
research projects have been started that are aimed at providing tools and
methods with a basis in formal modelling for the engineering of SoS. How-
ever the application of formal modelling techniques will face the same chal-
lenges with industrial adoption in the field of SoS Engineering as it has had
it other fields [132].

Experiences from the formal modelling field does show that strong tool
support of formal techniques and proper incorporation into existing devel-
opment practices, greatly improve the use and acceptance of formal meth-
ods [130, 245].

The overall motivation of this PhD project is a wish of getting a deeper
understanding of the challenges in the SoS engineering field and to improve
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the approaches and tools used in SoS engineering, especially with a focus on
formal modelling.

1.5 Research Method

This section describes the research methods that has been applied in the PhD
project:

This PhD project focused on identifying challenges of the SoS Engineer-
ing field through a combination of literature surveys and case studies. Once a
challenge of particular interest was identified, the existing literature was sur-
veyed for similar challenges and any corresponding solutions. In some cases
the solutions identified through the survey were adapted or extended in order
to conform to the concrete challenge, while in other cases a new solution
was developed. In order to evaluate a proposed solution they were, in most
cases, followed by a case study as a proof of concept. Using the case study
the solution would be adjusted and improved until the solution was shown
to provide a contribution to the identified challenge. Contributions were then
submitted as publications to either workshops, conferences or journals for
peer-review and validation of results.

The basis for the PhD project was established through a survey of the
SoS literature with a focus on SoS definitions and Model-Based engineering
techniques for SoS Engineering. Additional input was gained through smaller
case studies and from the observations and input from the industrial case stud-
ies in the COMPASS project. This knowledge was used to develop methods,
classifications and tool support aimed at improving the SoS Engineering field.

1.6 Research Objectives

The objectives of this PhD project is to improve the field of SoS Engineer-
ing by contributing to a strengthened SoS understanding, with classifications
aimed at certain SoS challenges for which stronger tool-support for formal
modelling can be developed.

It is the central proposition of this PhD Project that:
The SoS field consists of a large number of building blocks, from which it

is still trying to create a foundation on which it can establish itself, and as a
developing field it has the challenges of attempting to incorporate, expand
and evaluate methods, processes and tools from other engineering fields,
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while trying to develop SoS Engineering specific techniques as well. As such
the SoS Engineering field has not addressed all of its challenges and is still
lacking the methods and tools support need to create a strong foundation and
improved engineering of SoS.

It is the hypothesis of this PhD that:
Convergence of the existing knowledge in the SoS field can be used to

identify key challenges in SoS, and the field of SoS Engineering can be strength-
ened by introducing formal modelling techniques with strong tool-support
focused on these key SoS challenges.

It is the hope that the research results from this PhD will aid the developers
in SoS Engineering in asking the right questions such that the computers can
supply useful answers.

1.7 Evaluation Criteria

The research contributions made in this PhD project will be evaluated using
the follow criteria:

Clarification of the SoS field A clarification of the characteristics must be
provided that makes it possible to specify key dimensions for SoS. A
clarification will make it easier to approach the SoS Engineering field
and identify primary challenges.

Integration The integration and interactions between constituent systems in
SoS shall be studied to identify specific challenges, and methods must
be provided that enhance the SoS Engineering approach to integration.

Collaboration The role of human stakeholders in SoS Engineering shall be
studied and methods shall be developed that can address the challenges
identified.

Modelling The application of formal modelling in the SoS Engineering field
shall be examined and barriers for adopting formal models into the field
shall be addressed.

Improved tool-support for SoS Engineering Approaches for stronger tool-
support that will strengthen the use of formal modelling in SoS Engi-
neering shall be developed.
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The evaluations of the research contributions are described in Section 4.3,
where the level of fulfilment of the individual criteria is assessed. The extent
to which the criteria is fulfilled will be illustrated using a chart as exemplified
in Figure 1.1, which shows the research contributions and the fulfilment of
criteria.

[C1]

[C2]

[C3]

[C4]

[C5]
[C6]

[C7]

[C8]

[C9]

Figure 1.1: Example comparison chart.

1.8 Published Work

The research and work performed in this PhD project has resulted in a num-
ber of publications. Subsection 1.8.1 contains the publication that forms the
foundation of the PhD project and is included as part of the dissertation.
Subsection 1.8.2 lists publications that are related to PhD project, but has
not been included in the dissertation. Finally publications that are not related
to the PhD project are listed in Subsection 1.8.3.

1.8.1 Publications

The publications listed here are included in this dissertation in Part II.

[P190] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen.
Combining VDM with Executable Code. In Abstract State Machines,
Alloy, B, VDM, and Z, volume 7316 of Lecture Notes in Computer Sci-
ence, pages 266– 279, 2012. Springer-Verlag. ISBN 978-3-642- 30884-
0.

http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
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[P187] Claus Ballegaard Nielsen and Peter Gorm Larsen. Extending VDM-RT to
Enable the Formal Modelling of System of Systems. Proceedings of the
7th International Conference on System of System Engineering, IEEE
SoSE 2012, July 2012. 978-1-4673-2974-3

[P189] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Wood-
cock and Jan Peleska. Model-based Engineering of Systems of Systems.
Submitted to ACM Computing Surveys, September 2013.

[P125] Rick Kazman, Klaus Schmid, Claus Ballegaard Nielsen and John Klein.
Understanding Patterns for System of Systems Integration. 8th Inter-
national Conference on System of Systems Engineering (SoSE), IEEE
SoSE 2013, 141-146, June 2013.

[P186] Claus Ballegaard Nielsen, Claire Ingram, André Didier, Uwe Schulze,
Stefan Hallerstede, Andrew Galloway and Peter Gorm Larsen. Chal-
lenges in Collaborative Formal Modelling of System of Systems. Draft
paper to be submitted to the International Journal of System of Systems
Engineering, 2014.

[P188] Claus Ballegaard Nielsen and Peter Gorm Larsen. Collaborative Formal
Modeling of System of Systems. IEEE SysCon 2014, March 2014. IEEE
Best Student Paper Award

[P192] Claus Ballegaard Nielsen, Kenneth Lausdahl and Peter Gorm Larsen.
Distributed Simulation of Formal Models in System of Systems Engi-
neering. 4th IEEE track on Collaborative Modelling and Simulation in
IEEE WETICE 2014, June 2014.

[P154] Kenneth Lausdahl, Claus Ballegaard Nielsen and Klaus Kristensen. In-
cluding Running System Implementations in the Simulation of System of
Systems Models. Submitted to Software Engineering and Formal Meth-
ods (SEFM) 2014, March 2014.

1.8.2 Other Publications

[P191] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen.
Using the Overture Tool as a More General Platform. In Franco Maz-
zanti, editor, iFM 2012 & ABZ 2012 - Proceedings of the Posters & Tool
demos Session, pages 1–34. CNR-ISTI, June 2012.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6384156
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6384156
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6384156
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6384156
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6575257
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6575257
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6575257
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6575257
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[P124] Rick Kazman, Claus Ballegaard Nielsen and Klaus Schmid Understand-
ing Patterns for System-of-Systems Integration. Technical Report, CMU/SEI-
2013-TR-017, Software Engineering Institute, Carnegie Mellon Univer-
sity, 2013.

[183] Claus Ballegaard Nielsen. Towards Dynamic Reconfiguration of Distri-
buted Systems in VDM-RT. Proceedings of the 8th Overture Workshop:
Semantic Issues in VDM: a BCS-FACS and Overture Workshop, Septem-
ber, 2010.

[184] Claus Ballegaard Nielsen. Modelling Dynamic Topologies via Exten-
sions of VDM-RT : A Case Study of an Evolving System. Aarhus Univer-
sity, School of Engineering, Technical Report, ECE-TR-9, July, 2012.

1.8.3 Publications Outside the Focus of PhD Research

[42] Joey W. Coleman, Anders Kaels Malmos, Claus Ballegaard Nielsen and
Peter Gorm Larsen. Evolution of the Overture Tool Platform. Proceed-
ings of the 10th Overture Workshop 2012, School of Computing Sci-
ence, Newcastle University, 2012.

[185] Claus Ballegaard Nielsen, Utilizing VDM Models in Process Manage-
ment Tool Development: an Industrial Case. Proceedings of the 9th Over-
ture Workshop, Electrical and Computer Engineering, Aarhus Univer-
sity, ECE-TR-2, 2012

[110] José Antonio Esparza Isasa, Peter W.V. Jørgensen and Claus Ballegaard
Nielsen Modelling Energy Consumption in Embedded Systems with VDM-
RT. Proceedings of State Machines, Alloy, B, VDM, and Z 2014 (ABZ
2014), April 2014.

1.9 Outline and Reading Guide

The dissertation is divided in two parts: Part I contains an introduction and
gives a summary of the research that has been performed during the PhD
project. The part also supplies an overview of the research contributions on
the basis of the publications that has been produced during the project. Part II
contains a subset of publications by the author with co-authors, on which the
research contributions are based.
For clear identification, contributions are numbered e.g. [C1], and framed:

http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_report-ECE-TR-9.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_report-ECE-TR-9.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_report-ECE-TR-9.pdf
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Contribution 1: Description

In addition to an introduction to the research field, Part I gives an overview
of the performed research on the basis of publications. It 1) introduces back-
ground information on the premise and reasoning behind the performed re-
search and 2) provides a summary of the publication, and 3) it draws lines to
related work and state of the art. Part I introduces ten publications, eight of
which are included in the dissertation and described in more detail. For easier
identification these ten publications are prefixed with “P” e.g. [P189].

Part I is structured as follows; after this introductory chapter, Chapter 2
gives an overview of the research that has been performed in exploring SoS
and supplies details on the three main themes of this dissertation: modelling,
integration and collaboration. The chapter presents the publications: [P189,
P125, P186] and contains the contributions that primarily focuses on the
identification, challenges, classification and structuring of the SoS engineer-
ing field. Chapter 3 introduces the tool-support that has been developed in
order to improve and strengthen the SoS engineering field on the basis of
the challenges identified in Chapter 2. This chapter is based on the publica-
tions: [P187, P188, P192, P190, P154]. Finally, Chapter 4 draws conclusions
and discusses research contributions as well as future work.

Part II, lists a range of publications written by the author of this PhD thesis
in collaboration with co-authors. Each chapter presents the bibliography entry
for one publication, followed by the publication in its original published or
submitted form. Part II contains the publications: [P190, P187, P189, P125,
P188, P192, P154, P186].



2
System of Systems Research

This chapter summarises the research that has been performed in exploring
the System of Systems (SoS) field and how the outcome of the exploration has
been used to identify challenges in the field. The chapter also identifies and
details the three main themes of this dissertation: modelling, integration and
collaboration. Finally, a breakdown of the research that has been performed
within these themes during the PhD project are provided.

To provide the formal basis for the research, a survey of the existing
SoS literature was performed in order to establish a better understanding of
the concepts, terminology and application of the field [P189]. A historical
perspective on SoS is given in Section 2.1, followed by an identification of
key dimensions that characterise SoS in Section 2.2. The identification of
the dimensions made it possible to establish many of the challenges in SoS
Engineering, specifically with a focus on the use of Model-Based techniques,
as presented in Section 2.3.

In addition to having a focus on Model-Based techniques, the identifi-
cation of challenges in SoS Engineering and Model-Based techniques was
also combined with the experiences gained through the work performed in
analysing and modelling SoS. This led to the research expanding into the in-
tegration challenges between constituent systems and into the socio-technical
area of collaboration between engineering teams. The research performed on
the former is presented in Section 2.4, while the latter was examined through
a case study focused on the collaborative aspects of formal modelling in SoS
Engineering, as presented in Section 2.5.

2.1 System of Systems Historical perspective

The field of SoS is still in its infancy and as an emerging field there is a great
deal of diversity and varying foci when it comes to definitions, development
methods and applications in the field [114].

23



24 2 System of Systems Research

In [P189] we performed a survey of the SoS literature, which were fo-
cused on the many attempts of defining and characterising SoS. The survey
studies 30 different definitions, characterisations or taxonomies for SoS, and
attempted to group the meanings on the basis of their focus (e.g. SoS ter-
minology) or the background (e.g. Military). The survey showed that the
literature offers a rich set of descriptions of SoS characteristics and make
use of a substantial vocabulary with many either overloaded or ambiguous
meanings and classifications. This suggests that it is possible to draw fine
distinctions between various type of SoS applications, but also that many of
the entries share common terms, but use them for different concepts, or share
concepts but use different terms for them. This ambiguity and imprecision
presents an obvious risk for misunderstandings. The survey is used to create
a set of dimensions that can be used to group and describe the many terms.
These dimensions are described in further details in Section 2.2.

The survey takes its start from the first mentioning of “System of Sys-
tems” in the technical literature, and despite the field still being emerging the
idea and notion of SoS has been around for a substantial time. The first citing
of the “System of Systems” term is used in the mid 50’s by one of the pioneers
of General Systems Theory, K.E. Boulding [22]. Boulding’s classification
differs from the more modern SoS classifications by being focused on using
a hierarchy of complexity for the arrangement of theoretical systems and
constructs. As such it is focused on creating structures for analysis of method-
ologies and theoretical systems, not on the relationships between constituent
systems nor their operational behaviour as part of a larger system. Boulding’s
classification does however still contain elements that bear a strong relation to
the more modern descriptions of SoS. The system’s anatomy has a dynamic
dimension that changes over time, the systems can adapt on the basis of the
information it receives and there is a division of labour between the systems
that are both differentiated and mutually dependent.

With the basis for SoS laid down early, the use of the term and the way it
was applied took various directions in the following 30 years. It was used
in such diverse fields as urban city planning [14], the structuring of sys-
tems science [4] and for most systems found in biology [112]. The establish-
ment of SoS as an engineering concept with relations to joining independent
systems together, came with the United States’ Strategic Defense Initiative
(SDI) [236] in the late 1980’s. A concrete establishment of the field of SoS
Engineering took another 15 years [127], but in the decade that followed
the field got an increased awareness and the SoS research intensified in both
industry and academia.
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Numerous entries in the literature gives definitions and descriptions of
SoS, either seen from a theoretical point of view or as part of an introduction
to a concrete systems engineering problem, but a central milestone in the
definition of SoS came with M. W. Maier’s paper on “Architecting Principles
for Systems-of-Systems”1 [167]. In performing the survey it became apparent
that this paper remains one of the most cited in the SoS literature. With a
lack of a shared agreement on a SoS definition and characteristics, the paper
attempts to use five principal features to characterise SoS, sometimes referred
by the acronym “OMGEE”.

Operational Independence Any system that is part of an SoS is independent
and is able to operate serviceably if the SoS is disassembled.

Managerial Independence Despite collaborating with the other members of
the SoS, the individual systems are self-governing and individually man-
aged so that they “not only can operate independently, they do operate
independently.”

Geographic Distribution The parties collaborating in an SoS are distributed
over a large geographic area. Although the geographic area is defined
vaguely, it is stressed that the collaborating systems can only exchange
information and not considerable quantities of mass or energy.

Evolutionary Development An SoS’ existence and development are evo-
lutionary in the sense that objectives and functionality can be under
constant change, as they can be added, modified or removed with ex-
perience. Thus an SoS never appears completely formed.

Emergent Behaviour Through the collaboration between the systems in an
SoS a synergism is reached in which the system behaviour fulfils a pur-
pose that cannot be achieved by, or attributed to, any of the individual
systems.

In Maier’s terms, SoS are distinguished from monolithic systems by the con-
stituent systems’ independence, and the evolutionary nature and emergent
behaviour of the SoS as a whole.

Table 2.1 gives an overview of some of the key historical entries in the
literature with a point of view on SoS definition and characterisation.

In the years that followed many authors used Maier’s five principle fea-
tures as a reference and point of departure for describing and exploring SoS.
From the mid 90’s the number of publications related to both characteristics

1 In the SoS literature, [168] is highly influential and widely cited. However, the character-
istics originate in [167] which also exists in a white paper version published online [169]. All
these versions share the title “Architecting Principles for Systems-of-Systems”.
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Author(s) Main characteristics
Boulding 1956 [22] Static structure of “open systems” from different disci-

plines
Ackoff 1971 [5] System science organising systems into structured

framework
Eisner et al. 1991 [61] Meta-systems engineering framework combining inde-

pendent systems
Shenhar et al. 1994
[226]

Taxonomy with technological uncertainty and scope

Noam 1994 [196] Telecommunication infrastructure moving from “net-
work of networks” to an SoS

Manthorpe 1996 [172] Focus on the jointness between C4I in a defence setting
Maier 1996 [167] Most influential paper defining the OMGEE character-

istics of SoS

Table 2.1: Initial historical literature, up until Maier’s SoS characteristics
paper [168].

and the engineering of SoS started to increase and in the middle of the decade
that followed the number increased rapidly. This development has also been
shown by Kemp et al. [128], as illustrated in Figure 2.1.

Figure 2.1: Re-produced from Kemp et al. [128]

Table 2.2 shows some of the key literature in SoS research from the mid
90’s and into the first decade of the new millennium.
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Author(s) Main characteristics
Kotov 1997 [133] Large-scale concurrent and distributed systems
Lukasik 1998 [164] The importance of educating of engineers to deal with

evolving self-organising systems
Roe 1999 [212] Systems engineering process for military SoS
Cook et al. 1999 [44] SoS as a systems methodology for military systems

with concerns for hierarchy, emergence, and C2
Krygiel 1999 [138] Focus on interoperability of information and data shar-

ing
Pei 2000 [204] SoS as a defining factor in future battlefield scenarios
Carlock et al. 2001 [33] Enterprise Systems Engineering point of view
Sage et al. 2001 [215] Use of the strategy “new federalism” for organisational

structuring
Chen et al. 2003 [35] Focus on the SoS environment with a core in architec-

ture interoperability and dynamic behaviour
Keating et al. 2003
[127]

SoS as a meta-system of interrelated complex subsys-
tems

Bar-Yam et al. 2004
[11]

Derives SoS characteristic from the fields military,
biology and sociology

Crossley 2004 [47] SoS as a multidisciplinary research in interoperability,
individual behaviour and human behaviour

De Laurentis et al. 2005
[54]

Three dimension taxonomy for SoS analysis and design

Abbott 2006 [1] Open at the top, open at the bottom and continually
evolving, but slowly

Boardman et al. 2006
[17]

The alphabet characteristics: autonomy, belonging, con-
nectivity, diversity and emerging

Boehm 2006 [18] Software-Intensive SoSs
Cocks 2006 [39] An SoS may not be as much about the system mission,

but about the architecture of the selected solution
Fisher 2006 [63] Composition of autonomous systems is an SoS
Sharawi et al. 2006
[225]

Independence, interoperability and global goal are es-
sential SoS concepts for modelling and simulation

Karcanias 2010 [122] Evolution of the notion of Composite Systems to in-
clude autonomy and independence.

Table 2.2: Key literature around the new millennium.

Of these it is worth taking a note of Boardman et al. [17] that presented
the alphabet characteristics: Autonomy, Belonging, Connectivity, Diversity
and Emerging as a way of characterising SoS.

R. Abbott that takes a slight different view than the majority of the liter-
ature, by seen SoS as an environment in which other systems reside, instead
of a hierarchy of component systems. This shows that even with the rapid
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increase of literature, a degree of variation and discrepancy still exists within
the field with respect to terminology and terms.

Nearly, all of the newer publications dated after the Strategic Defense
Initiative (SDI) [236] in 1988, does however still have the same fundamen-
tal traits of SoS. For instance the autonomy and diversity characteristic by
Boardman et al. maps to Maier’s independence and evolution characteristics.
In the same way Abbott describes SoS as being continually evolving and as
consisting of a collection of systems that participate when the investment is
likely to be worthwhile, which also can be related to Maier’s independence
and evolution characteristics. This is the same for all of the characteristics and
the pattern repeats throughout the literature. It is this pattern that the survey
attempts to influence by creating the dimensions of SoS Engineering.

The survey showed that some authors have a focus on making a definition
for SoS through a textual description of its behaviours and characteristics.
Others take the standpoint that the concept is to complex and widespread for
a one or two line description and instead attempt to create a taxonomy of
terms that can characterise an SoS. A third group of authors focused more on
the challenges and possibilities of establishing an SoS. Common to them all
is that SoS Engineering is made difficult by: 1) the large degree of uncertainty
caused by the autonomy and independence of the constituent systems, 2) the
distribution and diversity of stakeholders with separate main goals, 3) the
interoperability and integration challenges between the constituent systems,
4) challenges in dealing with a constant changing and evolving systems, and
5) the unpredictability of emergent behaviours occurring as the constituent
systems start working together.

Literature surveys of the SoS field have been performed numerous times,
either with the purpose of defining and characterising SoS or to identify the
challenges and future research goals [126, 113, 225, 141, 88, 114]. For ex-
ample, C.B. Keating looks at a minor part of the literature to determine five
points of convergence for SoS Engineering [126]. Keating finds that the field
is concerned with the integration of multiple independent systems in order to
create a higher level system that has capabilities and goals beyond that of the
independent constituent systems. M. Jamshidi lists numerous textual descrip-
tions of SoS definitions from various sources, but does not correlate them
or provide a direct point of convergence[113, 114]. Sharawi et al. propose a
taxonomy based on the independence of operation and development of het-
erogeneous constituent systems in which characteristics either are considered
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essential or desirable with respect to the modelling and simulation of SoS.
The concepts independence, interoperability and a global goal are essential,
while a characteristic such as distribution is considered desirable.

Categorizations of SoS

The US Department of Defense makes use of four different categorisations
for SoS [202]. These are divided into:

Directed The SoS is built to fulfil specific purposes. They have the ability
to operate independently, but they are managed to satisfy a concrete
purpose.

Collaborative The SoS are not compelled to follow a central management,
instead the constituents system voluntarily participate in a collaboration
to fulfil the goal.

Acknowledged The SoS recognises a common purpose and goal, while the
constituent systems retain independent control and objectives. Evolution
of the common purpose is based on collaboration between the SoS and
the constituent systems.

Virtual The SoS is without either managerial control or a common purpose.
This makes the behaviour and the fulfilled goals highly emergent, but
it also entails that the exact means and structures producing the system
functionality are intangible and indistinguishable.

Three of these categories were originally defined by Maier [167], while the
“Acknowledged” type was later added by Dahmann et al. [48].

The “Directed” SoS practically embodies a form of planed emergence,
because all constituent systems are centrally managed. The other types of SoS
have little or no centralised managerial control. The “Collaborative” type has
the notion of a centralised management but with very limited or no powers to
enforce decisions, while the “Virtual” type is without any degree of manage-
ment. The “Acknowledged” type describes a scenarios found in many military
systems, where there is a focus on establishing collaborative management at
the SoS level, while keeping the managerial and technical independence at
the constituent level. The goal is that autonomy and ownership is maintained,
while at the same time ensuring that changes can be collaborative decided
upon on the basis of some common objectives.

The work presented in this dissertation mainly focuses on the Collabora-
tive and Acknowledged category of SoS.
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2.2 Dimensions of SoS Engineering

As revealed by the survey, presented above, the literature makes use of a wide
range of terms and concepts in the description of SoS, leading to a substantial
vocabulary. This makes it difficult to grasp the field and it makes it difficult
to place systems and applications within the field.

2.2.1 Research Conducted

In [P189] we grouped and converged the terms and concepts into eight di-
mensions that we proposed as a way of positioning a systems engineering
problem in the SoS field. In combining the terms, the contexts in which they
were used, were taken into account. For example the term “independence”
may denote independence of operations for self-governing constituents [167,
47], the independence of capabilities [123], meaning the variances in re-
sources of constituents, or it can refer to independent optimisation of the
constituents [215]. The mapping from the dimensions to the literature in
which the terms originate is listed in [P189]. The eight dimensions are listed
in subsections below.

Autonomy of Constituents

Autonomy is the extent to which a constituent system’s behaviour is gov-
erned by its own rules rather than by others external to the constituent. The
property of managerial independence identified by Maier entails that con-
stituents perform their own functions in accordance with their own rules,
while also participating in the SoS. Cook acknowledges the need for inde-
pendence in Maier’s sense, and also identifies a requirement for constituents
to be ‘purposeful’ and set their own goals [45].

Given the heterogeneity of an SoS, there is likely to be considerable
variation in the autonomy exhibited by constituents. Modelling and analysis
techniques need to permit the expression of a range of actions and behaviours
that an autonomous constituent may perform, but which may not be possi-
ble or appropriate to share with all constituents at the overall SoS level. For
instance for competitive or confidentiality reasons.

Independence

Independence is the capacity of constituent systems to operate when de-
tached from the rest of the SoS. This is Maier’s ‘operational independence’
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characteristic, also identified by Krygiel as the capability for independent ac-
tion [138] and by Jamshidi as the extent to which systems are ‘independently
operable’ [114].

Independence implies that a given constituent system may offer a range
of behaviours of which only some are related to its role in an SoS. This is
a challenge for the SoS engineer as the independence makes the constituent
system and their stakeholders less committed to participating in the overall
SoS and may result in reluctance to sharing information with other stake-
holders. This presents challenges when modelling SoS, as the usefulness and
quality of models depends on having information and details on the systems
being modelled.

Distribution

Distribution refers to the extent to which constituent systems are dispersed so
that some form of connectivity enables communication or information shar-
ing. Distribution may denote a geographical distance such as Shenhar’s “ar-
rays” of systems dispersed over wide geographical areas [226], and Maier’s
geographical distribution characteristic [167].

Modelling frameworks that support distribution require the ability to as-
sign constituent system processes to a computational infrastructure, linked by
a communication medium. Descriptions of concurrency, communication, and
potential failures of communication should therefore be a central element in
SoS modelling.

Evolution

Many SoS are long-lasting and subject to change, whether in the functionality
delivered, the quality of that functionality, or in the structure and composi-
tion of constituent systems. Maier identifies evolutionary development as a
key characteristic [167], and Abbott emphasises that an SoS is “continually
evolving, but slowly” [1].

Model-Based approaches to SoS engineering require support for gaining
assurance of the preservation of specified properties under evolution steps.
Evolution may be manifested as updates to constituent systems or system
topology, which entails that both modelling notations and development pro-
cesses need to incorporate progression over time and system flexibility.
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Dynamic Behaviour

Dynamic behaviour is the capacity of an SoS to undertake changes to its struc-
ture and composition, typically without planned intervention. Several authors
identify the ability to undertake this kind of real-time change as an important
characteristic, especially in ensuring resilience of an SoS to faults and other
threats. [17] identify the need for “dynamic determination of connectivity”,
requiring the autonomy of the constituent systems to deliver the functions
required to disconnect and reconnect constituent systems. [47] regards SoS
as dynamic entities, while [222] discuss approaches to the use of runtime
safety models to enable dynamic reconfiguration of open SoS.

In contrast with evolution, which refers to the capacity to support planned
changes on a slower scale, this dimension refers to the technical abilities
an SoS has to change its composition during operation, such as on-the-fly
swap-in and a pluggable architecture. To support the dynamic behaviour, SoS
models must have abstractions for the dynamic modification of architectures
and interfaces, and the capacity to reason about such changing structures.

Emergence of Behaviour

Emergence refers to the behaviours that arise as a result of the synergistic
collaboration of constituents. Reliance is typically placed on the delivery
of some emergent behaviour in order to deliver a higher functionality than
delivered by the constituents separately. Several significant papers, including
[167] and [17], refer directly to the need for emergence.

The reliance placed on emergence raises the demands of SoS modelling
and analysis methods [257]. Emergence is difficult to predict and capture be-
cause emergence cannot directly be designed. Having executable models al-
low model simulations to reveal the behaviour of the constituent systems and
the interactions between them, and as result will show emergent behaviour of
the SoS.

Interdependence

Interdependence refers to the mutual dependencies that arise from the con-
stituent systems having to rely on each other in order to fulfil the common
goal of the SoS. If the objective of a constituent system depends on the SoS,
then the constituent system itself may have to sacrifice some of its individual
behaviour in order to meet the requirements of joining SoS.
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Including both “Independence” and “Interdependence” may appear con-
tradictory. However, some authors take the view that an SoS requires trade-
offs between the degree of independence in the constituent systems and the
interdependence required to reach the common goal [215, 11]. So while the
individual constituent systems are independent, the relations and interoper-
ability between requires some degree of interdependence. [47] notes that
the US Department of Defense’s differentiation between independence and
interdependence: A “family” of systems is seen as “a set or arrangement
of independent (not interdependent) systems that can be arranged in various
ways to provide different capabilities”, in contrast to the interdependence that
is seen as a characteristic of what is termed an SoS.

Modelling and analysis techniques should allow for the explicit identifi-
cation of interdependence, the tracing of mutual dependencies, and the ability
to use these links to assess the impact of constituent system changes.

Interoperability

Interoperability refers to the ability of the SoS to incorporate and create inter-
actions between a range of heterogeneous constituent systems. This involves
the integration and adaptation of interfaces, protocols and standards to enable
bridging between legacy and newly designed systems. The interoperability
concept appears in the literature as integration of capabilities [172], interoper-
ability and integration [138], heterogeneity [33, 45], “open at the bottom” [1]
and diversity [17].

The need for interoperability places requirements analysis methods used
in SoS Engineering. Methods are needed that will enable SoS engineering
teams to approach system integration in a systematic way that will keep SoS
characteristics in focus.

Contribution 1. Converged terms of the literature to identify dimensions
that enable SoS to be positioned in the SoS Engineering field

2.2.2 Related Work and State of the Art

Taxonomies are a known way of characterising and differentiating the proper-
ties of complex systems in order to identify the system types and the Systems
Engineering methodologies needed to develop them [10].
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Shenhar et al.[227] present a taxonomy for Systems Engineering that can
be used to distinguish between different types of systems. The purpose of
taxonomy is to make it easier to take decisions on which engineering practices
and tools to use for different system types. The taxonomy classifies systems
on a four-level technology range from Low-Tech to Super High-Tech, as well
as on a scope range from single-purpose to System of Systems. Shenhar et al.
does not consider a taxonomy directly for Systems of Systems.

D.A. DeLaurentis presents a taxonomy that is aimed at assisting in the
design and development of SoS [53]. A lexicon containing structures for
categories of systems and levels of organisation is used to establish the taxon-
omy, through which SoS challenges can be classified. The taxonomy position
the SoS challenges on the basis of “the predominant features in their struc-
ture and behavior” by characterising them in three categorisations that also
are denoted “SoS dimensions”. The dimensions are: System Type, Control
of Systems and Connectivity of Systems, which relate to: the proportion
between machines and human in the SoS, the degree of connectivity, and
whether the control is centralised or distributed, respectively.

The SoS dimensions mentioned here can be considered as axes along
which systems can be slid and positioned in a three dimensional space, while
the dimensions presented in Section 2.2, more can be considered as groupings
that each represent a certain characteristic of SoS.

2.3 Modelling and Simulation in SoS Engineering

Having a specific focus on Model-Based SoS Engineering the survey also
included a study of the current state of the practice in Model-Based tech-
niques [P189] within the SoS field. These were related to the eight dimensions
in order to identify the current challenges in performing Model-Based SoS
Engineering and to uncover future research goals for strengthening the use of
modelling in SoS Engineering.

2.3.1 Modelling

The survey showed that the use of modelling as an engineering tool has
naturally spread to the SoS Engineering field as a result of modelling being
applied for many years in other engineering disciplines [32]. In most circum-
stances it is the case that existing modelling notations are being transferred
directly from other fields and attempted applied to SoS engineering [72]. The
concern with using a modelling notation intended for another engineering do-
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mains or task is that these notations often are domain-specific languages that
are aimed a solving concrete problems [238]. This means that the notation
often will embody domain knowledge and be tuned to work at the right level
of abstraction for the problem domain [137, 136]. When starting to apply
domain-specific modelling notations to tasks outside the intended domain,
difficulties occur as a result of the engineering task, to which the notation
is applied, not mapping to the notations targeted domain. This entails chal-
lenges in: maintaining models, encounters with constraints of the notation,
and difficulties in reasoning about the model as the system size increases [89].

One of the main challenges for modelling languages aimed at SoSs is
to ensure that they have well-founded semantics; as many of the modelling
languages in the current practice do not. As SoSs have a high degree of
Distribution, the modelling languages must be able to express the notion
of multiple independent execution platforms that can be interconnected. A
particular focus should be the languages’ ability to include Interoperability as
part of modelling the individual constituent systems and their relationships.

In the current modelling efforts agent-based approaches are used to model
the Autonomy of SoS. A main challenge of doing SoS modelling is to embed
this aspect into more modelling languages by including constructs that enable
users to describe autonomous behaviour; in particular of how humans act in
relation to the SoS. Likewise, modelling languages need constructs that can
describe the Dynamicity of Behaviour in order for the models to express the
dynamically changing infrastructures which enables the constituent systems
to initiate and break their interrelationships.

As such it makes sense to define modelling languages dedicated to the
modelling of SoS, but there has been few attempts in the literature [71, 86,
163]. Besides the CML notation, described in Section 1.3, another key con-
tributions is a modelling formalism in which components form the basic
structural elements of the SoS and the behaviour of the SoS is described
by parameterised state charts [86]. This formalism is concentrated on stat-
ically as well as dynamical characteristics and has a strong focus on adaption
and evolution of SoS. Graph grammar and transformations rules are used to
describe reconfigurations and changes in the overall system structure and as
such addresses the adaptivity of SoS [102].

As the integration and relationships between the constituent systems is
a fundamental part of SoS, an important part of modelling in SoS Engi-
neering is systems architecture and composition. However, in the existing
literature the direct usage of the terms ‘architectural model” and “architec-
tural modelling” in relation to SoS is rather sparse, and only few authors
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have a direct focus on SoS architecture, and mostly in relation to Enterprise
Architectures [161].

Selberg and Austin demonstrates how using more standardised interfaces
enable an easier integration of new constituent systems into the SoS archi-
tecture as it evolve [224]. Given a lack of formal methods supporting proper
engineering of SoS, there is a recommendation for using formal models to
provide analysis capabilities as a way of dealing with the otherwise unman-
ageable increase of complexity.

Kilicay-Ergin et al. has a focus on SoS architectural modelling, but see
a limitation in using static frameworks and methodologies for architecture
development as they do not provide a way to analyse dynamic evolution of
system state or behaviour [129]. In order to reveal and analyse the behaviour
of the overall SoS architecture they advocate the use of executable models.

2.3.2 Simulation

Executable models or model simulation is one of the most frequently used
forms of model analysis. In order for the simulation of an SoS model to be
efficient it must be able to show the characteristics of an SoS. If the main
characteristics can be incorporated into the model, the volatile characteris-
tic emergent behaviour has a much better chance of being detected through
simulation of the model.

One SoS characteristic that is particularly well suited for simulation is the
aspect of Autonomy. Simulating an SoS will show system behaviours and the
constituents’ interactions, which would be very difficult to predict by merely
analysing the models or systems statically.

An SoS simulation environment should also support the Independence of
the constituent systems, by allowing both stand–alone and combined simula-
tion of models. The constituent systems may be described in separate models
that need to be simulated both individually and in combination with models
of other parts of the SoS.

An SoS simulator should be capable of capturing the Dynamicity of Be-
haviour that occurs as a result of the dynamically changing system topology,
such that the dynamic changes can be communicated to stakeholders.

In the existing literature, the focus of model simulations of SoSs is prima-
rily on using the models for training purposes for different kinds of personnel
or for modelling human behaviour in the SoS. Agent-based technology is
typically included when it is desired to include the human in the simulation
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loop [8]. Thus, the use of agents are often used to explore human behaviour
and socio-technical aspects in an SoS scenarios [92, 166].

Examples can be found that attempt to create a general modelling and
simulation approach aimed directly for SoS. One such example is presented
by Kotov where a C++-based library is presented for modelling and simula-
tion in an SoS setting [133]. A similar generic approach extending the Unity
language to an SoS setting can be found in Gamble and Gamble [82]. Sahin et
al. presents a framework for the architectural representation and simulation
of an SoS based on Discrete Event System Specification (DEVS) and the
exchange between constituent systems defined in XML [217].

Part of the literature on SoS simulation has a focus on interoperabil-
ity between simulations and models running in distributed simulators. The
majority of the literature is focused on High-Level Architecture (HLA) sim-
ulation interoperability [156]. HLA has primarily been used for coupling dif-
ferent existing high-fidelity, defence-related simulators together. Distributed
Simulation is described in more details in Section 3.4.

2.4 Integration

When considering the basis of SoS as being a system that composes other sys-
tems which interact and exchange data between each other, it is evident that
system integration is a central challenge in SoS engineering. The SoS dimen-
sions: Interoperability, Interdependence and Independence all have a relation
to integration. They have implications and dependencies on the engineer-
ing practices being applied in joining and assembling complicated systems.
The Interoperability involves composing and enabling interactions between
heterogeneous systems through the adaptation of interfaces, protocols and
standards. The Interdependence dimension sets forth demands to the inte-
gration methods being applied as it has to deal with mutual dependencies
between the constituent systems being integrated. The complexity in the inter-
dependence comes from the constituent system themselves potentially having
to sacrifice some of their individual behaviour in order to enable the in-
tegration that will fulfil the common goal of the SoS. The dimension of
Independence entails that the constituent systems have the capability to op-
erate separately from the SoS and such may not be fully committed in their
participation in the SoS. Therefore, they may difficult to integrate as it may
not be feasible to adjust their data types or interfaces.

The importance of integration and well-functioning interactions between
the constituent systems is well known in the SoS Engineering field, as such
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it is a topic for which research and development is considered highly im-
portant [221, 158]. Mane et al. focuses on the role system interdependen-
cies structures in achieving successful SoS integration [171]. M.J. DiMario
address the SoS integration challenges by looking at three different types
of interoperability: at the programmatic, constructive, and operational lev-
els [56]. These relate to: system acquisition, linkages between engineering
teams and organisations, and linkages between systems seen from a oper-
ation or technical point of view, respectively. M.J. DiMario sees a primary
interoperability challenge between legacy and new systems, and calls for an
increasing understanding of the interoperability and improved engineering
methods to establish SoS centric systems.

Doing systems integration successfully and creating interactions between
heterogeneous systems has been a major challenge for several decades and is
known as being difficult and complicated [138]. Integration depends on: the
available technologies ability to allow for connectivity between systems; how
well-defined the semantics of the transferred data are; how easy the systems
architecture can provide sharing of data and the functionalities between sys-
tems; and finally it depends on how transparent the integration is to the end
user [195].

The challenges of systems integration is well-known in software engi-
neering projects and this has led to various methods and approaches targeted
at strengthening integration [209, 12]

2.4.1 Research Conducted

In [P125] we took a common development technique from the Software En-
gineering field and adjusted it such that it could be applied in an SoS context.
We looked at the use of software design patterns and developed a way of
systematically identifying and applying them in order to support SoS engi-
neering in addressing integration challenges. The use of design patterns is a
common practice in software engineering, where a generic solution that is
continuously applicable to a specific common problem is detailed in a type of
solution template [83, 60]. The value of design patterns is that they represent
the distilled wisdom of thousands of projects that have gone before and as
such offer a solid foundation to solve the problem at hand.

In the paper we presented an approach that can characterise design pat-
terns for SoS integration. Taking an architectural perspective on SoS design,
the paper provides: 1) a classification for the design context the SoS is devel-
oped in and 2) an identification of which properties that characterise the SoS.
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The purpose of the classification is identifying which patterns are relevant for
solving the integration problems for a particular SoS.

The classification is built around a set of categorisations that enable the
scope and context of the current SoS to be classified, such that the relevant
integration patterns can be identified. A template has been created that defines
the classification and is used to characterise integration patterns. The classi-
fication makes use of four categorisations for determining the SoS develop-
ment context and five categorisations for determining the technical context.
An overview of the classification template is shown in Table 2.3

Attribute Value Range
Name 〈 Short descriptive text 〉
SoS Scope System of Systems, Systems
Development Context Greenfield, Brownfield, Closed Source

Integration Purpose
One-Directional, Information Exchange, Bi-
Directional, Information Exchange, Control,
Negotiation

LISI Isolated, Connected, Functional, Domain, En-
terpise

PAID Attributes Procedures, Applications, Infrastructure, Data

Integration Level
Information Exchange, Basic Behaviour Inter-
action, Complex Behaviour Interaction, User
Interface Sharing

Data Abstraction Level Structural, Syntactic, Semantic

Data Level Integration File-Transfer, Message-exchange, Streams,
Common Data

Interaction Style Send, Call, Call-Return, Call/Call-Back, Time-
Based, Multi-Call Protocols

Quality Attributes of Integration
Reliability, Performance, Security, Availabil-
ity, Interoperability, Scalability, Manageability,
Consistency

Pattern defined by 〈 Reference to pattern literature 〉

Table 2.3: Template for SoS integration pattern classification

The SoS development Context categorisations are concerned with the set-
ting in which the SoS is developed and is focused on the scope and context
of the system. The categorisations are:

System of Systems Scope determine if the scope of the SoS has been firmly
defined.
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Development Context specifies the development stage of the SoS, e.g. an
entirely new system, modification of existing systems, integration of
legacy systems.

Integration Purpose details the flow of data and how decisions are taking in
the SoS between the constituent systems being integrated.

LISI and PAID allows for a relation to the Levels of Information System
Interoperability (LISI) and Procedures, Applications, Infrastructure, and
Data (PAID) interoperability models [90].

The technical context is concerned with the specific technical aspects of the
integration and they allow for more fine-grained details of the integration to
be applied.

Integration Level determines how tightly coupled the constituent systems
need to be.

Data Abstraction Level details how and how well shared data is understood
between constituent systems.

Data Level Integration specifies how data technically is being shared.
Interaction Style describes how data flows and interactions between con-

stituent systems occur.
Quality of Integration contains quality attributes such as performance, in-

tegrity and scalability.

This template was applied to a range of patterns found in a survey on
software literature, and a collection was gathered [P124]. The purpose of this
was to create a repository of software integration patterns and attach them
to a classification aimed at determining their applicability to a specific SoS
integration challenges. Having an understanding of the characteristics of the
constituent systems, the infrastructure, and the data in the system is critical
in dealing with SoS integration and as such the purpose of the approach is to
present a way of considering and evaluating patterns for SoS integration.

Contribution 2. Classification for identifying design patterns that aid the
integration challenges in SoS Engineering

2.4.2 Related Work and State of the Art

There is a vast amount of material in the literature that focuses on integra-
tion challenges in software and on using patterns to aid the field of software
engineering. While the existing approaches and software pattern collections
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for addressing integration problems are useful, they focus on the integration
problem in a generic way that is not specific to an SoS-context, or make
implicit assumptions that are not directly applicable in SoS Engineering. On
the other hand, the literature focused on using software patterns for dealing
with SoS integration challenges is rather sparse.

Morris et al. have a specific focus on the challenges in making both
systems and organisations work together [181]. They present the System
of Systems Interoperability (SOSI) model which aims at identifying inter-
operability problems for which solutions or partial solutions are possible.
In the same way as presented above, the SOSI model also make use of the
LISI and PAID models as part of its system characteristic. The SOSI model
differs in taking a broader view on SoS integration, as while it has fewer
characteristics in the technical integration it also includes characteristics for
program management and system operation. The SOSI model is not focused
on identifying concrete design patterns, but attempts to identify engineering
methods at a higher level.

Ingram et al. [109] presents a study on modelling patterns and architec-
tures for SoS, with the purpose of establishing a better understanding on how
patterns can support architectural reuse and increase system comprehension.
The study identifies the requirements for an SoS architectural design pattern
and surveys the literature in order to identify existing patterns. For each iden-
tified pattern there is a focus on the background, aims and structure of the
pattern from which a justification for the patterns use in an SoS context is
derived. The approach differs from the one presented in [P125] in the way
the patterns are selected. The approach in [P125] uses four categorisations
for determining the SoS development context and five categorisations for
determining the technical context, while the approach by Ingram et al. selects
the patterns on the basis of architectural principles with a focus on Maier’s
five SoS characteristics [167] (presented in Section 2.1).

2.5 Collaboration Study

A key factor in advancing the SoS Engineering field is the existing devel-
opment practices and methods being driven in the direction the challenges
of SoS, especially in relation to its technical aspects. Formal methods are,
for instance, well-suited for addressing technical challenges related to spec-
ifications and analysis of structures and behaviours. The SoS Engineering
field does, however, face socio-technical challenges as well, as a result of
the numerous stakeholders that are involved in SoS development [160]. It is
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well-known that humans play a role in the challenges and solutions of the
SoS Engineering field, as the establishment and development of interactions
between the constituent systems rely on human to human interaction [221].

The challenges arise partly because of 1) the complexity of SoS and partly
because of 2) human-behaviour [52]. The complexity of SoS can make the
systems difficult to grasp, and the many facets and details of the system
leaves a large space for interpretation in which each person can take their
own unique angle. When constituent systems are being connected during the
creation of an SoS it requires some type of convergence in order to establish
interaction and interoperability. Human-behaviour can however make this
a complicated task. In such a process, humans can express a large degree
of self-interests and conflicting perspectives, which can cause uncertainty
and ambiguity in the system design. Out of a need for handling incompat-
ibility, design conflicts and stakeholder interests; human decision–making is
an important part of SoS Engineering [177], although it comes with some
challenges.

Parts of these challenges are expressed in the Autonomy and Indepen-
dence dimensions, as they make it challenging to anticipate the system be-
haviour. They entail that the constituent systems have different stakehold-
ers, have been developed individually and are self-contained. This makes
it more difficult to reach agreements on design, anticipate the behaviour of
system and handle system changes and evolution. The heterogeneity of the
constituent systems means that diverse stakeholders need to exchange infor-
mation and negotiate agreements on how the constituent systems are going to
interact. This is challenged not only by the self-interests of the stakeholders,
but also by the Interoperability dimension which entails the adaptation of
interfaces, protocols and standards. The interaction between the human stake-
holders is also hindered by the Distribution dimension that entails that both
systems and humans involved in the development may be globally dispersed,
which places a necessity for precise and efficient information exchange to
support the engineering of the SoS.

Having geographically distributed stakeholders that have to work together
on a common project is not a new challenge in the field of engineering.
Since the mid-1980s research and development has been carried out in or-
der to make computer applications support groups and organisations [91].
Grouped under the term Computer-supported Cooperative Work (CSCW) it
involves a range of different methods for collaboration, such as electronic
meeting software, video-conferencing systems and collaborative authorship
applications. While there is a general focus on supporting and coordinating
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collaborative activities through the use of computers, there is one part of
CSCW that mainly focuses on tools and techniques for collaboration, and
another part that has to do with the social and psychological aspects of col-
laborative work [34, 40]. The work presented here does however focus on the
tool aspects of collaboration.

The Software Engineering field has seen an increase in the use of globally
dispersed development teams, which has led to an increased focus on the chal-
lenges of doing distributed development [101]. As development activities are
distributed across different geographical locations and organisations, issues
begin to appear with respect to precise communication and effective coordi-
nation between the distributed collaborators. These issues are connected with
the way engineering teams work, seen from a technical and social point of
view, as well as on the availability of tool-support that can support collabo-
ration [6]. The socio-technical challenges arising from software development
being performed in a distributed manner has led to the development of the
engineering paradigm Global Software Engineering (GSE) [100]. GSE is
focused on the coordination and collaboration challenges of distributed soft-
ware engineering and researches how distributed software engineering can be
improved [104]. GSE has a close relationship with CSCW and has many of
the same focuses, just with an emphasis on Software Engineering.

The challenges in collaboration are not unknown to the Systems En-
gineering field either, and the development of distributed collaborative en-
vironments for Systems Engineering has previously been proposed in the
literature [175]. The research on collaborative development is sparser within
both the SoS Engineering and the formal modelling field, meaning that the
literature contains a gap in the area of collaborative development of formal
models for SoS.

2.5.1 Research Conducted

In [P186] we presented the results of a case study that was focused on ex-
amining the challenges related to doing collaborative development of formal
models of an SoS. The purpose of the case study was to obtain more informa-
tion on the challenges, processes, advantages and disadvantages of collabo-
rative SoS modelling. The goal was to gain knowledge on how the modelling
of SoS can be approached and what the challenges are of developing them
collaboratively.

The case study involved an emergency management SoS in which differ-
ent emergency services were involved. The emergency management SoS was
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responsible for providing the needed information exchange between various
emergency services in the case of an emergency. The study was of an aca-
demic nature and as such the role of each emergency service was played by
the university partners in the COMPASS project. The case study was however
inspired by an emergency management system developed by the COMPASS
project industrial partner: Insiel. The study involved a total of five partners
from four countries stretching across two continents.

In the case study the different emergency services needed to collaborate
in order to solve a given emergency situation. The services had different roles
(e.g. Police, Fire and Rescue, Ambulance services, etc.) that each provide
and require different capabilities and types of information. Each emergency
service represented a constituent system and the combination of these formed
the overall emergency management SoS. Consequently, each involved part-
ner represented a collaborator which was the stakeholder for one emergency
service constituent system. The emergency situation gave some information
about the emergency that was globally known and some “private information”
that was only known by the individual emergency services. This information
may be irrelevant to others, it may be confidential, or it may be information
that is vital for some of the other services.

Each emergency service was asked to determine certain information that
only could be obtained via some of the other collaborators in the emergency
management SoS. This created a scenario, where each collaborator had to
consider the implications and side effects of participating: concerns for in-
teroperability, data sharing across organisational boundaries of the various
services, and in determining the necessary level of information sharing and
collaboration.

In the study the collaborators were asked to create a CML model of their
respective constituent system, and to create a joint CML model for the overall
emergency management SoS. The collaborators were asked to create the:
channels, interfaces, data types and interactions needed in order to solve a
given emergency.

As part of the rules for the study some limitations were introduced as to
how the collaborators were able to communicate. The main limitation were
that the “private information” only known by the individual collaborators
should not be shared directly through e-mail or similar means, but only be
expressed and exchanged through channels and data types defined in the
CML models.

The study ran over the course of three months in which the collaborators
discussed system functionality, interfaces, data types, etc. in order to create



2.5 Collaboration Study 45

and evolve their models. There was no group attrition during the study. In
addition to the collaborators the study had an observer who did not take part
in the modelling effort. During the study the considerations and negotiations
taking place were shared with the observer as a form of passive participant
observation and as such the collaborators were aware of the data collec-
tion [223]. The observer was never present during the modelling effort itself,
but only notified of the electronic or verbal exchange between collaborators,
in order to be as unobtrusive as possible.

During the study the models developed by each of the collaborators were
handed-in at certain deadlines, and as such the models functioned as a type
of trace data from which the progress and approaches could be seen. Fi-
nally, self-reported data collection was performed during two joint physical
meetings where the study was discussed between all collaborators and the
observer.

Consequently, the study is based on observation data of a small project
study. While a degree of participant reactivity is inevitable, it is considered to
be of a minor degree; partly because the focus was on practical engineering
challenges and not on the performance or behavioural facets of the collabo-
rators, and partly because the study was of an academic nature. This meant
that the study was not directly related to the professionalism or personalities
of the involved collaborators, as it may be in more sociological studies with
a stronger focus on the social processes.

The study showed that the collaborators experienced the most problems
when it came to: 1) exchange of model information, 2) agreeing on design
decisions. In connection with the first problem the collaborators found that it
was difficult to exchange the CML models as there was no process or tool-
support for handling this. This meant that the models mainly was transferred
via e-mail, which caused further challenges with versioning and traceability
as well as the hassle of the models being manually moved in and out of the
modelling tool. In sharing the models they also encountered the problem of
inadvertently sharing information that was not meant to be shared, as some
of their private information was encapsulated in the model. With the second
problem a large part of the effort spent by the collaborators was on ensuring
the interoperability between the constituent systems, as a joint model for the
overall SoS needed to be established on the basis of the CML models of the
constituent systems. As it was expected, with the knowledge from CSCW and
GSE, collaborating and agreeing on design decisions was a difficult, time-
consuming and error-prone process. While it was possible to converge and
reach a level of agreement through e-mail discussions, it became troublesome
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at the modelling level as discrepancies and inconsistencies would appear be-
tween the individual models, especially on specifics such as shared data types
and naming of communication channels and type names.

The experiences and discoveries of the study was used as the base for
further research, which is presented in Section 3.3.

Contribution 3. Identified challenges with collaboration in relation to
using formal modelling for SoS Engineering

2.5.2 Related Work and State of the Art

Collaboration and working in groups have been intensively studied within
many professional fields, and with the investigation being carried out by many
different research fields, among which psychology and sociology are the most
dominant. Giving details on these general studies are outside the scope of this
dissertation, but a review of the research on team formation, socialisation,
development and processes can be found in Kozlowski et al. [134] that also
provides survey of the psychological research on team effectiveness in [135].

Instead this section will focus on the studies that have been performed
on collaboration within the fields of SoS Engineering and formal modelling.
Working collaboratively is not new in the field of engineering [50], but it
has not had a strong focus within SoS Engineering nor in the formal mod-
elling field, where the research on distributed development teams working
collaboratively is limited.

A design framework has been presented that can define the role and pro-
cess characteristics of collaboration in SoS [98]. The framework focuses on
the differences in opinions of stakeholders and on the policies define between
them to achieve a satisfactory collaboration. The policies and processes of the
collaboration can be described in a collaborative meta-model and be analysed
using software agents [97]. The framework is focused on the business aspects
of SoS development and the meta-model is more to be considered as type of
a taxonomy than a formal model.

Bryans et al. use the formal modelling technique the Vienna Develop-
ment Method (VDM) (presented in Subsection 1.3.3) to map and arrange a
type of collaborative alliances known as “dynamic coalitions” [24]. Dynamic
coalitions are similar in concept to “virtual organisations” and both terms
describe a type of collaboration between individual systems or stakeholders
that form temporary partnerships in order to achieve specific goals. Their
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associations with each other are unstable and they can vary in architecture,
scale and complexity. As such they express many of the same characteristics
as SoS, although the they do not express the same degree of joint evolution as
SoS. Bryans et al. use a case study on collaboration between chemical firms
to investigate aspects such as membership, ownership and trust [25].





3
Tool-support for System of Systems Engineering

The field of engineering has always been aided by tools to help in the analy-
sis and construction of systems [84]. In the field of software engineering
Computer-Aided Software Engineering (CASE) tools are used by software
engineers to organise, model and study the systems and software being de-
veloped [27]. The use of software tools for aiding the engineering process has
been adopted from the hardware manufacturing process as a way of adding
a more disciplined and structured development process [201]. This chapter
focuses on research performed in this PhD project on providing software
tools that can strengthen the field of System of Systems (SoS) Engineering.
The research in tool-support is focused on addressing the challenges iden-
tified in Chapter 2 and the developed methods and tool-support is aimed at
covering the dimensions presented in Section 2.2. The tool-support is pro-
vided through modifications and extensions of existing software tools and
modelling language notations.

The tool-support has partly been added to the Overture Tool that is aimed
at supporting the Vienna Development Method (VDM) modelling language
and the partly to the Symphony tool suite that is aimed at the modelling and
analysis of SoS in the COMPASS Modelling Language (CML) notation.

Section 3.1 presented the tools in further details. Section 3.2 presents
an approach for adding dynamic reconfiguration capabilities to the VDM-
RT notation and the Overture tool in order to enable the description and
simulation of the Evolution and Dynamic Behaviour dimensions. A tool-
extension for the Symphony tool which enables it to become a Collaborative
Development Environment (CDE) with the purpose of aiding the challenges
of collaboration between SoS engineering teams (identified in Section 2.5)
is presented in Section 3.3. An additional tool-extension of the Symphony
tool that allows collaborating engineering teams to perform distributed simu-
lations is presented in Section 3.4. Finally, an extension of the Overture tool
that allows model to be integrated with externally defined code libraries, and
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an extension of the Symphony tool that enables SoS models to be connected
and simulated with externally running systems, is described in Section 3.5.

3.1 The Overture and Symphony Tool Suites

The developed tool extensions have partly been implemented in the Over-
ture tool suite which supports VDM models, and partly in the Symphony
tool suite which supports CML models. At the beginning of the PhD project
the Symphony tool did not yet exist. Consequently, the first tool-extensions
were developed for VDM models and the initial research was studied with
the use of tool-extensions for Overture tool. During the course of the PhD
project the Symphony tool came to life and was continuously developed to
an increasingly mature tool. When the Symphony tool had reached a level
of maturity where SoS models could be analysed and simulated, the research
moved to the new platform. As such the later research was performed and
studied in tool-extensions that were developed for the Symphony tool. This
section provides a brief introduction to both tool suites.

3.1.1 The Overture Tool

The Overture Tool is a tool suite for the modelling technique VDM, aimed
at supporting the modelling and analysis of computer-based systems1 [144].
The Overture Tool consists of an Integrated Development Environment (IDE)
build on top of the Eclipse platform [59, 180] and a core part that has its origin
in VDMJ [13], all written entirely in Java. The IDE provides the graphical
user interface with file manager, editors with syntax highlight, debug func-
tionality and all the plugins that gives access to all the different types of
validation and verification functionality delivered by the tool. The core of
Overture provides the main part of the model validation and verification as it
contains functionality such as the type-checker, the interpreter and the proof
obligation generator, etc. An overview of the Overture Tool is provided in
Figure 3.1.

The Overture tool is an open source initiative initiated in 2003 [69] with
the purpose of creating an industrial-strength tool that could support the de-
velopment and analysis of all of the VDM dialects. The purpose of the tool
being open source is to allow researchers and other interested forces to make
the modifications and tool extensions needed to perform experiments.

1 http://www.overturetool.org/

http://www.overturetool.org/
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Figure 3.1: Overture Overview - adapted from [151]

The Overture tool makes use of an Abstract Syntax Tree (AST) that is
central to the core components of the tool [193]. As part of the Overture
project, the AstCreator tool exists that can perform automatic code genera-
tion of the Java classes that make up the Overture AST on the basis of an
AST script file. The AstCreator tool includes a functionality that allows the
Overture AST to be extended to allow reuse of existing features. Having the
central AST enables tool developers to access the VDM models contained
in the tool, in a uniform way. The open source aspect of the tool allowed
for active research in the tools for VDM and a range of advances have been
made for the tool [147, 145, P191, 42] including a translation between VDM
models and UML [153] and a translator for VDM to Alloy [152].

The source of Overture tool being open was also utilised in the research
performed in this PhD project. Having the ability to modify the source code
made it possible to make adjustments to the interpreter which is used to per-
form the simulations of the executable VDM models. The changes made to
the interpreter was made to enable the dynamic reconfiguration capabilities
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described in Section 3.2 and to allow VDM models to be integrated with
externally defined code libraries, as described in Section 3.5.

3.1.2 The Symphony Tool

The Symphony tool suite is developed as part of the COMPASS project to
provide a platform that can support the systematic engineering of Systems
of Systems2 [72]. The Symphony tool provides an extendible platform for
tools and plugins aimed at model construction, simulation, proof obligation
generation, static analysis by model-checking, and test automation3 [41]. In
addition to this the tool integrates with the RT-Tester4 tool to provide test
automation and with Artego Artisan Studio5 such that the abstract structures
of the overall SoS can be described at an architectural level using SysML.
A Transformation Development Kit in Artego Artisan Studio has been used
to develop a transformtion from a SysML model into a CML model. An
overview of the Symphony Tool is provided in Figure 3.2.

The Symphony tool is a close cousin of the Overture tool and parts of the
functionality of the Symphony tool builds directly on parts of the Overture
implementation. In fact the AstCreator for the Overture is also used to gener-
ate the AST for the CML notation. The extension feature of the AstCreator,
as mentioned in Subsection 3.1.1, is used and the VDM AST lays the basis
for the CML AST. Specifically, the VDM-derived elements that exist in the
CML notation are type checked using the Overture type checker. Having a
close relationship between the Overture and Symphony tools allowed for the
existing competencies gained from the development of the Overture tool, to
be utilised in the development of the Symphony tool.

As with its close relative the Symphony tool is also an open source project
based on the Eclipse platform, and several of the basic components of the
Symphony IDE have their origin from the Overture tool. As such the tool
has a strong focus on extensibility and within the COMPASS project the rich
plug-in functionality of the Eclipse platform is used to add the tool support in
modular manner. For instance all of the analysis modules, such as the Proof
Obligation Generator, the theorem prover and the plug-in for test automation,
are added as plugins.

2 http://www.compass-research.eu/
3 https://github.com/symphonytool/symphony.org/
4 https://www.verified.de/products/rt-tester/
5 http://www.atego.com/products/artisan-studio/

http://www.compass-research.eu/
https://github.com/symphonytool/symphony.org/
https://www.verified.de/products/rt-tester/
http://www.atego.com/products/artisan-studio/
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The dynamic plug-in structure of the Eclipse platform was used to add
the CDE to the Symphony tool, as described in further details in Section 3.3.
In the same way as with the Overture tool, having the ability to change the
source code, on a separate branch, made it possible to modify the simulator
in order to enable distributed simulation, as described in Section 3.4.
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Figure 3.2: Symphony Overview

3.1.3 COMPASS Modelling Language - Symphony Internal Simulation
Representation

When the Symphony tool is used to analyse and simulate CML models it has
an representation of the model it uses internally. This subsection supplies the
fundamentals of the representation needed for understanding the Symphony
tool changes that are presented in the following sections.

During simulation of the CML model the progress occurs by the CML
processes being triggered by events occurring on channels. Inside the sim-
ulator the term behaviour is used to represent processes and actions during
simulation. It is the actions in processes and the current events on channels
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Figure 3.3: The system before and after the children of top process has been
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that determine which events will be available next. The simulator inspects the
behaviours in order to determine the next steps that can be taken in the sim-
ulation. Consequently, an inspection produces a collection of next possible
events that can be executed. Once a step is taken the simulator will execute
the related behaviour, potentially creating events that trigger the synchroni-
sation between processes. This leads to new model state and an inspection
is performed again to find the next possible events. Internally, the simula-
tor continuously call inspect and execute commands in order to perform the
simulation.

Within the simulator, a CML model is represented as a tree structure of
behaviours. The top process is used to define the entry point for the sim-
ulation and the simulation is performed by traversing the tree top-down to
inspect and execute underlying behaviours. A composed process could for
instance have two children representing behaviour A and B . A parent in the
tree structure functions as a coordinator for its children, meaning that it will
filter the collection of events available to the children and thereby control the
possible execution. The inspection of the composition defined for process P
will result in the collection of events to be gathered, as shown in Figure 3.3.

3.2 Dynamic Reconfiguration

The Evolution and Dynamic Behaviour dimensions present challenges for
SoS engineering as they set forth demands for handling and analysing the
changes that will occur in the SoS. Not only must the SoS architecture itself
have the ability to dynamically reconfigure the system topology in response
to evolving needs [221]. It also raise demands for the capabilities of the de-
velopment tools being used. Having a dynamic and adaptive system requires
some additional aspects of the development methods, than the engineering of
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a static system architecture where the structural elements remain the same.
Having a dynamic system means that the system topology may only be stable
for a short period and that the behaviour will change over time [176]. When
looking at complex dynamic systems it is known that the overall behaviour of
the system is dependent on its structure and internal relationships, not just on
the behaviour given by the constituent systems [75]. As such the dynamic
behaviour and evolution of an SoS not only cause changes in the system
composition it also changes the behaviour of the SoS. This may entail loss
of performance, changes in the emergent behaviour or even system failure,

3.2.1 Research Conducted

In response to a lack of proper tool-support for describing and analysing
the evolution and dynamic behaviour of SoS we presented an extension of
the Overture tool that enables dynamic reconfiguration to be expressed and
simulated in VDM-RT [P187]. The purpose of the extension was to provide a
tool that could increase the certainty and confidence in the design and the de-
velopment process of an SoS. Being able to model and analyse the behaviour
occurring in a dynamically evolving SoS would make it easier to demonstrate
the consequences of design decisions to different stakeholders

VDM-RT is aimed at modelling and simulating system architecture and
behaviour of a distributed system by defining a system consisting of CPUs
and specifying the network topology connecting between them [243]. VDM-
RT was chosen because the modelling of SoS architectures require a mod-
elling notation that is aimed at describing distributed systems with the inter-
connection and communication between the constituent systems. However,
the original VDM-RT assumes a static set of hardware and software con-
figurations, which is a troublesome limitation when modelling systems with
highly dynamic behaviours.

The extension was two-fold: 1) minor changes were made to the nota-
tions of VDM-RT in order to better express the terminology of SoS field
and dynamic architecture changes, 2) a change to the simulator to allow
for dynamically changes of the network topology, the number of channels
and the number of constituent systems during the run-time execution of a
model. The intention is to enable a VDM-RT model to capture the fundamen-
tals of dynamic reconfiguration in an SoS and not to incorporated specific
reconfiguration techniques.

With the changes to the modelling language it became possible to describe
an overall system architecture of the SoS in a System class that contains
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a number of Constituent systems and a number of Channel types that es-
tablish communication links between the constituent systems. A constituent
system is a processing entity to which modelled applications can be deployed.
The dynamic reconfiguration of the system architecture is initiated through a
number of static reconfiguration operations that can be called on the system
class. When simulating the model the reconfiguration operations can add and
remove constituent and channels dynamically, as well as change the network
topology dynamically by connecting and disconnecting constituents to and
from communication channels.

The effect of the extension was examined through a road safety case
study. The studied SoS uses an intelligent traffic infrastructure that enables
communication and data exchange between vehicles in order to increase the
traffic information available. As vehicles pass each other on the road they will
create wireless networks through which they can co-operate. The system is
highly dynamic as the constant movement of the vehicles result in a constant
change in connections and relations. As there is no central entity and the be-
haviour of the overall system is based on an unrestrained web of relations, the
study was used to examine how well the tool extension enables the modelling
of such an SoS. The modelled system with the connections and exchange
of traffic information is visualised in Figure 3.4. The visualisation is made
possible by the research presented in Section 3.5.

Having the ability to express the dynamically changing and evolving na-
ture of the SoS directly in the model made it possible to better reflect the
systems altering structure and reveal the behaviour of the SoS as the vehicles
moved around.

Figure 3.4: Communication and network between vehicles
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Contribution 4. Approach for expressing and simulating the SoS dimen-
sions of Evolution and Dynamic behaviour in formal SoS models

3.2.2 Related Work and State of the Art

The dimensions of Evolution and Dynamic Reconfiguration has been researched
before, both in connection with SoS and formal modelling.

A. Meilich focuses on net-centric environments [194] as means of intro-
ducing adaptive architectures that enable systems to have run-time flexibil-
ity and be composed over time [178]. This flexibility comes at the price of
predictability, but model simulation presented as a way of addressing this
challenge as it enable experiments to be performed as the system evolves.

Sahin et al. presents a framework that uses a combination of Discrete
Event System Specification (DEVS) and XML for making architectural de-
scriptions and simulations of SoS [217]. DEVS is a discrete-event formalism
for building hierarchical systems by defining components and their intercon-
nection, and simulating the interactions between them, including the run-time
addition/removal of couplings and components. DEVS is used to represent
the structure and behaviour of the SoS, while XML is used for the data
communication between the modelled constituent systems. DEVS and VDM
are both capable of modelling discrete event systems but they use different
approaches. DEVS has an origin in systems theory and has a strong focus on
state transitions, while VDM has a formal methods origin with a set-theoretic
foundation.

Kotov presents an object-oriented framework aimed at the modelling and
analysis of SoS [133]. The Communicating Structures Library (CSL) frame-
work describes an SoS as a range of system components represented by
nodes that are connected through nets. Nodes can represent a range from
microprocessors to computer clusters, and nets can represent anything from
peer-to-peer network to busses. Procedures known as Processes are used to
send data between nodes and as such function as the driving force of the
model simulation. The framework is aimed at modelling and simulating sys-
tem behaviour, interactions, message flow and system scalability. As such the
CSL framework is comparable with the VDM-RT and Overture extension,
but differs in the way that VDM-RT has the main processing and behaviour
enclosed in the systems themselves and there is a stronger focus on changing
the topology dynamically, than found in CSL. CSL on the other hand provides
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capabilities for compositional system structures through the use of sub-nodes,
which cannot currently be performed in VDM-RT.

From a formal modelling perspective Johnsen et al. presents an approach
for the high-level modelling of distributed systems with diverse quality net-
works with the purpose of analysing properties of heterogeneous nets [117].
The work is an extension of the executable object-oriented modelling lan-
guage Creol [118] to enable the modelling of dynamic reconfiguration of
networks between components. A system class defines the network topology
and the class can be used to reconfigure the topology, an approach that is very
similar to the approach presented here. In contrast to adding new operations
to perform the reconfiguration, Creol introduces new language keywords and
guard predicates are used to determine the configuration changes, addition-
ally Creol uses a notation that designates the entire system as the system,
while the constituents systems are placed in components. Creol is however
not focused directly on SoS Engineering.

3.3 Collaboration

Through the results and experiences gained from the study presented in Sec-
tion 2.5, it was made clear that the SoS Engineering field is challenged by col-
laboration required to establish agreements and interactions between systems
and stakeholders. The collaboration required between both the independent
systems as well as the stakeholders of the systems raise challenges with both
technical and human factors. SoS engineering is dependent on the quality of
the collaboration between individual developers and owners of the constituent
systems in the SoS.

The Autonomy dimension of the constituent systems makes it difficult to
anticipate their behaviour, as they only are governed by their own rules and
details which they may not be willing to share. The dimension of Indepen-
dence means that the constituent systems are capable of operating indepen-
dently as they often have different owners and are developed individually.
Consequently, including these dimensions in SoS engineering entails both
a socio-technical element and a technical interoperability element. The var-
ied ownership means that humans need to negotiate an agreement on how
the constituent systems are going to collaborate. Properties such as inter-
faces, data types, resource consumption and the degree of confidentiality
need to be negotiated between geographically distributed development teams.
Additionally, the evolution of SoS entails that the individually owned con-
stituent systems will encounter changes or change requests from other con-
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stituent systems. These are decisions that require human decision–making
and negotiation between the owners of the constituent systems.

3.3.1 Research Conducted

The original approach for CML was limited by the aspects of diverse owners
and distributed development teams not being incorporated in the tool. SoS
models were developed in one large joint model, where the different devel-
opers had access to all parts of the SoS model. As such stronger tool-support
was needed to combine the rigor and level of precision made possible by
formal methods, with the collaborative efforts needed between the human
stakeholders involved. In [P188] we presented an approach that enables the
collaborative development of formal models of SoS via stronger tool-support.
The goal was to develop an approach that could keep a focus on core technical
aspects of SoS Engineering, while incorporating socio-technical factors. An
approach that not only would allow the analysis of structure, behaviour and
interactions of systems; but also of the behaviour and interactions between
stakeholders. A central element was to keep the technical aspect, such as sys-
tem structures and interfaces as the core of the development process, but also
ensure that the development steps support that different stakeholders have
different ideas and wishes for system structures and interfaces. The approach
builds on the idea that the development of SoS to a large degree depends
on the establishment of a successful collaboration between both systems and
humans.

The approach makes use of the Symphony tool to establish a Collabora-
tive Development Environment (CDE) that enables the design and analysis of
the SoS topologies and interfaces to be developed and evolved collaboratively
between stakeholders. In a nutshell the CDE allows the Symphony tool to
work with other globally dispersed instances of itself and enables a complete
SoS model to be made up of distributed sub-models describing the individual
constituent systems. The CDE allows collaboration groups to be created, in
which stakeholders can work together on SoS design and development. Each
stakeholder has the CML model of their own constituent system encapsulated
in their instance of the tool, and can use the CDE to share certain parts of
their models, such as interfaces and data types. The CDE allows a range of
events to be communicated between the group members to form a modelling
session in which the SoS design can be described. Some of the possible
events include: proposals for establishing connections between specific con-
stituents’ system sub-models; the negotiation of interfaces; and the ability to
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identify and attend to inconsistencies between the different versions of the
sub-models. All collaborators that are in the Collaboration Group can send
events which ensure that the authority is distributed and no one has the control
of the group.

The CDE use shared data structure where a Collaboration Project contains
the Collaborators, i.e. other Symphony instances and a list of Configurations.
A Configuration consists of a range of files that make up the shared sub-model
which describes selected parts of the SoS. Each Configuration represents
a certain state of the sub-model. Collaborators can adjust their sub-models
locally before it is shared with the other collaborators. When the model is set
to be shared the current state of the model is locked in a Configuration that
is signed with the Collaborator’s name and the Configuration is forwarded to
the other collaborators. The shared model is considered as a proposal for a
particular part of the SoS architecture, and collaborators can use the CDE for
approving, rejecting or to evolving the model further. In evolving a model a
collaborator can make adjustments to the received model and re-share it with
the collaboration group. This enables a type of negotiation to occur between
collaborators as models continuously are adjusted and shared.

The connection between the Symphony instances is established using the
open-source Eclipse Communication Framework (ECF)6. The framework is
specifically aimed at establishing communication between distributed ap-
plications on the Eclipse platform using various common communication
protocols.

Contribution 5. Tool-support for collaborative development of formal
models in SoS Engineering via a CDE

3.3.2 Related Work and State of the Art

The use of Computer-Supported Cooperative Work (CSCW) and collabora-
tive development between engineering teams is well researched in the litera-
ture [210, 248].

Software Engineering has a focus on Model-Based collaboration tools to
support the negotiation between stakeholders in the requirements engineering
process [19]. The approaches do however generally use a modelling notation
such as UML or a type of structured templates in their collaboration. The
focus on collaborative development methods for formal methods in the lit-

6 http://www.eclipse.org/ecf/

http://www.eclipse.org/ecf/
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erature is however limited. The collaborative development approaches that
directly focus on SoS development are also sparse in the current literature.
J. Whitehead does however specifically note the need for stronger support in
multi-project and multi-organisation collaborations, as the current state is said
to raise “an emerging concern in increasingly large systems-of-systems [248].

The use of Distributed Collaborative Environment for Systems Engineer-
ing has been proposed by W.K. McQuay that provides a vision for an in-
frastructure for a system, which combines whiteboards, instant messaging,
visualisations, modelling and simulation to improve knowledge sharing be-
tween globally dispersed teams [175]. The proposed framework is however
at the conceptual level and has not been realised.

Geddes et al. propose a way of fostering collaboration in an SoS on the
basis of some foundational elements. It is noted that the collaborators in an
SoS have an interest in agreeing on a common goal, despite them having their
own interpretations and individual goals. Their willingness to participate in
the overall SoS serves as a confirmation that they will be willing to contribute
to the overall goals, as it will benefit their own individual goals. A key con-
dition for the collaboration is that information is interpreted in the same way
and that it is possible to establish a consensus on decision-making. A concrete
approach for achieving this is however not provided.

An approach for the distributed collaborative design of SoS with a spe-
cific focus on evolution has been proposed [208]. A framework is created
out of web services that software agents can use to communicate and ex-
change information on their interfaces and data types. A process is defined
for the information exchange that allows the interfaces and data types to be
evolved collaboratively. The approach does not make use of formal models
for describing system behaviour, but instead relies on dynamic UI generation,
virtual white-boards and a search service for finding the necessary agents for
the collaboration.

3.4 Distributed Simulation

The autonomy dimension entails that each constituent system and their stake-
holders are self-governing and can make individualistic decisions, which makes
it difficult to anticipate the systems’ behaviours. The behaviour of a system
can be revealed through the use of model simulation, and an SoS dimension
such as Emergence is to a large degree based on system behaviour and the in-
teraction between constituent systems. Stakeholder of the constituent systems
may however have a concern for using and sharing models for simulation pur-
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poses as precise specifications of the systems may reveal the implementation
of their systems. For competitive or confidentiality reasons stakeholders may
have an interest in keeping the implementations of their system hidden.

As such the traditional approach for simulation where complete mod-
els are simulated on one separate machine is not feasible for all types of
systems. As complex systems, such as SoS are represented by systems of
other interacting systems with various stakeholders, the use of a confined and
secluded model becomes insufficient. A way of approaching these systems is
through the use of distributed simulation, where individual stakeholders are
responsible for simulating certain parts of the overall simulation [49, 80].

3.4.1 Research Conducted

In [P192] we presented an approach where the connection made between
the collaborators in the CDE (presented in Section 3.3) is used to initiate
a distributed simulation session between Symphony tool instances. The ap-
proach utilises the CDE functionality that allows stakeholders to only share
parts of their model with the other collaborators. While the collaborators only
share parts of their model, the entire executable models of the constituent
systems are available on the different CDEs. This means that the entire SoS
can be simulated by the stakeholders simulating their individual parts of the
overall SoS model. This enables the stakeholders of the individual constituent
systems to contribute to the model simulation without having to share models
containing the details of their system’s internals.

When initiating and performing the distributed simulation, one CDE in-
stance will act as the coordinator, while the other CDE instances have the role
of clients. The coordinator is responsible for initiating the distributed simu-
lation and for directing how the distributed simulators are to progress. The
coordinator has the role of selecting the top process that describes the SoS at
the highest level of composition, as well as selecting which processes that are
to be simulated by which collaborators. This is done by mapping a process
name to a collaborator name using a graphical configuration interface.

In initiating the distributed simulation the coordinator will send simula-
tion request to all the involved collaborators, and they can then confirm or
refuse the request. The distributed simulation requires acceptance from all
collaborators before it can be started. If all collaborators accept the partici-
pation request, the simulation can be started by the coordinator. During the
simulation the coordinator has the task of controlling the flow of execution
according to the model specification, however as the possible transition are
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computed in the same way as in a normal simulation, the only change is that
some of the computations are performed by distributed simulators. Therefore,
the distributed simulation can be seen as one model, and it is as such not
distinguishable from a non-shared model that is running in a normal simu-
lator. This means that a normal and a distributed simulation is semantically
equivalent and follow the semantics of CML [252].

The distributed simulation has been enabled by extending the Symphony
simulator with the addition of a network setup between simulators and some
modifications to the simulator’s method of inspecting and execution behaviours.
The network setup is a client–server relationship where the coordinator func-
tions as the server to which the clients can connect. The distributed simulators
are connected using a direct Transmission Control Protocol (TCP) [207] con-
nection, while the CDE itself makes use of ECF to configure the distributed
simulation.

A custom simulation protocol has been defined that provides message
types for handling connections and disconnections from clients. As well as
messages that mirror the execution flow that occurs in the normal (non distri-
buted) simulator by providing messages for the inspection and execution
of behaviours. The protocol keeps a flow state in order to ensure that an
execution message is only allowed if an inspection has previously been pro-
cessed. The protocol and as such the interactions between the simulators are
based on the JavaScript Object Notation (JSON) [46]. The JSON notation
was chosen to ensure future interoperability such that the simulator can be
connected to heterogeneous systems. This is utilised in the work presented in
Subsection 3.5.2.

The modifications to the Symphony simulator have been made in two
parts: a) coordinator role, and b) the client role. When the simulator has the
coordinator role it will replace all the distributed processes with a skeleton
that via the network setup delegates the processing to the distributed simulator
on which the distributed process resides. As the protocol mimics the inspec-
tion and execution calls of the normal simulator, the coordinator use most of
the existing simulator implementation just with some calls being delegated.
This is illustrated in Figure 3.5, that shows: 1) the tree structure of a standard
simulator and 2) the same tree structure for a distributed simulation where
process B is a process located on a distributed simulator. The dashed line rep-
resents the network connection between the simulators. When functioning as
a client the simulator has been altered such that the inspection and execution
of behaviours are initiated from the messages received from the coordinator
via the network setup. The clients will then supply the coordinator with the
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Figure 3.5: Illustration of the internal simulator change.

results from their inspection and will rely on the coordinator to control when
they can execute their behaviour.

Contribution 6. Enabled distributed simulation of CML models to
alleviate the Autonomy of Constituents dimension in SoS modelling

3.4.2 Related Work and State of the Art

The use of distributed simulation as a way of performing, aiding and analysing
decision-making and coordination between geographical dispersed teams has
been utilised for several decades [228]. In surveying the literature for distri-
buted simulation for modelling formalisms, there are a dominant number of
examples which are related to the distributed simulation of DEVS (DEVS is
described in Subsection 3.2.2).

Distributed simulation has been implemented between DEVS simulators
in the DEVS/OSGi simulation framework using the OSGI module and ser-
vice platform [205]. It has a strong focus on interoperability and on using a
common platform. Through Eclipse, the Symphony tool also makes use of
OSGI as its underlying framework.

DEVS/RMI is a distributed simulation approach that make use of Java
RMI to connect simulators on the basis of standard DEVS implementation [260].
While it does require minor changes to the distributed models, it works on a
large-scale and supports multiple advanced features, such as reconfiguration
of simulations during run-time.
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DEVS/P2P is a framework that is aimed at letting DEVS simulators run
as peers in a peer-to-peer network using the JXTA protocol to establish a
distributed simulation [36]. A peer-to-peer simulation protocol for large-scale
simulation of DEVS models has also been proposed by Park et al. [231]. The
focus is on performance and the protocol is to be used on top of existing
DEVS simulation frameworks.

Common for all of the DEVS approaches is that they do not have a direct
SoS focus and they do not combine the distributed simulation with a CDE.

A distributed simulation approach has also been proposed for the formal-
ism Architecture Analysis and Design Language (AADL) [165]. AADL is
aimed at doing analysis of systems and SoS designs by looking at both archi-
tectures and runtime characteristics. In order to do the distributed simulation
the approach makes use of model transformations from AADL models to a
second model formalism; SIGNAL, that is aimed at data-flow analysis [155].
The use of model transformation to establish the distributed communication
differs significantly from the one presented in [P192].

3.5 Simulation with External Systems and Code

While formal modelling has been around for more than 45 years [74], the
field still face many barriers [93]. Formal modelling has seen difficulties
in penetrating and establishing itself as a common engineering methodology
within an industrial setting, despite having been extensively researched and
applied in large industrial projects [64, 253]. Formal modelling is especially
challenged on two fronts: 1) the understanding of the models for all stake-
holders and 2) the models’ relation to actual system implementation. The
former has to do with formal methods foundation in mathematics and its
heavy reliance on semantics rules for describing the notations used in the
model. Formal modelling notations can be difficult to grasp and understand
for stakeholders with no or limited domain knowledge, particularly for stake-
holders that are not accustomed to using mathematical tools [131]. The latter
relates to the gap that exists between the model of the system and the actual
system implementation, where the correspondence between the model and
the modelled system becomes opaque [203]. This occurs as a result of the
level of detail and fidelity of the model in reference to the modelled system. In
general models work at a certain levels of abstraction [136] and as such does
not describe all aspects of a given system implementation. When describing
complex systems and structures the use of abstractions makes it possible to
focus on essentials and emphasise certain properties of the system. Abstract
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models can realised by the use of refinement calculus in which the model
progressively is transformed into executable programs through a series of
refinement steps in which the correctness of the transformation is ensured [9].
For larger systems this can however be a complex and time consuming task.

It can also be the case that it is not necessary or feasible to formalise
all aspects of a system [235]. The system may have elements for which its
behaviour is already well-defined and there is a high level of trust in the
correctness of the functionality, or it may be a legacy system for which it
is difficult and time consuming to model its exact behaviour.

These challenges are well-known in the formal modelling literature and
for a long time there has been a focus on ensuring that the use of formal
modelling becomes part of existing development processes and not be a hin-
drance to development processes [23]. To address the challenge of under-
standing there is a need for finding a generic way of approaching formal
models that will allow for easier interpretations which will make them bet-
ter suited for practical applications [218]. Better tool-support has been ad-
vocated as a means for dealing with the gaps existing between the model
and the modelled system, as well for dealing with models that only capture
certain aspects of a system [2]. Better tool support will enable important
characteristics to be communicated better and allow for the integration with
components and systems that are outside the scope of the formal modelling
environment [132]. Improved tool interoperability that will enable form mod-
els to be combined with existing system and tools will provide an improved
accessibility to formal modelling [65].

In this section we present two approaches that through better tool-support
aim: 1) at improving stakeholders’ accessibility to formal modelling, and
2) at bridging the gap between models and system implementations. Both
approaches have their foundation in improved tool interoperability for en-
abling systems and technologies outside the modelling environment to be
utilised. Subsection 3.5.1 presents an approach for coupling VDM models
with externally defined Java implementations, and Subsection 3.5.2 describes
an approach for including running systems in the simulation of CML models.

While the literature contains examples of coupling simulations of formal
models with external systems and code, distinctions are not made between the
two in the same degree as done in this text. Therefore, a combined coverage
of related work is presented in Subsection 3.5.3 covering the integration be-
tween models and external elements whether it being done for visualisation,
simulation or interaction with legacy code.
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3.5.1 Simulation with External Code - Research Conducted

In [P190] we presented an extension for the Overture tool that allows VDM
models to be linked with executable code that is external to the model. The
extension had two objectives: 1) to increase the understanding of models by
enabling models to interact with graphical user interfaces in order to enable
visualisations of the model, 2) to enable the interaction of VDM models and
external executable code, such as external libraries or external constituent
systems. The reasoning behind the first objective is that by enabling visuali-
sations and interactions it will becomes easier to convey the functionality and
behaviour of a model to stakeholders with limited modelling experience, such
as managers and/or domain experts [239]. The second objective is aimed at
enabling models to interact with external system or libraries that either have
well-defined behaviour or are less critical. Often there will not be as strong a
focus on or need for modelling of these constituent systems. It also makes it
possible to include legacy systems which behaviour can be difficult to model,
as part of the system modelling.

The objectives were reached by making slight adjustments to the Overture
tool in order to use the added functionality of the interpreter that simulates
the executable VDM models. This gave the tool the functionality to perform
interactions between models and external code in two ways. 1) By allowing
VDM to call externally running code, essentially by delegating VDM func-
tion calls to external Java libraries placed within in the modelling project
itself. 2) By letting external Java implementations take control of the VDMJ
interpreter, thereby allowing the executions of VDM expressions.

External code can be called from the VDM model through the External
Call Interface (ECI), and the VDM interpreter can be called and controller
remotely by external code via the Remote Control Interface (RCI). The ECI
allows the VDM model to delegate operation invocations to implementations
in a Java library without any changes to the VDM syntax or any configuration
of communication channels. Using the RCI an external Java application can
control the execution of a VDM model, for instance through a graphical user
interface (GUI). These two methods of integration allow VDM models to be
connected to external code, and either use external libraries or use graphical
prototypes for presentation or interaction with the model.

Fig. 3.6 illustrates how the ECI and the RCI can be seen in relation to
Java and the VDM interpreter. The Java JVM is the foundation for the VDM
interpreter that executes the VDM model. The executing model is capable of
initiating the ECI which directly calls into Java.
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Figure 3.6: Overview of the methods in relation to the model

The case study of a simple traffic infrastructure system was used to demon-
strate the techniques. In the system a group of traffic planners were attempting
to analyse the optimal planning of bus routes within a city. The various in-
frastructure maps of the city roads and current bus routes were stored in a
relational database. The system was described in a VDM model in which
the existing data from the database was loaded into the model at run-time
using the RCI. The model described the infrastructure with bus stops, con-
nected roads and bus movements. The model simulated a constant inflow of
new passengers and the purpose of the simulation was to measure the time
passengers had to wait for a bus.

To give an overview of the modelled being simulated a graphical repre-
sentation was created in Java Swing. Fig. 3.7 shows a screen-shot of a running
animation, where a selected map is displayed with the buses indicated by
squares on the roads and the waiting passengers as the circles to the right. The
graphical representation is purely an overlay on top of the model; everything
is continually checked and validated by the executing VDM model, from bus
movements to the passenger count. The case study makes use of both the
ECI and the RCI, as the VDM model can notify and update the GUI of data
changes and the Java implementation can load maps from the database into
the model as well as adjusting the passenger inflow during simulation.

Contribution 7. Enabled VDM models to link with and execute external
code to support systems not modelled in VDM
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Figure 3.7: Screenshot of the models graphical representation

Contribution 8. Enabled external code to control the VDM simulator in
order to perform run-time manipulation of models with the purpose of
creating interactive visualisation of models

3.5.2 SoS Simulation with External Systems - Research Conducted

In [P154] we presented an approach that allows a combination of CML mod-
els and externally running systems in simulations performed in the Symphony
tool. This means that a part of the constituent systems can be described in
CML, while another part of the constituent systems are actual running sys-
tems. A tool extension of the Symphony tool enables the interaction between
the CML simulator and the executing external system. The purpose is to
simulate SoS models in which the behaviour of some constituent systems
only can be obtained via the actual running constituent system.

This is needed in situations where: 1) the independent owners of the sys-
tems are not willing to share all knowledge on their system implementation,
making it difficult to create models with the correct behaviour. This situation
occurs when there are conflicting interests between the stakeholders of the
individual constituent systems or because parts of the SoS is delivered by
a supplier that has no interest in the SoS. The owners of the independent
constituent systems may not be willing to share implementation details for
competitive reasons, and suppliers may just have delivered a COTS product
for which they have no interest in delivering documentation on its internals. In
these cases it may be difficult to create sufficiently descriptive formal models.
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2) Some of the constituent systems in the SoS may be legacy systems for
which documentation of their realisation is no longer available and there is
no precise description of their internals.

The tool has been extended in such a way that from a CML simulator per-
spective the external running system will act as a constituent system defined
in the overall SoS model. This means that concrete system implementations
can ben run and executed in parallel to the simulation of the model and the
behaviour of both the model and the system can affect each other. Given that
each constituent system has its own specified behaviour and specified way
of communicating with the other constituent systems in the SoS model it
is possible to make the external system act as if it was modelled. This was
achieved by having the external systems being defined as an empty process
definition in the model, that then is replace with a skeleton that delegates the
interaction to the external system.

This builds on the same principles as the approach presented in Sec-
tion 3.4, but it enables the simulation with external systems instead of en-
abling distributed simulation between homogenous simulators. The approach
has many of the same goals as what was presented in Subsection 3.5.1, but
it differs in that way the delegation occurs at the communication between
systems via the processes in CML and by network communication being used
to establish connections to an adapter connected to the external constituent
system, instead of loading libraries that can be invoked.

During the simulation the Symphony will act as a coordinator and be in
control of the simulation, while the external system will act as a client. The
simulation is configured by selecting the processes that will be handled by
an external system, as well as address and port information for the clients to
connect to the coordinator.

In order for the external system to be part of the simulation an adaptor
is needed between the system implementation and the network setup to the
simulator. The core part of this involves the implementation of the simulation
protocol that requires a mapping of the types of the concrete programming
language to the CML types described in the simulation protocol and a map-
ping from the protocol messages to operations in the external system. The
protocol essentially allows the simulator to send messages that can invoke
and change the system state of the external system, and the external system
can in return provide the simulator with a list of the possible events that the
external system can perform.

The approach was examined through a Bang & Olufsen (B&O) case study
involving a Audio/Video (A/V) network that can establish connection be-
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tween devices (such as audio, video and legacy audio products). A key part of
the system is an A/V control that manages a range of heterogeneous devices
that can stream and render media. The behaviour between the devices and the
overall network is defined through streaming contracts that specify the inter-
actions between the devices. A CML model of the A/V network streaming
contracts was created that describes the semantically defined transition rules
for distributed state synchronisation and distributed operation calls used in
the streaming.

In the study a B&O developed C++ implementation of the streaming con-
tract was used as the externally running system. Some adapter code written
in C++ was added to the implementation to handle the network setup as
well as the mapping for states, types and operation logic from the C++ to
CML model. Furthermore, a state machine was implemented in which the
channel events of the CML model translate into operations calls in the C++
implementation. Being able include the running system as part of the model
simulation enabled B&O to improve the trust in the system design, as formal
analysis can be performed before costly implementations are made of the
entire system.

Contribution 9. Tool-support enabling the inclusion of running system
implementations in the simulation of CML models

3.5.3 Related Work and State of the Art

In the literature little distinction is made between the coupling of model
simulation with external systems and the coupling of model simulation with
external code. Therefore, the presented related work covers both types of
coupling between models and external systems/code, whether it being done
for the purpose of visualisation, simulation or interaction with legacy code.

Frohlich and Larsen describe a functionality in the VDMTools [143] tool
suite for VDM that makes it possible to execute specifications consisting
of both specification and externally specified C++ code [79]. The external
code is loaded from Dynamic Link Libraries (DLLs) and new syntax is in-
troduced in VDM that defines an implementation module type in which an
export section can define signatures for functions defined in external libraries.
Type conversion functions are used to transform the value types, used by the
interpreter, to the values type of the C++ code, and vice versa. The work pre-
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sented in Subsection 3.5.1 is based on this approach and has similar dynamic
semantics but it does not require a modification of the VDM syntax.

The approach by Frohlich and Larsen makes it possible to interact with
external code, but is does not allow for external code to interact with the
model, for instance via an interactive GUI. VDMTools does however provide
an interface that allows a CORBA [200] client to communicate directly with
the VDMTools interpreter and pass VDM expressions that will be evaluated
in the running model [234]. The use of CORBA allows for a greater het-
erogeneity in the range of external systems that can interact with the VDM
model. The implementation of a CORBA client can however give a higher
complexity in the initial implementation, than the plain Java integration of-
fered by the approach in Subsection 3.5.1.

Another formalism that enables integration with external processes is
Coloured Petri Nets (CPN) [116]. Communication between CPN models and
external processes can be obtain through Comms/CPN, which is a Standard
ML library for the Design/CPN tool [81]. The Comms/CPN library enables
two-way communication between the CPN model and the external process
using TCP/IP, by defining generic send and receive-functions which accept
a byte stream of data. Encoding/decoding functions has to be implemented
to marshal data for transmission. The Comms/CPN library’s use of generic
data streams over TCP/IP allows heterogeneous clients to interact with the
simulator, but it does require the external process to implement a mapping of
the received data into concrete invocations in the model.

CPN Tools, the successor of Design/CPN, provides a similar functionality
that enables the integration of CPN models with external applications [247].
A Java interface enables the processing of models by communicating with
the CPN simulator via a TCP/IP stream using a protocol with a custom packet
format. All communication is wrapped in a high-level simulator object, which
contains methods for evaluating expressions and processing models.

The formalism Event-B [3] is supported by the tool B-Motion Studio
that provides a visual editor for creating visualisations of models [139]. The
editor enables graphical elements to be linked to the model by using Event-B
expressions as gluing code. Having an editor for creating the visualisations
allows for simpler and faster creation of graphical representations without
requiring specific knowledge on graphical programming. The easy of con-
struction does however come with the price of being limited to the types of
visualisations provided by the tool.
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Conclusion

This chapter concludes this dissertation by summarising and evaluating the
research contributions that has been achieved in this PhD project, as well as
supplying an outlook on future work. The objectives of the dissertation are
related to the convergence of SoS knowledge as a means of identifying key
SoS challenges and on strengthening the field of SoS Engineering through
stronger tool-support.

4.1 Introduction

This dissertation provided classifications and approaches aimed at strength-
ening the field of SoS Engineering. A classification has been created which
consists a range of dimensions that characterise the SoS engineering field.
With a basis in these dimensions, key challenges of SoS Engineering been
derived and the efforts for a strengthened SoS Engineering field have been
sought in three main themes: integration, modelling and collaboration. This
has led to an SoS classification for design patterns and various approaches for
improving the tool-support for formal modelling techniques.

The purpose of this chapter is to evaluate the outcome of the research
presented in this dissertation and to provide a perspective on how the research
can be taken further. Section 4.2 summarises the research contributions, fol-
lowed by an evaluation of what extent the objectives of the dissertation has
been reached in Section 4.3 and an assesment on how the contributions cover
the SoS dimensions in Section 4.4. Finally, future work is described and
presented in Section 4.5.

4.2 Research Contributions

A total of 9 research contributions have been identified in this PhD project.
The research contributions can be grouped into three main areas, with one
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initial-level contribution ([C1]) leading into the three groups. The contribu-
tions are shown in Figure 4.1 which illustrates how some contributions form
a basis for others and how some contributions complements other contribu-
tions. The three groups are focused on integration (grey) , collaboration (red)
and tool-support (blue).

Figure 4.1: Contribution Overview

The top-level contribution and the contributions in the integration and
collaboration originate from Chapter 2, while all contributions related to tool-
support come from Chapter 3.

Contribution 1. Converged terms of the literature to identify dimensions that
enable SoS to be positioned in the SoS Engineering field

The survey presented in Section 2.1 showed the while the SoS literature
is voluminous it contains such a broad range of terms and concepts in the
description of SoS that it becomes difficult to comprehend. This makes it
difficult to place systems and applications within the field. Contribution [C1]
encapsulates the work that was done in converging the substantial SoS vo-
cabulary from the surveyed literature into eight dimensions, as described in
Section 2.2.

The remaining contributions are presented on the basis of their grouping
in the sections below.
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4.2.1 Integration

When looking at the SoS literature it quickly becomes apparent that integra-
tion and interactions between constituent systems are a crucial part of SoS
Engineering.

Contribution 2. Classification for identifying design patterns that aid the
integration challenges in SoS Engineering

Section 2.4 presented a classification that can be used to methodically
characterise patterns for SoS integration [C2]. The classification enables SoS
applications to be matched to design patterns through a number of categori-
sations. Each categorisation describes a concrete property that relates to the
concrete needs and capabilities of an SoS. The classification makes use of
four categorisations for determining the SoS development context and five
categorisations for determining the technical context.

4.2.2 Collaboration

Both the experience gained by working with SoS development during the
PhD project and the literature showed that an SoS not only is dependent on
the interactions between the constituent systems, but also on the interactions
between human stakeholders. As such the SoS Engineering field not only
faces technical challenges, but also socio-technical.

Contribution 3. Identified challenges with collaboration in relation to using
formal modelling for SoS Engineering

Section 2.5 describes the result from a small case study focused on the
challenges in doing collaborative development of formal models of SoS. The
study showed that the involved formal modellers experienced challenges in
exchanging model information and on agreeing on design decisions [C3].
The results from the study later resulted in the development of several of the
approaches for the improved tool-support for formal modelling presented in
Chapter 3 and summarised below.

4.2.3 Tool-support for Formal Modelling

It has been a key focus of the PhD project that stronger tool-support for
formal modelling techniques aimed at SoS challenges can strengthen the SoS
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Engineering field. This has led to the majority of the research contributions
of the PhD project being achieved in approaches for improved tool-support.

The contributions made in connection to improved tool-support have re-
lations to each other. They are all centred on a formal modelling tool to which
they supply some type of advancement. One enable the modelling notation to
express dynamicity [C4], while others make use of connectivity between tool
instance to establish a Collaborative Development Environment (CDE) [C5]
and perform distributed simulation [C6]. Finally, some open up the model to
the world outside the modelling environment by enabling the formal model
to invoke external code [C7], or to let the model simulation be controlled
from an external source [C8], as well as for running systems to be included
in the model simulation [C9]. The difference between [C7] and [C9] is that
the former requires changes to the model in order to invoke the external code,
while the latter requires some adapter or glue-code between the simulated
model and the external system.

The relationship is illustrated in Figure 4.2 where the individual contribu-
tions are put in relation the modelling tool and its environment.

Figure 4.2: Relations of Modelling Tool Contributions
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Contribution 4. Approach for expressing and simulating the SoS dimensions
of Evolution and Dynamic behaviour in formal SoS models

Section 3.2 describes a language and tool extension for VDM-RT that
enables the dynamic reconfiguration of the SoS topology to be expressed and
simulated [C4]. With the extension it became possible to describe the overall
system architecture of the SoS in VDM-RT with dynamical changes and to
perform simulations that could reveal the evolving behaviour of the modelled
system.

Contribution 5. Tool-support for collaborative development of formal mod-
els in SoS Engineering via a CDE

The insight gained from the collaboration study in Section 2.5 led to the
development of a CDE extension of the Symphony tool that could support
formal modelling in some of the technical and socio-technical challenges of
SoS Engineering [C5]. The CDE presented in Section 3.3 made it possible
to support the analysis of structure, behaviour and interactions of systems as
well as the behaviour and interactions between stakeholders.

Contribution 6. Enabled distributed simulation of CML models to alleviate
the Autonomy of Constituents dimension in SoS modelling

On the basis of the connectivity established between Symphony tool in-
stances via the CDE, an approach for distributed simulation was presented in
Section 3.4. Having distributed simulation allowed the entire SoS model to
be simulation, without the individual stakeholders having to share complete
models describing the internal details of their systems [C6].

Contribution 7. Enabled VDM models to link with and execute external code
to support systems not modelled in VDM

Contribution 8. Enabled external code to control the VDM simulator in order
to perform run-time manipulation of models with the purpose of creating
interactive visualisation of models

Subsection 3.5.1 describes an extension for the Overture tool that allows
VDM models to be linked with external code in two different ways: one that
enable VDM models to invoke code defined in external libraries [C7] and a
second that enables external control of the simulation by given input to the
simulated model [C8]. The purpose of the approach were to make models
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easier accessible to stakeholders by enabling visualisations and more interac-
tive models, and to enable interactions between models and external libraries
or systems that have not been formally modelled.

Contribution 9. Tool-support enabling the inclusion of running system im-
plementations in the simulation of CML models

Subsection 3.5.2 describes an approach for combining CML models and
externally running systems in simulations performed in the Symphony tool,
thereby enabling parts of the constituent systems to be described in CML and
other parts of the constituent systems to be actual running systems [C9].

4.3 Evaluation of Contributions

In this section, the research contributions described in Chapters 2 and 3 are
evaluated with respect to the evaluation criteria listed in Section 1.7.

The relationships between the research contributions and the evaluation
criteria are presented in Figure 4.3. The spider chart visualises an informal
assessment of how the individual research contributions fulfil the respective
evaluation criteria. The scale used in the figures indicates the extent to which
the contributions fulfil the criteria, and as such the closer the graph is to
the edge of the web, the better the criterion is covered. Figure 4.3f gives a
combined view by overlaying all figures to show how the pooled research
contributions cover the evaluation criteria.

Evaluations of the research contributions with respect to the evaluation
criteria are given below. The evaluations relate to each of the individual sub-
figures of Figure 4.3, with the exception of the combined view Figure 4.3f.

4.3.1 Clarification of the System of Systems field

On the basis of the survey presented in Section 2.1 eight dimensions were
established that encapsulate key characteristics of SoS [C1]. As these eight
dimensions curtail the number of terms and concepts from the SoS liter-
ature they make the field more accessible and provide a way to position
applications of SoS in the SoS field and identify engineering challenges.

By providing a classification for characterising patterns for SoS integra-
tion a range of categorisations were provide that related to the concrete needs
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Figure 4.3: Relation between contributions and evaluation criteria.

and capabilities of an SoS [C2]. These help to clarify certain aspects of the
developmental and technical contexts of SoS.

The study on collaborative development of formal models for SoS pro-
vided an insight into the socio-technical challenges of SoS Engineering [C3].
This contributed to making the role of stakeholders clearer.

4.3.2 Integration

The classification of design patterns for SoS construction was directly fo-
cused on integration [C2], and as such provided the strongest contribution
to enhancing the SoS Engineering approach to integration. The tool based
approaches presented in Section 3.5 was focused on combining the model
with externally define code [C7] or running systems [C9]. The approaches
allow for formal modelling to be used in the study of integration challenges,
for instance with legacy systems for which it provides a way of analysing
and testing potential integration concerns without having to build the entire
system.
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4.3.3 Collaboration

With a basis in the SoS dimensions [C1], the study in collaborative devel-
opment of formal models [C3] was directly aimed at investigating the inter-
actions between human stakeholders during the engineering of a SoS using
the CML modelling notation. The study supplied a central contribution in
clarifying the key challenges of developing SoS models collaboratively.

The study led to the development of the CDE [C5] and the distributed
simulation [C6] that both were tool developments aimed at attending to the
challenge of collaboration.

4.3.4 Modelling

On the basis of the SoS dimensions [C1] the survey presented in Section 2.1
gave assessments on how formal modelling could be used in SoS Engineering
and pointed to where further research is needed.

The study in collaborative development of formal models [C3] revealed
some of the challenges that exists in using formal models within SoS Engi-
neering, and directly gave suggestions that could be used to strengthen the use
of modelling in SoS Engineering. These were later realised through improved
tool support.

Likewise, it can be assessed that all the tool extensions presented in Chap-
ter 3 made contributions to breaking down the barriers for the adoption of
formal models in the SoS Engineering field.

4.3.5 Improved tool-support for SoS Engineering

The SoS dimensions [C1] and the collaborative formal model development
study [C3] was the basis for the approaches and extensions that were made in
order to strengthen the SoS Engineering field.

The approaches and extensions that made it possible to express dynamic
reconfiguration [C4], establish a CDE [C5], perform distributed simulation
[C6] and allow for running systems to be included in the model simulation
[C9] all had a direct focus on SoS Engineering. Enabling the formal model to
invoke external code [C7] and the model simulation to be controlled from an
external source [C8] in order to provide interactive visualisations of models,
does strengthen the tool support for formal models, but the approaches do not
have a direct SoS Engineering focus.
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4.4 SoS Dimensions and Contributions

In this section, the research contributions evaluated above are related to the
SoS Dimensions [C1]. Figure 4.4 visualises an informal assessment of how
the individual research contributions cover and support the respective SoS
dimensions. This is visualised in the same fashion as the evaluation criteria
above, with the exception that contribution [C1] has been excluded, as it
forms the basis for the SoS dimensions being assessed.
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Figure 4.4: Relation between contributions and SoS dimensions.
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Autonomy of Constituents

The Autonomy of Constituents entails that the constituent systems have di-
verse stakeholders that in many cases only will be governed by their own
rules and goals. This means that the human stakeholders need to collaborate
on making the constituent systems interact. The collaboration may also be
hindered by confidentiality concerns where the individual stakeholders may
not be willing to share the internals of their respective systems.

The collaboration study examined this aspect in connection with using
formal modelling for SoS engineering [C3] and provided insight into the chal-
lenges. The CDE [C5] and the distributed simulation [C6] was developed to
support diverse stakeholders in developing their SoS models collaboratively.

Independence

Independence implies that a given constituent is individually developed and
can operate while being detached from the rest of the SoS. This means that
it may be difficult to develop formal models of all the constituent systems in
the SoS as the required knowledge and insight may not be available. It may
also entail a high degree of heterogeneity between the systems which require
the adaptation of interfaces, protocols and standards to establish interaction
between them.

The approaches made for improved tool-support all address some of the
challenges of this dimension, as they either aid stakeholders in communicat-
ing and agreeing on interfaces, or they enable some degree of interaction with
external systems or code implementations that are not modelled. For instance,
the CDE [C5], the distributed simulation [C6] and the visualisation of models
[C8] support the collaboration between independence stakeholder, while the
integration between model and external systems [C9] and code [C7] allow for
inclusion and analysis of systems that have not been formally modelled.

Distribution

The Distribution dimension means that both systems and human stakehold-
ers in an SoS may be globally dispersed, which raise challenges in ensuring
precise and efficient communication to support the design process.

Working with distributed teams on formal modelling was examined in the
collaborative study [C3], while the CDE [C5] and the distributed simulation
[C6] was developed to support the development teams being distributed. The
distribution between constituent systems entail challenges with connectivity,
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concurrency and resilience to failure, which to a certain degree can be anal-
ysed with the extension made to VDM-RT [C4], as it allows models to express
connections being created and lost.

Evolution

An SoS will be under constant evolution throughout its lifetime in which
there will be changes to its topology and to the capabilities of the constituent
systems.

The collaborative study [C3] showed that the collaborators did have chal-
lenges in deal with evolution, especially when it was manifested via changes
made by other collaborators. The CDE includes [C5] functionality that aid
developers in identifying changes as they occur and it aids in incorporating
these changes into the overall SoS.

Dynamic Behaviour

The Dynamic Behaviour of SoS refers to the changes to topology and com-
position that occur as a result of dynamic modification of SoS architecture
and constituent systems’ interfaces.

The dynamic reconfiguration extension for VDM-RT [C4] made it possi-
ble to express and simulate the addition of new systems as well as changes to
the SoS topology.

Emergence of Behaviour

Emergence of Behaviour refers to the behaviours that arise as a result of the
synergistic collaboration of constituents. This is one of the most challenging
parts of SoS development as it is an aspect that cannot directly be engineered.

Simulation of models can be used to reveal the emergent behaviour in an
SoS, as this occurs as a result of the behaviours of the constituent systems and
the interactions between them. All of the approaches aimed at strengthening
the tool support for SoS modelling make a minor contribution to handling the
Emergence of Behaviour dimension.

The CDE [C5] and the distributed simulation [C6] enables the simula-
tion of the dispersed constituent system models. Being able to the integrate
a model with external systems [C9] and code [C7], as well as express dy-
namic reconfiguration [C4] and do visualisations of models [C8] all add to
strengthening the simulation capabilities.
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Interdependence

The Interdependence dimension refers to the mutual dependencies that will
occur between the independent constituent systems as they have to rely on
each other to reach the common goal of the SoS.

Interestingly enough, the contributions mapping to Interdependence is
identical to that of Independence. This has to do with the two dimensions
being related, as the Interdependence comes from the trade-offs between the
degree of independence of the constituent systems in relation to the interde-
pendence required to reach the common goal of the SoS. As such Interde-
pendence can only be studied once it has become apparent what the role and
impact Independence has on the SoS.

Interoperability

The dimension of Interoperability is concerned with the coupling and inter-
actions between heterogeneous constituent systems in the SoS. The integra-
tion between the constituents requires the adaptation of interfaces, data types
and protocols in order to establish bridges between both legacy and newly
designed systems.

The classification of design patterns to be used in SoS Engineering had a
direct focus on the integration between systems [C2], while some of the tool
based approaches was focused on combining the model with externally define
code [C7] or running systems [C9]. As such they all contribute to enhancing
the way SoS Engineering handles the Interoperability dimension.

4.5 Future Work

This section gives some directions for future work. These are grouped into
three main themes of this dissertation: integration, modelling and collabora-
tion.

The research and development challenges of SoS Engineering are wide-
spread and the research described in this dissertation only focuses on small
parts of the field. The performed research has been focused on strengthening
the field of SoS Engineering by working within the themes of integration,
modelling and collaboration. Within these themes approaches for classifica-
tion and improved tool-support have been developed, but they do not offer
complete solutions to these challenges. This suggests an array of research
directions that can be pursued in order to further develop the approaches.
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4.5.1 Integration

The purpose of the classification of design patterns was to aid engineers in
dealing with SoS integration challenges by identifying concrete design pat-
terns on the basis of a range of categorisations. In [P124] we identified 15
patterns related to integration and placed them in the classification. In order
to strengthen this approach there is a need for building up a bigger repository
of patterns that engineers can use as a reference. Having a stronger repository
would also make it more feasible to create a study of the classification in
concrete SoS development on a larger scale.

In addition to this it would be relevant to investigate how the classifi-
cation can be used to address other challenges in SoS Engineering besides
integration.

4.5.2 Modelling

In the survey [P189] a range of further research directions were given for the
next steps towards a strengthened foundation for Model-Based SoS engineer-
ing [C2]. These were based on the limitations of current formal modelling
notations when seen in relation to the SoS dimensions and the engineering
challenges they entail.

The ability to include the Dynamicity of Behaviour dimension by being
able to express the alternation of system topologies is an area in which formal
modelling techniques could be strengthened. The current version of CML is
for instance not well suited for expressing dynamic changes in the system
structure. In addition to the modelling notation being able to express dy-
namic behaviour, simulators should also have mechanisms for keeping track
of changes, for instance by visually indicating the current topology. As such, a
future research direction is to investigate the combination of the functionality
in contribution [C4] and [C8] further.

Many formal modelling notations only consider the current systems and
does not have a very strong support for the dimension of Evolution. An SoS
will evolve and some of the changes may require new facets of the system
that needs to be expressed. One possible way of dealing with this challenge
is for the SoS modelling language to have features that enable well-founded
extensions of the language to be made during the development of the SoS. If
the semantics are to be preserved this is by no means trivial, so reaching the
scientific basis for this is a long-term goal.

While we have made suggestions for including the aspects of the Inter-
operability dimension, one part that is not well-addressed is joint simulations
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with heterogeneous models that use different notations. Having this ability
could aid the construction of an SoS by allowing the integration of various
heterogeneous models defined for different constituent systems. One could
claim that the approach provided by [C9] could be used, but this would still
not be an easy task as it would require some type of adapter that could make
the semantic mapping between the various heterogeneous models.

This PhD project has attempted to develop a set of approaches that could
strengthen the tool-support for SoS Modelling. Several of the approaches do
however require a fair degree of manual labour and legwork to get good
results. A very interesting future research direction would be the develop-
ment of a higher degree of tool automation. For instance by auto-generating
larger parts of the adaptor code needed between the simulator and the external
system in relation to contribution [C9]. Additionally, it would be interesting
to utilise the possibilities of creating visualisations easier, such as is seen in
B-Motion Studio [139] in relation to [C8].

4.5.3 Collaboration

The study on formal SoS models being developed collaboratively only out-
lined the elementary aspect of the socio-technical challenges in SoS Engi-
neering. Further studies are needed to create a more substantial basis on
which the research in collaborative formal modelling can be developed.

As the author and the involved research environment had a little experi-
ence in performing this type of studies, an important step in a future study
would be to include other researchers that can deliver a stronger ethnographi-
cal perspective and provide a strong set of qualitative social science methods.

With industrial acceptance and adoption being an important factor in
formal methods, an important next step is performing studies on how the
collaborative challenges manifest themselves in the development of an SoS
in an industrial setting. This would optimally be performed with an SoS ap-
plication that involves constituent systems originating from diverse parts of
engineering, as this would make it possible to conduct a study with multiple
groups of engineers with different backgrounds.
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[79] Brigitte Fröhlich and Peter Gorm Larsen. Combining VDM-SL Specifications with
C++ Code. In Marie-Claude Gaudel and Jim Woodcock, editors, FME’96: Industrial
Benefit and Advances in Formal Methods, pages 179–194. Springer-Verlag, March
1996.

[80] R.M. Fujimoto. A Distributed simulation systems. In Winter Simulation Conference
2003. Proceedings of the , pages 124–134, Dec 2003.



112 Bibliography

[81] Guy Gallasch and Lars M. Kristensen. Comms/CPN: A communication infrastructure
for external communication with design/CPN. In 3rd Workshop and Tutorial on Prac-
tical Use of Coloured Petri Nets and the CPN Tools (CPN’01), pages 75–90. DAIMI
PB-554, Aarhus University, aug 2001.

[82] M.T. Gamble and R.F. Gamble. Reasoning about Hybrid System of Systems Designs.
In Composition-Based Software Systems, 2008. ICCBSS 2008. Seventh International
Conference on, pages 154 –163, feb 2008.

[83] E Gamma, R Helm, R Johnson, and J Vlissides. Design patterns: Abstraction and
reuse of object-oriented design. In ECOOP’ 93 - Object-Oriented Programming,
volume 707, pages 406–431, 1993.

[84] Ervan G. Garrison. History of Engineering and Technology: Artful Methods. CRC
Press. Addison-Wesley Publishing Company, 2. edition, Jul 1998.

[85] N.D. Geddes, D.M. Smith, and C.S. Lizza. Fostering Collaboration in Systems of Sys-
tems. In Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference
on, pages 950 – 954 vol.1. IEEE, oct 1998.

[86] Tayfun Gezgin, Christoph Etzien, Stefan Henkler, and Achim Rettberg. Towards a
rigorous modeling formalism for systems of systems. In 15th International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 204–211. IEEE, April 2012.

[87] Harry H. Goode and Robert Engel Machol. Systems Engineering: An Introduction to
the Design of large-Scale Systems. McGraw-Hill, New York, 1957.

[88] A. Gorod, B. Sauser, and J. Boardman. System-of-Systems Engineering Management:
A Review of Modern History and a Path Forward. Systems Journal, IEEE, 2(4):484–
499, December 2008.

[89] Jeff Gray, Ted Bapty, Eep Neema, and James Tuck. Handling crosscutting constraints
in domain-specific modeling. Communications of the ACM, 44:87–93, 2001.

[90] C4ISR Interoperability Working Group. System of systems interoperability (sosi):
Final report cmu/sei-2004-tr-004. Technical report, Department of Defense, 1998.

[91] J. Grudin. Computer-supported cooperative work: history and focus. Computer,
27(5):19–26, May 1994.

[92] J.O. Gutierrez-Garcia, F.F. Ramos-Corchado, and J.-L. Koning. Obligations as Con-
strainers, Descriptors, and Linkers of Open System of Systems. In System of Systems
Engineering, 2009. SoSE 2009. IEEE International Conference on, pages 1 –6, june
2009.

[93] Anthony Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11–19,
September 1990.

[94] Arthur David Hall. A methodology for systems engineering. Van Nostrand, 1962.
[95] D. Harel. Biting the silver bullet: toward a brighter future for system development.

Computer, 25(1):8–20, Jan 1992.
[96] D. Harel. Systems engineering - A retrospective view. Systems Engineering,

1(4):258–266, 1998.
[97] I. T. Hawryszkiewycz. Providing Agent Support for Collaborative Systems Using a

Domain Oriented Design Method. Int. J. Agent-Oriented Softw. Eng., 1(2):175–192,
July 2007.



Bibliography 113

[98] Igor T. Hawryszkiewycz. A Design Framework for Collaboration in Systems of
Systems. In Advancing Democracy, Government and Governance, volume 7452 of
Lecture Notes in Computer Science, pages 67–78. Springer Berlin Heidelberg, 2012.

[99] Naim A. heir. Systems Modeling and Computer Simulation, Second Edition. Marcel
Dekker, 1995.

[100] J.D. Herbsleb. Global software engineering: The future of socio-technical coordi-
nation. In Future of Software Engineering, 2007. FOSE ’07, pages 188–198, May
2007.

[101] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E. Grinter. An empirical study of
global software development: distance and speed. In Software Engineering, 2001.
ICSE 2001. Proceedings of the 23rd International Conference on, pages 81–9, 2001.

[102] Martin Hirsch, Stefan Henkler, and Holger Giese. Modeling Collaborations with
Dynamic Structural Adaptation in Mechatronic UML. In Proceedings of the 2008
International Workshop on Software Engineering for Adaptive and Self-managing
Systems, pages 33–40. ACM, 2008.

[103] Derek K Hitchins. Systems methodology. In Conference on Systems Engineering
Research, March 2005.

[104] H. Holmstrom, E.O. Conchuir, P.J. Agerfalk, and B. Fitzgerald. Global Software
Development Challenges: A Case Study on Temporal, Geographical and Socio-
Cultural Distance. In Global Software Engineering, 2006. ICGSE ’06. International
Conference on, pages 3–11, 2006.

[105] Eric C. Honour. Incose: History of the international council on systems engineering.
Systems Engineering, 1(1):4–13, 1999.

[106] J. Hooman and M. Verhoef. Formal semantics of a VDM extension for distributed
embedded systems. In D. Dams, U. Hannemann, and M. Steffen, editors, Concur-
rency, Compositionality, and Correctness, Essays in Honor of Willem-Paul de Roever,
volume 5930 of Lecture Notes in Computer Science, pages 142–161. Springer-Verlag,
2010.

[107] Georges Ifrah. The Universal History of Computing: From the Abacus to the Quantum
Computer. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2001.

[108] INCOSE. Systems Engineering Handbook. A Guide for System Life Cycle Processes
and Activities. Technical report, International Council on Systems Engineering, 7670
Opportunity Rd., Suite 220 San Diego, CA, January 2010.

[109] Claire Ingram, Richard Payne, Simon Perry, Jon Holt, Finn Overgaard Hansen, and
Luı́s Diogo Couto. Modelling Patterns for Systems of Systems Architectures. In
IEEE SysCon 2014, 2014.
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