River Publishers Series in Communications and Networking

.
Beyond Horizons | |
The Rise of the Edge Al Processing Paradigm

EDGE

Editors:

Ovidiu Vermesan

8 Marcello Coppola

River Publishets Fabian Chersi

Beyond Horizons -

The Rise of the Edge Al Processing
Paradigm

RIVER PUBLISHERS SERIES IN COMMUNICATIONS
AND NETWORKING

Series Editors:

ABBAS JAMALIPOUR MARINA RUGGIERI

The University of Sydney University of Rome Tor Vergata
Australia Italy

MARKO JURCEVIC

University of Zagreb

Croatia

The “River Publishers Series in Communications and Networking” is a
series of comprehensive academic and professional books which focus on
communication and network systems. Topics range from the theory and use
of systems involving all terminals, computers, and information processors
to wired and wireless networks and network layouts, protocols, architec-
tures, and implementations. Also covered are developments stemming from
new market demands in systems, products, and technologies such as per-
sonal communications services, multimedia systems, enterprise networks,
and optical communications.

The series includes research monographs, edited volumes, handbooks
and textbooks, providing professionals, researchers, educators, and advanced
students in the field with an invaluable insight into the latest research and
developments.

Topics included in this series include:

e Communication theory

* Multimedia systems

* Network architecture

* Optical communications

* Personal communication services
* Telecoms networks

* Wifi network protocols

For a list of other books in this series, visit www.riverpublishers.com

Beyond Horizons —
The Rise of the Edge Al Processing
Paradigm

Editors

Ovidiu Vermesan
SINTEF, Norway

Marcello Coppola

STMicroelectronics, France

Fabian Chersi
CEA, France

River Publishers

Published, sold and distributed by:
River Publishers

Broagervej 10

9260 Gistrup

Denmark

www.riverpublishers.com

ISBN: 978-87-4380-863-3 (Hardback)
978-87-4380-862-6 (Ebook)

©The Editor(s) and The Author(s) 2025. This book is published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0 (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, a link is provided to the Creative Commons license
and any changes made are indicated. The images or other third party material in
this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publica-
tion. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper.

Dedication

“If a machine is expected to be infallible, it cannot also be intelligent.”
— Alan Turing

“Wisdom is the daughter of experience.”
— Leonardo da Vinci
“Wonder is the beginning of wisdom.”

— Socrates

“Education is not the learning of the facts, but the training of the mind
to think.”

— Albert Einstein

Acknowledgement

The editors would like to thank all the contributors for their support in the
planning and preparation of this book. The recommendations and opinions
expressed in the book are those of the editors, authors, and contributors
and do not necessarily represent those of any organizations, employers, or
companies.

Ovidiu Vermesan
Marcello Coppola
Fabian Chersi

Contents

Preface

List of Figures

List of Tables

List of Contributors

1 Advancing Edge Al Perception Platforms and Sensor
Fusion for Last-Mile Delivery Autonomous Vehicles
Ovidiu Vermesan, Roy Bahr, Hans-Erik Sand,

Simen Marentius Saxegaard, Helge Brudeli,
Petter Emanuelsson, and Martin Ferrisdahl

1.1
1.2
1.3

1.4

1.5

1.6

Introduction and Background
Sensor Fusion in Last-Mile Context
Autonomous Vehicle Architecture for Last-Mile Delivery . .
1.3.1 Localisation and High-Definition Map
1.3.2 Perception Implementation
1.3.3 Prediction, Decision-Making, Planning and Route

Optimisation

1.3.3.1 Odometry and path planning
Edge Al Platforms
1.4.1 Robot Operating System
Future Considerations and Research
1.5.1 Deployment Considerations
1.5.2 Futureresearch
Conclusion

vii

xi

xiii

xvii

Xix

viii

2

Contents

AIDGE: A Framework for Deep Neural Network Development,

Training and Deployment on the Edge

Fabian Chersi, Olivier Bichler, Cyril Moineau, Maxence Naud,

Laurent Soutier, Vincent Templier, Thibault Allenet, Inna Kucher,

and Vincent Lorrain

2.1 Introduction and Background
2.1.1 RelatedWork

2.2 Our Framework Overview
2.2.1 Internal Graph Representation
2.2.2 Platform interoperability
2.2.3 Graph Regular Expression (GraphRegex)
2.2.4 Network optimization
225 Exportphase

2.3 Conclusion and futurework

A scalable and flexible interconnect-based dataflow
architecture for Edge Al Inference
Rohit Prasad and Hana Krichene
3.1 Introduction,
32 RelatedWork,
3.3 Background: dataflow executionmodels
3.4 Interconnect-based dataflow architecture
3.4.1 NGC: Neural Global Controller
3.4.2 NPE: Neural Processing Element
34.3 AINoC: Artificial Intelligence Network-on-Chip . .
344 GlobalBuffers
3.5 ExecutionModel
3.6 Experimentsand Results
3.6.1 Evaluation Methodology
3.6.2 FPGA Implementation Results
3621 Area,
3,622 Latency
3.6.2.3 Energy consumption
3.6.2.4 Energy efficiency
377 Conclusion

41

42
43
44
47
48
48
49
51
52

55

Contents 1X

4 Federated Learning for Malware Detection in Edge devices 73
Dimitrios Serpanos and Georgios Xenos

4.1 Introduction and Background 74

4.2 Federated Learning and Related Work 75

43 Architectureo 77

44 Experiments 78

441 Dataset 79

442 BEvaluationresults 79

45 Conclusions L 85

5 Image Signal Processor (ISP) Tuning using Machine Learning

(ML) methods 89

Sepehr Bijani

5.1 Introduction and Background 90
5.1.1 Tuningproblem 90
5.1.2 Image Signal processor ISP) 90
5.1.3 Mathematical Optimization Problem 90
5.1.4 Static and Dynamic Parameters in ISP 91
5.1.5 Stateof Art 91

5.2 Automatic ISP Tuning 92
5.2.1 KPIs for Artifact Attenuation. 92
5.2.2 Static Parameters L. 92
5.2.3 Dynamic Parameters and Runtime 93
524 TestSetup. 94
525 Results oL 94

53 Conclusion o 97

6 Using Edge Al in IoT devices for Smart Agriculture:
Autonomous Weeding 99
Christian Germain, Barna Keresztes, Aymeric Deshayes,
and Jean-Pierre Da Costa

6.1 Introduction 99
6.2 Materialand Methods 101

6.2.1 BIPBIP: the automatic weeding
SYSteM 101

6.2.2 BIPBIPvisionsystem 102

X Contents

6.3
6.4

6.5

Index

6.2.3 ANDANTE board integration 104
Reference Results 106
Work in Progress and Future Work 106
6.4.1 Workinprogress 106
642 Futurework 108
Conclusion 109

113

About the Editors 117

Preface

The Dawn of Edge Intelligence Processing

This book is a journey across the landscape of edge Al technologies and
applications, marking a change in how intelligent systems are designed and
deployed.

The book was born from the intellectual ferment of the European Con-
ference on EDGE AI Technologies and Applications — EEAI, held on 17-19
October 2023, Athens, Greece, offering a definitive snapshot of this transi-
tion. It provides a helpful resource for anyone seeking to comprehend the
multifaceted world of edge Al, from its foundational components to its most
innovative applications.

The value of the book lies in its comprehensive and in-depth exploration
of the field, bridging theory with practical implementation applications.

This exploration begins by grounding the reader in a complex, high-stakes
application: the advancement of autonomous vehicles for last-mile delivery.
The “Advancing Edge Al Perception Platforms and Sensor Fusion for Last-
Mile Delivery Autonomous Vehicles” chapter sets the stage by illustrating how
edge Al perception platforms and sophisticated sensor fusion are essential for
navigating the cluttered and unpredictable environments of the cities, thereby
evolving vehicles into intelligent, software and Al-defined agents. It perfectly
encapsulates the need for robust, real-time processing, a hallmark of edge
computing.

Building on this practical foundation, the subsequent chapters delve into
the critical enablers of edge Al technology and introduce “AIDGE: A Frame-
work for Deep Neural Network Development, Training and Deployment on
the Edge”, a comprehensive and modular open-source framework that radi-
cally simplifies the development, training, and deployment of Deep Neural
Networks across a diverse range of hardware.

This is followed by the chapter “A Scalable and Flexible Interconnect-
based Dataflow Architecture for Edge Al Inference”, a thoughtful explo-
ration of a scalable and flexible interconnect-based dataflow architecture,

X1

xii Preface

a novel approach designed to accelerate the complex computations of Al
inference directly on the hardware, offering significant performance gains
over traditional methods.

With increased connectivity and intelligence at the edge comes the
paramount concern of security. The book addresses this head-on in the
chapter “Federated Learning for Malware Detection in Edge Devices”
with a timely investigation into federated learning for malware detection.
The chapter presents a solution that allows for the collaborative devel-
opment of highly accurate security models without compromising user
privacy or intellectual property, a critical capability for the expanding IoT
ecosystem.

The collection broadens its scope to demonstrate the versatility of edge Al
across different domains in the next chapter “Image Signal Processor (ISP)
Tuning using Machine Learning (ML) methods”, which details a novel ML-
based method for automatically tuning ISPs, a key step for optimising camera
performance in any environment.

The final chapter, “Using Edge Al in loT Devices for Smart Agriculture:
Autonomous Weeding”, showcases the practical evolution of an autonomous
weeding system for smart agriculture, highlighting the migration of complex
vision algorithms to low-power, cost-effective edge devices.

Together, these six chapters provide a rich, multi-layered perspective on
the state of edge Al. They describe what has been achieved and illuminate
the path forward, offering the direction of a future where intelligence is
seamlessly integrated into the world's fabric. The book serves as an essential
guide for anyone seeking to navigate and contribute to the exciting and
rapidly evolving field of edge Al

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 1.12
Figure 1.13
Figure 1.14
Figure 1.15
Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Types of vehicles for last-mile delivery. 2
Autonomous vehicle functional elements. 6
Autonomous vehicle functional architecture overview.

Source: Adapted from [7]. 6
Vehicles and scalability. Source: [7]. 15
Perception and sensors fusion. Source: [8]. 16

Autonomous vehicle for last-mile delivery — Plat-
form integration components. Source: Adapted

from[9]. 17
Perception workflow for image recognition, object
detection and tracking. Source: Adapted from [9]. . 17
System overview. Source: Adapted from [9]. 19
Tracking system logo and no stopping/parking sign. 20
Logos pasted on driving data. 22
The detection and tracking module returning one
unique bounding box. 22
Odometry pure pursuit algorithm calculation illus-
tration [50,51]. 24
The pure pursuit loop to keep the vehicle on track
[50,51]. o o o 25
ROS 2 architecture [7,12]. 30
The autonomous vehicle [10].. 32
Schematic representation of the Aidge Framework
with its main components and functionalities 45

Aidge is built upon the concept of modularity with
a “Core” component and several “plugins” that

complete and extend the framework. 46
The image shows the constituent parts of an exam-
ple Convolution operator. 47

Example of operator tiling/splitting: a Conv + Relu
subgraph is split into a Slice + 4 Conv + 4 Relu +
Concat. 50

Xiv List of Figures

Figure 2.5

Figure 3.1

Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5
Figure 3.6
Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7
Figure 6.1

Schematic representation of Aidge’s export
procedure.
(a) The proposed interconnect-based dataflow archi-
tecture sub-system, (b) Neural Global Controller
(NGCO), (c) Neural Processing Element (NPE), (d)
Router in Artificial Intelligence Network on Chip
(AINOC). o
Packetformat
Synthesis results of different configurations of the
proposed architecture L.
Breakdown of latency (ns). For the proposed archi-
tecture, the convolution layer includes memory
accesses and computations. WORK = This Work,
RV32=RISC-VCPU.
Energy consumption (uJ) of the proposed
architecture L
Energy efficiency (MOPS/W) of the proposed
architecture L.
Sisyfos architecture: a malware analysis and detec-
tion SyStem.
Federated Learning configuration.
Federated Learning model performance for variable
training loops.,
Federated Learning model accuracy for different
number of clients.
Federated model accuracy for different dataset
overlaps. L
Centralized learning model’s performance for dif-
ferent dataset sizes.
Image Generation using ISP and Camera.
Linear Optimization Problem [3].
Tuning ISP Static Parameters.
Dynamic Parameters Data Generation.
Storing Optimal Parameters and ISP Statistical Data
for Training ML model.
Offline Tuning Results for Color Correction Matrix
Tuning.
Runtime Result of Trained XGboost WB.
State of the art of the weeding systems.

74

List of Figures XV

Figure 6.2 Left: BIPBIP weeding system behind a robotized

tractor. Right: Inside BIPBIP, the camera and the

lighting system [2]. 102
Figure 6.3 BIPBIP weeding module. The mechanical intra-row

hoeing tool is represented by the rod on the left, the

computing system in yellow, the two LED panels

and the camera in black inside the vision chamber

(in gray) which allows to isolate the vision system

from changing light conditions [2]. 103
Figure 6.4 Example of annotations on the image database.

Maize crops are annotated in blue and the stems in

cyan, bean crops in red and the stems in

orange [2]. Lo 104
Figure 6.5 Schematic representation of the BIPBIP vision sys-

tem with both hardware accelerator possible: a GPU

for the NVIDIA Jetson case or an ASIC for the

platform4.1a. 105
Figure 6.6 The adapted network architecture used for this

application. The figure presents how the duplicated

Mobilenet layers and the SSD head are connected to

the NeuroCorgi backbone. 107
Figure 6.7 Results from the Yolo V4 network (left) and the

proposed SSD network (right) on maize. Blue rect-

angles show the plants. Green rectangles show the

stem locations. L. 108

List of Tables

Table 1.1

Table 1.2

Table 3.1

Table 3.2

Table 3.3

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 5.1

Table 6.1
Table 6.2

Table 6.3

Sensor Modality Comparison for Last-Mile Delivery
AVs . . o
Summary of ROS 2 Features Compared
toROST[11] o ..
CNN Layerstype
Breakdown of Versal ACAP VCK190 FPGA resources
used by the modules of the proposed architecture after
synthesis oL
Different execution phases in the proposed
architecture oL
Accuracy on test set of FL. model with 2 clients for
multiple learning steps.
Accuracy on test set of FL. model for different number
of clients for 2 learning steps.
Accuracy on test set of FL. models for different dataset
overlaps for 2 clients.
Accuracy on test set of FL. models for different dataset
overlaps for 10clients.
Accuracy on test set of centralized models for different
datasetsizes.
KPIs for Measuring Image Artifacts.
Number of images and annotations for each crop.
Detection performance (%) and inference speed (fps)
for Yolo v4 on the NVIDIA Jetson Xavier including
video acquisition and post-processing for each crop. .
Detection performance (loss function) using the new
architecture.

XVii

81

List of Contributors

Allenet, Thibault, CEA, France

Bahr, Roy, SINTEF AS, Norway

Bichler, Olivier, CEA, France

Bijani, Sepehr, NXP Semiconductors, Germany
Brudeli, Helge, Paxster AS, Norway

Chersi, Fabian, CEA, France

Da Costa, Jean-Pierre, University of Bordeaux, CNRS, Bordeaux Sciences
Agro, France

Deshayes, Aymeric, University of Bordeaux, CNRS, France
Emanuelsson, Petter, Paxster AS, Norway
Fgrrisdahl, Martin, Paxster AS, Norway

Germain, Christian, University of Bordeaux, CNRS, Bordeaux Sciences
Agro, France

Keresztes, Barna, University of Bordeaux, CNRS, Bordeaux Sciences Agro,
France

Krichene, Hana, Université Paris-Saclay, CEA-List, France
Kucher, Inna, CEA, France

Lorrain, Vincent, CEA, France

Moineau, Cyril, CEA, France

Naud, Maxence, CEA, France

Prasad, Rohit Université Paris-Saclay, CEA-List, France
Sand, Hans-Erik, NxTECH AS, Norway

Saxegaard, Simen Marentius, NxTECH AS, Norway

X1X

XX List of Contributors

Serpanos, Dimitrios, University of Patras, Greece
Soutier, Laurent, CEA, France

Templier, Vincent, CEA, France

Vermesan, Ovidiu, SINTEF AS, Norway

Xenos, Georgios, University of Patras, Greece

1

Advancing Edge Al Perception Platforms
and Sensor Fusion for Last-Mile Delivery
Autonomous Vehicles

Ovidiu Vermesan!, Roy Bahr!, Hans-Erik Sand?,
Simen Marentius Saxegaard?, Helge Brudeli®, Petter Emanuelsson?,
and Martin Fgrrisdahl®

ISINTEF AS, Norway
2NxTECH AS, Norway
3Paxster AS, Norway

Abstract

In the rapidly evolving landscape of transportation, mobility, and logistics, the
last-mile represents the final and crucial leg of the delivery journey. It involves
goods travelling from a transportation hub to the ultimate destination. This
is the most expensive and time-sensitive part of the supply chain business
model. Challenges include navigating dense urban environments with vari-
ous types of traffic participants (e.g., pedestrians, bicycles, animals, electric
scooters, motorcycles, etc.), dealing with traffic congestion, locating specific
delivery points, managing a high density of stops, and handling failed delivery
attempts. In this context, the intersection of edge artificial intelligence (Al),
autonomous systems, robotics, and sensor fusion in perception and navi-
gation advances the development of last-mile delivery autonomous vehicle
(AV) platforms that evolve towards software-defined and Al-defined vehi-
cles (SDVs and ADVs). The advancements include multiple sensor systems
for perception and communication (e.g., ultrasound, inertial, LIDAR, radar,
camera, V2X, etc.), real-time data processing for localisation, and robust
algorithms for navigation and interaction with diverse traffic environments.
This chapter presents the concept and the implementation of an Al-based

2 Advancing Edge Al Perception Platforms and Sensor Fusion

perception and sensor fusion platform technical solution for autonomous last-
mile delivery in controlled traffic environments.

Keywords: edge Al, perception, autonomous vehicle, sensor fusion, object
recognition, last-mile delivery.

1.1 Introduction and Background

The future of mobility is intelligent, electrical, autonomous, connected, and
shared, affecting all three broad types of mobility: personal mobility (moving
individuals or small groups of people), mass transit (moving large numbers
of people), and the movement of goods.

The last-mile of logistics refers to the final leg of the delivery journey,
typically from a local distribution hub or retail centre to the end recipient’s
location, such as a home or business [1]. This segment is notoriously the
most complex, inefficient, and expensive part of the entire supply chain, often
accounting for over 50% of total delivery costs [3].

Last-mile logistics are increasingly automated, and companies that are
prepared for this shift are in a stronger position to compete and take the
lead. Autonomous last-mile delivery, utilising vehicles ranging from small
sidewalk robots to automated vans, promises significant efficiency gains
and cost reductions in logistics. As a result, various types of autonomous
vehicles for last-mile delivery have emerged as follows [10] and illustrated in
Figure 1.1:

* Pedestrian sidewalk vehicles. These are slow vehicles designed to travel
at a pedestrian speed of 4-6 km per hour. This low speed offers improved
safety and allows the operators to control the vehicle in an emergency.

* Bicycle sidewalk vehicles. These are vehicles designed to travel up to a
bicycle speed of 12-15 km per hour.

) $o @

Vehicle type Pedestrian sidewalk vehicles Bicycle sidewalk vehicles On-road delivery vehicles
Speed (up to) 4-6 km/h 12-15 km/h 45-50 km/h
Traffic zone Pedestrian zones Bike paths Road

Traffic

Pedestrians, cyclists, animals Cyclists Vehicles, cyclists

participants

Figure 1.1 Types of vehicles for last-mile delivery.

1.1 Introduction and Background 3

* On-road delivery vehicles. These vehicles are built for on-road delivery
at up to 45-50 km per hour. Their software algorithms and sensor
systems resemble those of autonomous vehicles.

Driverless technology users utilise autonomous deliveries for several
purposes:

* Delivery of goods from warehouses to stores and outlets for restocking
inventory and shelves.

* Delivery of goods from stores to end consumers.

* Delivery of goods and parts between the warehouses and production
facilities.

Autonomous vehicles (AVs), encompassing road-going vans and smaller
sidewalk autonomous delivery vehicles, are emerging as a potentially trans-
formative solution. By eliminating the need for a human driver, AVs offer the
potential for 24/7 operation, reduced labour costs (a significant component
of last-mile expense), optimised routing, and potentially lower emissions,
primarily if electric. They can navigate narrow streets or pedestrian zones
inaccessible to larger vehicles and improve delivery times by avoiding
human-related delays.

The development of last-mile delivery autonomous vehicle fleets is linked
to the evolution of Internet of Robotic Things (IoRT) platforms. IoRT serves
as the technological backbone, integrating individual autonomous robotic
vehicles into an interconnected system of systems. [oRT combines IoT tech-
nologies with robotics, edge computing and Al, allowing for the coordination
of large-scale fleets of delivery robots that might otherwise operate alone.
Connecting and integrating the last-mile delivery autonomous vehicle into
fleets that are coordinated using distributed networks or IoRT platforms
enables functions such as remote monitoring, intelligent communication,
and the management of the entire delivery process, which can be managed
from the distribution centre to the customer’s doorstep. The intelligence
and real-time responsiveness of the autonomous delivery fleets and the
IoRT platforms are significantly enhanced by edge Al. Edge Al embeds
data processing and decision-making capabilities directly onto the vehicles
themselves, strengthening the processing capabilities and the analytics of
each vehicle in the fleet or the IoRT platform. The use of edge Al enables
continuous route optimisation, obstacles and traffic participants avoidance,
and real-time adaptation to changing environmental conditions, which are
critical for navigating pedestrian spaces and complex urban environments
safely and efficiently. Edge Al-powered robotics within the IoRT framework

4 Advancing Edge Al Perception Platforms and Sensor Fusion

calculate the most efficient paths in real-time, ensuring that last-mile delivery
is not only automated but also intelligent, fast, and reliable [S5, 6].

For autonomous last-mile delivery to become a reality, the core enabling
technology is robust perception — the AV’s ability to sense, interpret, and
understand its complex and dynamic surroundings. Last-mile environments,
whether sidewalks or urban streets, present unique perception challenges:
close-quarters manoeuvring around pedestrians, cyclists, pets, parked cars,
street furniture, and unpredictable obstacles; navigating varied terrain includ-
ing curbs and uneven surfaces; interpreting complex traffic signals and signs
at intersections; precisely identifying the final delivery location (e.g., a spe-
cific doorway or porch); managing a high density of stops, and handling failed
delivery attempts [2]. Failures in perception can lead directly to collisions,
incorrect deliveries, or mission failure.

No single sensor can reliably capture all necessary environmental infor-
mation under all conditions. Cameras struggle in poor lighting or weather,
LiDAR can be expensive and has limitations in adverse weather, radar has
lower resolution, and ultrasound has a very short range. Therefore, sensor
fusion — the intelligent combination of data from multiple, diverse sensors
is key [14]. By integrating complementary data streams, sensor fusion aims
to create a unified, comprehensive, and reliable environmental model that is
more accurate and robust than what could be achieved with individual sensors
alone.

Last-mile delivery autonomous vehicles can operate in fleets with individ-
ual vehicles acting as cognitive agents using perception modules to process
images, GNSS positions or LiDAR scans for autonomous system decision-
making, resulting in actions, such as actuator commands or V2X messages.
The high degree of interdependencies between many functional components
of autonomous vehicles requires the implementation of new system architec-
tures and new underlying software frameworks. The concepts of developing
Al-based last-mile autonomous delivery vehicles are embedding Robot Oper-
ating System (ROS) into compact, scalable, Al-based perception, localisation
and sensor fusion platforms advancing the solutions and applications for
autonomous transport of goods.

An essential aspect of the safe use of last-mile delivery autonomous
vehicle technology is determining its capabilities and limitations and com-
municating these to end users, leading to a state of “informed safety”. The
first stage in establishing the capability of an autonomous vehicle is defining
its Operational Design Domain (ODD). The ODD is defined in [17] as the

1.1 Introduction and Background 5

operating conditions under which a given driving automation system or fea-
ture thereof is specifically designed to function and can perform the dynamic
driving task (DDT) safely. This includes, but is not limited to, environmen-
tal, geographical, and time-of-day restrictions, and/or the requisite presence
or absence of specific traffic or roadway characteristics. DDT consists of
both a tactical driving task and an operational driving task, encompassing
all the real-time operational and tactical functions necessary to operate a
vehicle in on-road traffic, including lateral vehicle motion control via steer-
ing (operational); longitudinal vehicle motion control via acceleration and
deceleration (operational); monitoring the driving environment via object
and event detection, recognition, classification and response preparation
(operational and tactical); object and event response execution (operational
and tactical); manoeuvre planning (tactical); and enhancing conspicuity via
lighting, sounding the horn, signalling, gesturing (tactical). This excludes the
strategic functions, such as trip scheduling and the selection of destinations
and waypoints [17].

The ODD defines the functional boundary of the system, and the
autonomous system’s functional architecture implements the system require-
ments, considering the ODD, technological constraints, and how high-
reliability and safety systems can be designed, built, and tested using realistic
sensors/actuators, hardware, software, and Al components.

Autonomous system functional architecture used to implement the differ-
ent autonomous functions refers to the logical decomposition of the system
into sub-functions/sub-components and the data flows between them [7] as
illustrated in and listed below:

* Sense: Process a variety of sensing modalities.

* Map: Provide static and dynamic map data.

* Localise: Calculate the vehicle’s position, orientation, and motion.

* Perceive: Calculate drivable areas and obstacle location and motion.

* Predict: Estimate the future motion and movement of dynamic objects.

* Plan: Calculate a desired trajectory for a vehicle.

* Control: Execute the trajectory as steering, brake/acceleration, and
throttle commands.

* Learn: Enhance the capabilities through learning from the use cases,
scenarios and missions performed.

The integration of the system functions, sub-functions/sub-components
into a functional architecture for autonomous vehicles is presented in the
Figure.

6 Advancing Edge Al Perception Platforms and Sensor Fusion

Figure 1.2 Autonomous vehicle functional elements.

| Operational Design Domain - ODD |

[Traffic |
k2 R AAAAAAAAAAAAAAAAAAY
Vehicle MMM
Ethernet, CAN NAAAAAA AN
z = 4

g g

H 2 £ 2= Target

£y 5 g o]

- 2 E TE Route Planning

o) 2

2 =] 22 G

= slobal Ma Traffjc Rules

g 7 ZE Y Map_ [Traff

Vehicle Vehicle Path =

Mission and Manoeuvre Planning
Control

T Plan T

Control
Odometry | Motor Control

Interface

zo 5E

- . siz 53
::] Localisation |'—HI) Map TES t3

vt 35 5
L Camera t Objects (Vehicles, lanes, lights, signs. =% H §
I Radar | Objects (Vehicles, pedestrians, infrastructure) g A
LI Lidar | Objects (Free space, lanes, objects) Sensor = E
T e— Objects (Proximity, surroundings) Fusion |14 3
—1 Ultrasound 2z 5
—— s =

NT Objects (Vehicles V2X active, active infrastructure)
\\
\\ —

Figure 1.3 Autonomous vehicle functional architecture overview. Source: Adapted from [7].

The scalable functional architecture implements different autonomous
functions using Al-based platforms that can navigate autonomously, detect-
ing dynamic obstacles and following an optimal trajectory. The vehicles
can recognise actions by processing information acquired from perception

1.2 Sensor Fusion in Last-Mile Context 7

sensors and sensor fusion (e.g., GNSS, IMU, camera, radar, LIDAR, V2X).
The processes are integrated into the ROS architecture, which shows potential
for last-mile delivery autonomous vehicles applications.

The development of last-mile autonomous delivery vehicles is following
the latest advances in SDVs to manage and integrate multiple software stacks
and hardware components from various suppliers. The convergence of SDV,
generative Al, and the Internet of Things (IoT) can pave the way for Al-
defined vehicles as the future of mobility [32]. ADVs are the next step in
the development of SDVs, focusing on hardware and infrastructure advance-
ments that enable software decoupling from hardware with a hybrid stack that
integrates control, processing and Al functionalities seamlessly [32, 34].

1.2 Sensor Fusion in Last-Mile Context

Sensor fusion is the process of intelligently combining data from multiple
heterogeneous sensors [14] to generate a more accurate, complete, reliable,
and robust representation of the environment than any single sensor operating
alone. It leverages the complementary strengths of different sensor modalities
while mitigating their weaknesses.

In the specific context of last-mile delivery, sensor fusion aims to build a
detailed and dynamic understanding of the immediate surroundings, which
is crucial for navigating complex, often cluttered, and highly interactive
environments, such as sidewalks, crosswalks, residential streets, and building
entrances [15]. Key objectives include:

* Accurate localisation and mapping, especially in GNSS-challenged
urban canyons [16].

* Robust detection and tracking of static and dynamic obstacles, including
pedestrians, cyclists, pets, and other small, unpredictable actors common
in urban/suburban settings [18].

* Reliable perception across diverse and challenging conditions, such as
varying lighting (day/night, shadows, glare, etc.), adverse weather (rain,
fog, snow, etc.), and sensor occlusions [21].

* Precise identification of navigable paths, drivable surfaces, curbs,
and specific delivery locations (e.g., doorsteps, designated drop-off
zones) [18].

* Generating a unified environmental model suitable for real-time plan-
ning and control of potentially low-speed, highly manoeuvrable delivery
vehicles [22].

8 Advancing Edge Al Perception Platforms and Sensor Fusion

A typical sensor suite for a last-mile delivery autonomous vehicle aims
to provide 360-degree awareness and redundancy by combining sensors with
different operating principles and characteristics.

Common sensors components for last-mile delivery autonomous vehicles
are presented in the Table 1.1 and described in the following paragraphs.

Cameras are the primary source of rich semantic information for autonomous
vehicles [18]. They capture visual details like colour, texture, and shape,
enabling the recognition and classification of objects (pedestrians, vehicles,
traffic signs, traffic lights, lane markings), interpretation of road signs, and
potentially reading delivery labels or house numbers [3]. Cameras provide
high-resolution data, are relatively low-cost compared to LiDAR, are passive
sensors consuming less power, and are adept at capturing the complex visual
details necessary for semantic understanding in diverse urban and pedestrian
environments [18]. Their cost-effectiveness is a significant advantage for
deploying delivery robots or vans at scale. Multiple cameras can provide a
360-degree field of view [18]. Camera performance degrades significantly
in adverse weather conditions (e.g., heavy rain, fog, snow) and challenging
lighting (e.g., low light, nighttime, direct glare, shadows) [18]. Monocular
cameras struggle with direct and accurate depth estimation, requiring com-
putationally intensive techniques like stereo vision or structure-from-motion
or fusion with other sensors like LiDAR or radar. They are susceptible to
occlusions, where objects of interest are hidden behind others. Fast motion
or vehicle vibration can cause motion blur, particularly with rolling-shutter
cameras, potentially impacting the accuracy of perception [18]. Cameras are
indispensable for navigating visually complex sidewalks and streets, identify-
ing pedestrians and other vulnerable road users (VRUs) for safe interaction,
reading traffic signals and signs crucial for road crossings, and potentially
identifying specific delivery addresses or drop-off points [18]. However,
the limitations in poor weather and lighting pose significant challenges for
achieving reliable 24/7 operation required by many delivery services. While
global shutter cameras can mitigate motion blur in dynamic close-quarters
environments, they also add to the cost [18]. The need for robust performance
across diverse environmental conditions necessitates fusing camera data with
other sensor modalities.

LiDAR is the primary sensor for generating accurate, high-resolution 3D
maps of the environment and providing precise distance measurements of
objects [3]. It creates a point cloud representing the geometry of the sur-
roundings. LiDAR offers excellent depth accuracy and creates detailed 3D

Table 1.1 Sensor Modality Comparison for Last-Mile Delivery AVs

1.2 Sensor Fusion in Last-Mile Context 9

Feature | Camera | LiDAR Radar IMU Ultrasound V2X
Role Semantic | Accurate | Detect Motion/ Very Extended
under- 3D objects orientation short- situa-
stand- map- and tracking, range tional
ing, ping, measure dead object aware-
object depth their reckoning detec- ness,
classifi- | percep- distance, | during tion, coop-
cation, tion, velocity, GNSS loss. | parking, erative
traffic obstacle | and docking percep-
sign, geome- angle in assist. tion,
light try. relation non-line-
recogni- to the of-sight
tion. vehicle. detection.
Strengths Rich Precise Robust Operates Very Detects
(Last- detail locali- perfor- without low cost, beyond
Mile) for sation mance at | external detects line-of-
VRU in urban | distance. | signals objects sight,
and sign | canyons, | Not sig- | (GPS- extremely integrated
recog- detects nificantly | denied), close with
nition, low affected high (blind infras-
low obsta- by rain, | frequency spots), tructure
cost, cles, fog, data for | good (e.g.
low curbs, snow, fusion/ sta- | for tight traffic
power. day, low- bilization. manoeu- lights).
night light, vring.
opera- night
tion. condi-
tions.
Limitations| Poor High Lower Accumulates| Very Requires
(Last- perfor- cost reso- drift error | limited widespread
Mile) mance (major lution quickly, range adoption,
in bad | barrier), | image of | needs (<5- infras-
weather, | degraded | the envi- | constant 10m), tructure,
lighting, | by ronment, | correction, poor latency,
poor heavy poor to | sensitive angular reliability
depth precip- detect to vibra- | resolu- issues,
estima- itation, and tion/temp. tion, poor security,
tion, dust, no | classify perfor- privacy
motion colour, sta- mance at concerns.
blur. texture tionary speed.
info. objects,
inference
from
other

radars.

10 Advancing Edge Al Perception Platforms and Sensor Fusion

Table 1.1 Continued.

Feature | Camera | LiDAR Radar IMU Ultrasound V2X
Cost Low High Medium | Low Very low. Medium
Factor and and (MEMS) to (requires

decreas- | lower medium. comms
ing. than module +
that of potential
LiDAR network,
systems. infras-
tructure
costs).
Importance| Essential | Highly Still Essential Complementary| Potentially
for (seman- | impor- expen- (local- (near-field high
Last-Mile | tics, tant sive. isation safety, (safety,
VRUs, (locali- | Reliable | continuity, | docking) effi-
signs). sation, object state ciency),
3D detection | estimation) but
struc- / tracking depen-
ture, in poor dent on
obstacle | weather / ecosys-
detec- lighting tem
tion) condi- maturity.
tions.

representations, which are crucial for localisation, mapping, and obstacle
detection [21]. It operates effectively regardless of ambient lighting condi-
tions (day or night) [21]. Its performance is generally more robust in certain
adverse weather conditions (like light rain or fog) compared to cameras,
although heavy precipitation can still cause significant degradation [21].
Recent advancements have led to more compact and potentially lower-cost
solid-state LiDAR units. LiDAR sensors remain relatively expensive, par-
ticularly high-resolution, long-range units, posing a significant cost barrier
for mass deployment, especially on more miniature, cost-sensitive delivery
robots [4]. Performance can be degraded by heavy rain, snow, dust, or
fog [21]. LiDAR cannot perceive colour or texture information, making it
challenging to classify objects based solely on LiDAR data (e.g., reading
traffic signs or distinguishing between visually similar objects) [23]. The
point clouds generated can be sparse, especially for distant or small objects.
Mutual interference between multiple LiDAR sensors operating in the same
area is a potential issue. Traditional mechanical scanning LiDARs have
moving parts, raising concerns about long-term reliability and durability,

1.2 Sensor Fusion in Last-Mile Context 11

particularly on vehicles operating over bumpy terrain, such as sidewalks.
LiDAR is crucial for precise localisation and mapping within complex urban
canyons or sidewalk environments where GPS may be unreliable [21]. It
excels at detecting low-lying obstacles, curbs, potholes, or changes in terrain
that might be missed by cameras alone. The high cost remains a significant
challenge for the last-mile business case [4]. The typically lower speeds
and shorter operational ranges in last-mile delivery may allow for the use
of lower-cost, shorter-range LiDAR sensors compared to those needed for
high-speed highway autonomy [14]. Fusion with cameras is essential to add
semantic understanding to LiDAR’s geometric data.

Radar sensors [19] are one of the key elements for the autonomous vehicle’s
perception system due to their resilience to adverse environmental conditions.
Radar can see through darkness and fog, and to a certain extent through rain,
and snow, conditions that severely challenge or blind other sensors, such as
cameras. This capability ensures a baseline of operational safety and func-
tionality, regardless of the time of day or weather conditions, providing data
on the range, velocity, and angle of other objects with a high degree of accu-
racy. The synergistic integration of high-frequency radar, 5G communication,
and multimodal radar technologies greatly enhances the sensing capability
and environmental adaptability of autonomous vehicle perception systems
[20]. However, radars present a few challenges. In heavy rainfalls, the radio
signals can suffer from attenuation, slightly reducing their effective range.
Additionally, in dense urban environments, the radio waves can bounce off
multiple surfaces before returning to the sensor. This multi-path reflection, or
clutter, can create "ghost" targets, misleading the vehicle’s perception system
into “thinking” an object is present where there is none. The resolution of
radar makes it challenging to classify objects with certainty, as it for examples
struggles to distinguish between a pedestrian, a cyclist, or a stationary object,
such as a signpost, based on its signature alone.

These challenges are particularly amplified in the context of last-mile
delivery for autonomous vehicles. The ODD for these vehicles involves
navigating complex and cluttered environments such as residential streets,
sidewalks, and loading zones. Standard automotive radars are optimised
for detecting large metallic objects, such as other vehicles, and may fail
to reliably detect smaller, low-profile, or non-metallic items in these areas,
including delivery packages, curbs, children’s toys, or pets. The proximity to
buildings, parked vehicles, and other street furniture exacerbates the multi-
path reflection problem, making it more challenging to maintain a clear and
accurate perception of the immediate surroundings.

12 Advancing Edge Al Perception Platforms and Sensor Fusion

IMUs measure the vehicle’s linear acceleration and angular velocity using
accelerometers and gyroscopes [16]. This data is integrated over time to esti-
mate changes in velocity, position, and orientation (roll, pitch, yaw). They are
fundamental for state estimation and enable dead reckoning navigation during
periods when external positioning signals, such as GPS, are unavailable [16].
IMUs provide high-frequency motion data (often 100 Hz or higher), com-
pletely independent of external signals or environmental conditions, allowing
continuous operation in tunnels, urban canyons, dense foliage, or indoors
[16]. They are relatively low-cost, especially Micro-Electro-Mechanical Sys-
tems (MEMS) based units, compact, and consume little power [16]. IMU data
is critical for stabilising perception data from other sensors (compensating for
vehicle motion) and for providing the motion inputs needed for sensor fusion
algorithms, such as Kalman filters [24]. The primary limitation of IMUs is
drift, minor errors in acceleration and angular velocity measurements accu-
mulate over time, leading to rapidly increasing errors in the estimated position
and orientation [16]. This necessitates frequent corrections using absolute
positioning sensors (such as GPS) or relative positioning derived from other
sensors (e.g., LIDAR/camera-based SLAM). IMUs are sensitive to tempera-
ture changes and vibrations, which can affect their accuracy [16]. Accurate
calibration is crucial, but it can be complex [16]. Magnetometers, sometimes
included for heading reference, are unreliable in urban environments due
to magnetic interference from buildings, vehicles, and infrastructure [25].
IMUs are indispensable for last-mile navigation due to frequent GPS signal
degradation or loss in urban canyons, underpasses, or near tall buildings [16].
The high-frequency data helps maintain a smooth estimate of the vehicle’s
state, which is crucial for controlling robots navigating potentially uneven
sidewalks or making frequent stops and starts. Cost-effective MEMS IMUs
are generally sufficient, but robust fusion with GPS, LIDAR-SLAM, or visual
odometry is essential to bind the inherent drift [16].

Ultrasonic sensors use high-frequency sound waves to detect the presence
and distance of objects at very short ranges [26]. They operate on the
principle of measuring the time-of-flight of emitted sound pulses reflecting
off nearby objects. They are relatively inexpensive and easy to integrate.
They can detect objects close to the vehicle (within a few meters), effectively
covering blind spots often missed by cameras or LiDAR [23]. Their perfor-
mance is largely unaffected by lighting conditions (work in darkness) or the
colour/transparency of the object [27]. They are relatively robust in some
adverse weather conditions [27]. Ultrasound sensors have a minimal detection
range, of up to 4-5 meters depending on the sensor and conditions [26]. Their

1.2 Sensor Fusion in Last-Mile Context 13

angular resolution is poor due to broad beam patterns, making it difficult
to distinguish between closely spaced objects, determine object shape, or
precisely locate small objects [27]. Performance degrades significantly at
higher vehicle speeds [23]. They can be susceptible to interference from
external ultrasonic noise sources [28]. They may struggle to detect soft,
sound-absorbing materials [27]. Their primary utility in last-mile delivery
is for low-speed, close-quarters manoeuvring, such as parking assistance for
vans, docking at a specific delivery point, navigating very narrow passages, or
detecting immediate low-lying obstacles like curbs right next to the vehicle
or robot [26]. They can serve as a safety sensor for detecting the presence
of people near loading doors [29]. Due to their limited range and resolution,
they are unsuitable for primary navigation or obstacle avoidance at typical
operational speeds but serve as a valuable, cost-effective complementary
sensor for near-field safety and precision manoeuvring.

V2X encompasses technologies (primarily DSRC/IEEE 802.11p and C-
V2X/cellular) that enable vehicles to communicate wirelessly with other
vehicles (V2V), roadside infrastructure (V2I), pedestrians (V2P, often via
smartphones), and the network or cloud (V2N) [30]. Its key role in per-
ception is enabling cooperative perception, where sensor data and derived
information are shared among connected entities [30]. V2X can dramatically
extend a vehicle’s perception range and awareness beyond the line-of-sight
limitations of its onboard sensors [30]. By sharing data (raw sensor data,
processed object lists, or intent information), vehicles can “see” around
corners or through obstructions via the sensors of other connected agents. V2I
communication can provide critical information, such as traffic signal phase
and timing (SPaT), road hazard warnings, and work zone alerts [30]. This
enhanced situational awareness can significantly improve safety and traffic
efficiency, enabling coordinated manoeuvres such as platooning [30]. C-V2X
offers the potential advantage of leveraging existing cellular infrastructure for
V2N, potentially providing more exhaustive coverage compared to DSRC’s
reliance on dedicated Roadside Units (RSUs) [31]. The effectiveness of V2X,
particularly V2V and V2I for cooperative perception, heavily depends on
widespread adoption and deployment — a significant network effect challenge.
Communication channels have limitations in terms of latency, reliability,
bandwidth, and range, which can affect the timeliness and quality of shared
perception data. Ensuring the security and authenticity of V2X messages
is paramount to prevent malicious attacks (e.g., false hazard warnings,
Sybil attacks) [30]. Privacy concerns exist regarding the sharing of vehicle
data. Standardisation is still evolving, with ongoing debate and regional

14 Advancing Edge Al Perception Platforms and Sensor Fusion

differences between DSRC (IEEE 802.11p/ITS-G5) and C-V2X (LTE-V2X,
5G-V2X) hindering global interoperability [31]. Deploying the necessary
infrastructure (RSUs for DSRC, potentially upgraded cellular networks for
C-V2X) involves significant cost and effort. Cooperative perception via V2X
is potentially very valuable in dense, occluded urban environments typical
of last-mile routes, allowing a delivery robot or van to perceive pedestrians
or vehicles hidden from its direct view [30]. V2I communication providing
traffic light status is crucial for safe intersection negotiation. V2N connectiv-
ity can be used for real-time updates to delivery routes, receiving customer
instructions, remote monitoring, or potentially teleoperation under challeng-
ing situations. However, reliable connectivity (cellular or RSU coverage)
might be inconsistent across all delivery zones, including dense urban areas
or more remote suburban neighbourhoods. Security is especially critical for
autonomous delivery vehicles, as it prevents theft, hijacking, or disruption of
service.

GNSS plays a key role in autonomous last-mile delivery vehicles by provid-
ing essential positioning, navigation, and timing information. It enables these
vehicles to accurately determine their location and navigate to delivery des-
tinations, facilitating efficient route optimisation and real-time tracking. One
of the primary strengths of GNSS is its global coverage, enabling positioning
data to be available virtually anywhere. Its high accuracy, especially when
complemented by augmentation systems like Real-Time Kinematic (RTK),
can achieve centimetre-level precision, which is essential for operating in
complex urban environments. Additionally, GNSS provides real-time data
updates that support continuous adjustments during deliveries, making it a
cost-effective solution widely available for implementation. GNSS has limita-
tions as signal interference can occur in urban environments, where buildings
or tunnels obstruct satellite signals, leading to degraded performance. Mul-
tipath effects, where signals bounce off surfaces, can further compromise
accuracy. Latency issues may arise, affecting the system’s responsiveness
in dynamic traffic situations, and extreme weather conditions or satellite
outages may challenge the reliability of GNSS. To effectively utilise GNSS
in last-mile delivery vehicles, specific requirements must be met. Integrating
GNSS with other technologies, such as inertial navigation systems (INS),
LiDAR, and cameras, is vital for enhancing accuracy and reliability. Robust
software algorithms are needed to process GNSS data and compensate
for environmental errors. Energy-efficient solutions are essential to ensure
continuous operation without overburdening the vehicle’s power resources.

1.3 Autonomous Vehicle Architecture for Last-Mile Delivery 15

Real-time data exchange must be established to optimise routes and ensure
safety while also adhering to safety standards compliance.

1.3 Autonomous Vehicle Architecture for Last-Mile
Delivery

Autonomous vehicle for transport of goods considers the use of scalable
processing capabilities at the edge with Al-based functions implemented into
the perception domain and covering the edge computing capabilities imple-
mented into vehicles of different sizes using the same generic architecture as
illustrated in Figure 1.4 [7].

1.3.1 Localisation and High-Definition Map

Localisation is critical for the safe and efficient operation of last-mile delivery
autonomous vehicles. By employing high-definition (HD) maps that detail
urban infrastructure, such as road types, curb locations, and traffic signals,
these vehicles can navigate complex environments more effectively.

The maps incorporate real-time data updates to reflect changing road
conditions, enhancing navigational accuracy and safety.

1.3.2 Perception Implementation

Perception in last-mile delivery autonomous vehicles integrates Al to iden-
tify and classify various objects within the vehicle’s vicinity. This involves

Figure 1.4 Vehicles and scalability. Source: [7].

16 Advancing Edge Al Perception Platforms and Sensor Fusion

Surrounded view

Environment pigital side mirrg,. Environment
mapping mapping
Blind spot
detection

Adapting cruise control Park assistance
Emergency braking
Pedestrian detection

Collision avoidance

Environment
mapping

Surround view
Rear view mirror

Ultrasound
Environment

LIDAR) ”
mapping Digital side mirro* mapping

Environment

© Camera
Long - Range radar Surrounded view

® Short - Medium - Range Radar
PERCEPTION AND SENSOR FUSION

Figure 1.5 Perception and sensors fusion. Source: [8].

a fusion of data from multiple sources, where machine learning (ML)
algorithms help predict potential obstacles and dynamic changes in the
environment.

The resultant data enhances situational awareness and informs decision-
making processes. An overview of the sensors used in the perception and
sensor fusion platforms for autonomous vehicles for last-mile delivery of
goods is illustrated in Figure 1.5.

Sensor fusion, Al processing and decision-making

The overall system architecture of the autonomous vehicle comprises
controllers for the perception, sensor fusion and actions for the vehicle’s
actuators based on the sensed environment, objectives, and constraints. It is
divided into three primary blocks: detection, perception, and decision policy,
as illustrated in Figure 1.6 [9].

The main system management components consist of the Operating
System (OS) based on Linux Ubuntu, and the middleware based on the ROS.

ROSI is a high-level API for evaluating sensor data and controlling
actuators.

The integration activities on sensor fusion, combines homogeneous
and heterogeneous data from different sources like the perception sen-
sors (LiDAR, cameras, ultrasonic sensors, etc.) to facilitate Al processing,
decision-making, and planning.

The perception workflow for image recognition, object detection and
tracking are illustrated in Figure 1.7 [9]. Technology wrappers are used to
integrate different protocols, data formats, and interfaces seamlessly.

1.3 Autonomous Vehicle Architecture for Last-Mile Delivery 17

Al processing and the autonomous systems are integrated using per-
ception sensors for mapping the environment, HW/SW components for the
acquisition, processing, aggregation, analysis, and interpretation of data, Al-
based algorithms and methods for situation assessment, action planning,
cognitive decision-making, and actuators for acting on the steering, braking
and propulsion systems.

Various Al frameworks, such as Python, PyTorch, Keras, and TensorFlow,
as well as several machine vision libraries like OpenCV, SimpleCYV, the Point

= ===

| Controller | [Remote monitor Intel RealSense
y Bl h Wi-Fi(SSH) y Use [RGB/Depth Camera |
NV Il)‘l A Jetson \(.\ ()I,i”, Al-Based Perception HI,‘”“I m [MU (6-axis) I
RealSense| [Joystick| JAGV control| [SLAM | [Navigation
node node node node node Bosch
ROS CAN 4 Serial 4 Serial 4 Serial
LINUX Ultrasonic 1_|[Ultrasonic ... || Ultrasonic 12
4 Tcee
Remote Processing Unit Vehicle Control Unit (VCU)
YOLO CAN MCU
ROS Control board
LINUX Driver

=

Figure 1.6 Autonomous vehicle for last-mile delivery — Platform integration components.
Source: Adapted from [9].

Raw image

“Object Anaiyeies |
ROS node ’ Object tracking ROS H Tracked

node

i
i
i
\\/ RealSense | [Detectea | f
ROS node U | _objects | !
i
i
i
i

object

Visualisation

Transformation

3D
Camera

Figure 1.7 Perception workflow for image recognition, object detection and tracking.
Source: Adapted from [9].

18 Advancing Edge Al Perception Platforms and Sensor Fusion

Cloud library, and YOLO, and Al-based computing platforms like NVIDIA
Jetson AGX Orin, were evaluated for integration into different layers of
autonomous vehicle architecture.

These Al-based frameworks, algorithms, libraries, and platforms were
utilised during various phases of the autonomous vehicle platform demon-
strator’s development.

The decision-making relies on sensor fusion and Al processing.

Furthermore, the vehicle platform features several actuators and con-
trol units, including the electric steering servo and throttle/speed control
for autonomous driving, speech information/recognition for use-case ser-
vice/security purposes, NFC/mobile locking/unlocking systems, and wire-
less/wired emergency stops for safety reasons.

Perception sensors and navigation

The platform was integrated with the NVIDIA Jetson AGC Orin, which
provides Al-based perception and sensor fusion capabilities [9]. To abstract
the sensor brand and interface from Orin, parsing of the ultrasonic sen-
sor electronic control unit (ECU) data were implemented and an interface
provided (independent of ultrasonic system used).

Having the vehicle control unit (VCU) interpret the sensor data also
enables it to have an emergency brake function. This function is set so that if
the vehicle is autonomous mode, the vehicle’s VCU sends a signal to disable
drive to the CAN relay, which in turn triggers engaging of the electronic park
brake.

To get the ultrasonic sensors to have an impact on the vehicle motion
there needs to be several interfaces defined where the data and information
can flow. There are two distinct types of interfaces in form of CAN and ROS
topics. An illustration of the interfaces is given in Figure 1.8.

The ultrasonic sensor hardware abstraction layer (HAL) provides an inter-
face that includes the CAN output from the VCU interface but provides it as
an ROS topic that other nodes inside NVIDIA Jetson AGX Orin platform can
make use of. The topic is described in a message and provides information
for each sensor in a separate variable.

Tracking System for Platooning

Platooning of autonomous vehicles refers to a formation of multiple
autonomous vehicles travelling closely together in a single-file line, with the
lead vehicle controlling the speed and direction for the following vehicles.
The group of connected autonomous vehicles exchange information, allowing

1.3 Autonomous Vehicle Architecture for Last-Mile Delivery 19

S

l Perception analyser

[Hardware ECU - o

1 ROS node /ultrasonic_sensors 1 throttle_cm

[Ar-Base Platform | USS HAL | l Motor controller HAL l

1 Hardware

Al-Base Platform
Parsed ultrasonic sensor data Throttle voltage
| CAN relay |'—| Vehicle Control Unit (VCU) | | Motor controller |
- Disable
Engage signal 1 drive Ultrasonic sensor data I

Electronic park brake I Ultrasonic sensors |

%

Figure 1.8 System overview. Source: Adapted from [9].

CTTTIIIIIIIIIIIIOO
——————
o
AN
L4

them to drive in a coordinated manner, with very small spacings, while still
travelling safely at relatively high speeds [36].

The fleets of last-mile delivery autonomous vehicles utilise platooning
coordinated driving style to enhance logistics efficiency, increase road capac-
ity, improve traffic flow, reduce delivery times, and load goods from common
warehouse hubs.

Platooning requires the development of robust and reliable V2V
communication, multi-sensor perception systems, control algorithms, and
infrastructure, including dedicated lanes or specific road configurations, to
function optimally.

Information on the vehicles’ speeds, positions, accelerations, decelera-
tions, and other relevant data for the vehicles in the platoon, as well as for
those joining or leaving the platoon, is crucial, as all the vehicles in the
platoon need to react efficiently and safely in real-time.

Several information flow topologies (IFTs) have been traditionally used in
the literature, such as predecessor-following (PF), two-predecessor-following
(TPF), and bidirectional (BDL). The advancement of communication sys-
tems increased the use of more general schemes such as r-predecessor
following (rPLF). The dynamic platoon nature, with vehicles changing
their relative position over time, also adds complexity to the topology of
communications [36].

The platooning style of driving can be implemented for autonomous vehi-
cles equipped with V2X connectivity by conveying traffic information (e.g.,

20 Advancing Edge Al Perception Platforms and Sensor Fusion

GNSS, speed, or signal timing) and using either unlicensed V2X (ITS-G5) or
cellular V2X (LTE-V2X/NR-V2X) [37].

The platooning of last-mile delivery autonomous vehicles can be imple-
mented using the vehicle’s perception sensors (e.g., cameras, ultrasound) for
areas with good visibility, and an alternative solution can complement the
V2X system.

The following section presents the implementation of a tracking system
for platooning, as demonstrated in the ECSEL JU AI4CSM project [9],
utilising an NVIDIA Jetson AGX Orin processing platform running the
Ubuntu Linux operating system, which offers Al capabilities for the vehicle’s
perception domain. The vehicle’s onboard unit communicates with its sensors
through the ROS operating system as middleware.

The autonomous vehicle, illustrated in the Figure 1.15, is equipped
with multiple perception sensors, including LiDAR, a depth camera, and
ultrasound sensors.

For the implementation, the Intel RealSense D455 RGB-D depth camera
was used as a sensor to detect the logo mark placed on the rear of the lead
vehicle, serving as a target for the follower vehicle to follow.

The logo in Figure 1.9 is attached to the rear of the vehicle. The logo
design can make it difficult to distinguish it from other circular objects or
signs with straight lines within the circle, such as no stopping/parking signs.

To detect the logo, two different detection model frameworks were tested,
YOLOVS [38] and YOLOVS [39]. YOLO is a computer vision model devel-
oped by Ultralytics and is part of the "You Only Look Once" (YOLO) family
of models, known for their high inference speed, making them suitable for

Figure 1.9 Tracking system logo and no stopping/parking sign.

1.3 Autonomous Vehicle Architecture for Last-Mile Delivery 21

real-time applications. Both frameworks are implemented in PyTorch, which
contributes to their ease of use, speed, and accuracy.

YOLOVS is a further development of YOLOVS, not only in terms of
detection architecture but also in the development framework. YOLOVS
provides enhanced documentation and a streamlined setup for training and
deploying a detection model. The use case presented in this paper addresses
the training of a simple detection model. As a result, the nano model for both
YOLOVS and YOLOv8 was used, as it provides optimal inference speed and
an architecture suitable for our detection problem.

To create an effective detection model, the dataset is the most critical
factor. Datasets with diverse photos, logos on vehicles, and t-shirts in different
lighting conditions were collected for training the models.

The base dataset contains approximately 1000 images, where 10% of the
pictures do not contain any logos, as many false positives were encountered
during training on images with logos only.

Augmentation techniques are critical when training a robust model.
YOLOVS5 and YOLOv8 models have built-in augmentation techniques, which
we utilised with the default settings. In addition to the built-in augmentation
techniques, we augmented the dataset by pasting logos onto images from
images recorded with a vehicle, as illustrated in Figure 1.10.

The training results for the best-performing YOLOvS and YOLOv8 mod-
els showed that training for YOLOVS is more stable. The mAP (mean Average
Precision) metric for object detection, mAP50-0.95, converges to a higher
value for YOLOVS, indicating that the model can predict the correct class
with greater confidence.

To enhance the system’s robustness, a tracking algorithm was imple-
mented on top of the detection model. The tracking algorithm is built into
YOLOVS, which is the ByteTrack Al algorithm [39].

The algorithm can detect and continuously track multiple objects by
assigning each one a unique ID, considering all detected objects (not just
high-confidence ones), which can improve its tracking accuracy even in
challenging conditions, such as occlusion.

The ByteTrack Al algorithm can be applied directly, with no final tuning
required, using only the bounding boxes with pixel-level information from the
detection model. Figure 1.11 illustrates a constructed case where two logos
appear. Since tracking is implemented, the following vehicle knows which
one to follow, as it has an assigned leader ID.

22 Advancing Edge Al Perception Platforms and Sensor Fusion

This implementation makes the system more robust against false posi-
tives, as these will receive unique IDs, and the following vehicle is locked to
its leader’s ID.

PAXSTER

Figure 1.10 Logos pasted on driving data.

I am following ID: #2

#2 PaxsterLogo

[0

Figure 1.11 The detection and tracking module returning one unique bounding box.

1.3 Autonomous Vehicle Architecture for Last-Mile Delivery 23

1.3.3 Prediction, Decision-Making, Planning and Route
Optimisation

The last-mile delivery autonomous vehicles decision-making framework
utilises predictive algorithms to assess potential interactions and outcomes
based on current vehicle positioning and environmental factors. By analysing
previously collected data, these vehicles can efficiently plan paths that
minimize risks and enhance delivery speed. Planning algorithms incor-
porate multi-layered decision-making processes that prioritize safety and
operational efficiency.

Through machine learning algorithms, Al assesses historical data, includ-
ing traffic patterns and weather conditions, to optimize delivery routes. This
reduces delivery times and operational costs, allowing for quicker and more
efficient deliveries.

1.3.3.1 Odometry and path planning

Vehicles with rear-wheel drive and front-wheel steering, is referred to as
Ackermann steering. When the vehicle makes a turn, the wheel on the outer
side of the turn has a slightly larger turning radius than the wheel on the inner
side. The sharper the turn, the greater the difference in turning radii between
the wheels.

Most vehicles, uses kingpins to control each wheel, with a single servo to
control the vehicle’s heading. In an Ackermann-steered vehicle, the heading
can be simplified to a bicycle model, where the average angle of the front
wheels is directly correlated with the vehicle’s heading. The inner and outer
wheel angle is different depending on left or right turn (counterclockwise or
clockwise turns) and must be taken into considerations during the odometry
and path planning development. Odometry, based on sensor fusion and the
data from the integrated motion sensors, is used to estimate the position over
time and improve the position accuracy, velocity and attitude.

The configuration is illustrated in Figure 1.12, where () is the steering
angle of the front wheels. For our scenario the steering angle of the front
wheels () is derived from the pure pursuit equation and given below [50, 51],
where 7 is the vector pointing from the rear axle to the camera, 7 is the
vector pointing from rear axle to the tracked object (tuneable look-ahead),

_>
and L, is the length of wheelbase.

- 51 ()

24 Advancing Edge Al Perception Platforms and Sensor Fusion

Pure pursuit is an algorithm for path tracking that determines the angular
velocity command required for the autonomous vehicle to navigate from
its present location to a designated look-ahead point in front of it [50, 51].
The linear velocity is considered constant, allowing for adjustments to the
vehicle’s linear speed at any time. The algorithm continuously adjusts the
look-ahead point along the path in accordance with the vehicle’s current

Front axle

Rear axle

Camera

‘ Point of interest

7
7
7

Steering angle

?

7
4
4
!
7

Figure 1.12 Odometry pure pursuit algorithm calculation illustration [50, 51].

1.3 Autonomous Vehicle Architecture for Last-Mile Delivery 25

position, effectively enabling the vehicle to consistently pursue a point in
front of it until it reaches the end of the path. The pure pursuit controller and
its algorithms runs continuously in a loop to keep a vehicle on right track as
illustrated in Figure 1.13 and described below.

As the vehicle advances, the following process loop immediately repeats,
continuously updating the steering and speed commands to ensure the vehicle
remains aligned with the path [50, 51].

* Define Path: Initially, a trajectory is assigned for the vehicle to follow.

* Determine current position: The system identifies the vehicle’s current
location and its orientation.

* Find next point: The algorithm examines the defined path ahead to
identify the next point.

* Compute steering angle: Based on its current position, orientation, and
the next point’s location, the controller inputs these values into the pure
pursuit algorithm to determine the necessary steering angle, to ensure the
curvature of an ideal circular arc that the vehicle can follow smoothly.

* Actuate angle and speed: The computed steering angle and a speed
command is transmitted to the vehicle’s steering and motor controllers.

Continuous monitoring is crucial for ensuring the safe operation of
last-mile delivery autonomous vehicles. Real-time data is transmitted to
centralised systems where remote operatives can oversee vehicle performance

Determine .
. Find next
Define path current .
e point
position

Pure Pursuit Loop

Actuate angle Compute

and speed steering angle

Figure 1.13 The pure pursuit loop to keep the vehicle on track [50, 51].

26 Advancing Edge Al Perception Platforms and Sensor Fusion

and intervene when necessary. This hybrid approach helps manage the
unexpected challenges presented by complex urban environments.

Safety strategies for last-mile delivery autonomous vehicles involve
redundant systems to prevent malfunction and protocols for engaging human
overseers in critical situations. Security considerations also encompass the
protection of data communication between vehicles and management systems
to prevent unauthorized access and ensure operational integrity.

1.4 Edge Al Platforms

In the context of autonomous vehicles, an edge Al platform refers to the
integrated hardware, software, and edge Al stack, as well as the data respon-
sible for executing the complex computational tasks required to perform
autonomous functions and intelligent decision-making. This includes pro-
cessing vast amounts of sensor data, running sophisticated Al algorithms for
perception, sensor fusion, localisation, path planning, and motion control, and
ultimately making real-time driving decisions.

For last-mile delivery AVs, the definition of an Al platform is heavily
influenced by the specific constraints of the application. Delivery vehicles,
robots and smaller vans operate under stringent size, weight, power, and cost
constraints compared to larger robotaxis or trucks.

This requires highly optimised, edge-computing platforms. High-
performance Graphics Processing Units (GPUs) are used for training and
complex inference, while autonomous vehicle platforms rely on GPUs and
specialised, power-efficient Al accelerators such as Field-Programmable
Gate Arrays (FPGAs), Neural Processing Units (NPUs), Tensor Processing
Units (TPUs), or custom ASICs integrated into System-on-a-Chip (SoC).
NVIDIA’s Jetson AGX Orin platform is an example targeted at such edge
applications, including last-mile delivery vehicles and robots.

The software stack typically runs on a real-time operating system (RTOS)
or a standard OS like Linux with real-time extensions, often utilising middle-
ware like ROS for modularity and communication between different software
components (perception, planning, control).

The platform hosts the Al libraries (e.g., TensorFlow, PyTorch, etc.) and
the specific algorithms implementing the vehicle’s autonomous capabilities.
The key distinction for last-mile Al platforms is the focus on energy effi-
ciency, computational density, and cost-effectiveness, which are suitable for
scalable deployment on smaller, battery-powered vehicles.

1.4 Edge Al Platforms 27

1.4.1 Robot Operating System

ROS is not a traditional operating system in the sense of Windows or Linux.
Instead, it is a flexible framework of software libraries and tools that simplify
the creation of complex robot applications [45, 46].

ROS is an open-source framework for writing robot software, providing a
collection of tools, libraries, and conventions that aim to simplify the task of
creating complex and robust robot behaviour across a wide variety of robotic
platforms. It has also been recently used in autonomous vehicles, as seen in
the case of this implementation for last-mile delivery autonomous vehicles
and other autonomous systems. ROS is rather a middleware, a set of software
frameworks for robot software development [35, 40, 47, 48].

There are two versions of ROS: ROS 1, which evolved with community
contributions, and ROS 2, released in 2017. ROS 2 incorporates real-time
capabilities, improved security, and better support for distributed systems by
leveraging the Data Distribution Service (DDS) standard [45]. A table of key
differences between ROS 1 and ROS 2 can be seen in Table 1.2 [11].

ROS provides services expected from an operating system, including
hardware abstraction, low-level device control, implementation of commonly

Table 1.2 Summary of ROS 2 Features Compared to ROS 1 [11]

Category ROS 1 ROS 2

Network Transport Tailored protocol built Existing standard (DDS), with

on TCP/UDP abstraction supporting addition of
others

Network Architecture Central name server Peer-to-peer discovery
(roscore)

Platform Support Linux Linux, Windows, macOS

Client Libraries Written independently Sharing a common underlying C
in each language library (rcl)

Node vs. Process Single node per Multiple nodes per process
process

Threading Model Callback queues and Swappable executor
handlers

Node State Management None Lifecycle nodes

Embedded Systems The ROSSerial client The micro-ROS stack integrates
library used for small, microcontrollers with standard
embedded devices ROS 2

Parameter Access Auxiliary protocol Implemented using service calls
built on XMLRPC

Parameter Types Type inferred when Type declared and enforced
assigned

28 Advancing Edge Al Perception Platforms and Sensor Fusion

used functionality, message passing between processes, and package man-
agement.

The core of ROS is its anonymous publish/ subscribe messaging system.
A process (called a “node”) that has information to share can publish it to
a specific “topic”. Other nodes interested in that type of information can
subscribe to the topic to receive the messages, which creates a modular,
decoupled architecture where different parts of the system can be developed
and tested independently [42, 43] .

The integration of ROS into autonomous vehicles involves several key
aspects, such as [41]:

* Hardware abstraction, where ROS provides a standardised interface
to a wide variety of sensors and actuators, meaning that a high-level
autonomous driving algorithm can be developed independently of the
specific hardware being used. In this context, a “LiDAR driver” node
could publish data from a particular brand of LiDAR to a standardised
topic, and a perception node could subscribe to that topic without
needing to know the specifics of the LiDAR hardware.

* Inter-process communication: Autonomous vehicles have a multitude
of processes running concurrently: perception, localisation, planning,
and control. ROS’s messaging system allows these processes to com-
municate with each other in a reliable and time-synchronised manner,
even if they are running on different computers within the vehicle.

* Ecosystem and tools: ROS has an ecosystem of tools for visualisation,
simulation, and data logging. Tools like RViz enable developers to visu-
alise sensor data and the vehicle’s state in 3D, while Gazebo provides a
realistic simulation environment for testing algorithms without requiring
a physical vehicle.

ROS is used as a platform for developing perception and sensor fusion
systems [49] in the implementation of the last-mile delivery autonomous
vehicle presented in this chapter.

As a result, several features of the platform were analysed, evaluated and
integrated into the vehicle architecture. These elements are described below:

» Al integration: The modular nature of ROS makes it easy to integrate
Al and machine learning libraries. The typical approach used was to
have a ROS node that utilises a library such as TensorFlow or PyTorch
to perform object detection or semantic segmentation on camera images.
The results of this process (e.g., the locations of other vehicles and
pedestrians) were then published to a ROS topic for other nodes to use.

1.4 Edge Al Platforms 29

* Sensor fusion: The implemented autonomous vehicles rely on a variety
of sensors, including cameras, LiDAR, ultrasound, IMUs, etc. ROS
provided a framework for fusing the data from these different sensors
to create a more accurate and robust understanding of the environment.
A “sensor fusion” node could subscribe to topics containing data from
the camera, LiDAR, and IMU, and then use a filter (like a Kalman
filter) to combine this data and produce a unified representation of the
environment.

The original implementation of the functions for the last-mile delivery
autonomous vehicles was implemented in the original version of ROS (ROS
1). The test results show that the system has some limitations in terms of
real-time performance and security, and the newer version, ROS 2 [44, 45], is
integrated into the new vehicle design due to the following [35]:

* Real-time capabilities: ROS 2 is built on top of the DDS standard,
which provides real-time, reliable, and scalable communication. The
capabilities are necessary for autonomous vehicle implementation to
reduce delays and increase the system’s robustness.

Security: ROS 2 includes a better security framework that provides
features like authentication, encryption, and access control, which are
essential for protecting the vehicle from cyberattacks.

Quality of Service (QoS): ROS 2 allows specifying QoS policies for
each publisher and subscriber, which enables the control of aspects like
reliability, durability, and latency, ensuring that critical data is delivered
in a timely and reliable manner.

A set of principles and specific requirements guides the design of ROS
2, including distribution, abstraction, asynchrony, and modularity, as well
as several design requirements such as security, integration of embedded
systems, use of diverse communication networks, real-time computing, and
product readiness.

The ROS 2 APIs provide access to communication patterns, such as
services and actions, which are organised under the concept of a node.
ROS 2 also provides APIs for parameters, timers, launch, and other auxil-
iary tools, which can be used to design a robotic system. ROS 2 issues a
request-response style pattern, known as services. Request-response commu-
nication provides a clear association between a request and its corresponding
response, which can be helpful when ensuring that a task was completed or
received. A unique communication pattern of ROS 2 is the action. Actions
are goal-oriented and asynchronous, providing communication interfaces

30 Advancing Edge Al Perception Platforms and Sensor Fusion

with request-response capabilities, periodic feedback, and the ability to be
cancelled. The middleware architecture of ROS 2 consists of several abstrac-
tion layers distributed across many decoupled packages. These abstraction
layers enable multiple solutions for the required functionality, such as various
middleware or logging solutions. Additionally, the distribution across various
packages allows users to replace components or take only the necessary
pieces of the system, which may be important for certification [11, 12].

Figure 1.14 displays the layers within ROS 2 as it is a set of software
libraries and tools for building robot and autonomous systems applications.
ROS2 builds upon DDS and contains a DDS abstraction layer. Users do not
need to be aware of the DDS APIs due to this abstraction layer. This layer
enables ROS2 to have high-level configurations and optimises the utilisation
of DDS. Additionally, due to the use of DDS, ROS2 does not require a master
process [7, 11, 12].

The client libraries provide access to the core communication APIs. They
are tailored to each programming language to make them more idiomatic and
take advantage of language-specific features. Communication is agnostic to
how the system is distributed across compute resources, whether they are in
the same process, a different process, or even a different processing unit. A

Application Layer (ROS 2 Nodes

C++API Python API Other languages APIs

ROS 2 Client Library Layer

ROS 2 Client library

Abstract DDS Layer ROS Middleware Interface (RMW)

DDS Layer and Intra-Process API

DDS Implementation Layer (eProsima Fast, RTT Connext, Eclipse Cyclone)

Operating System Layer Linux — Windows — macOS

DDS = Data Distribution Service is a decentralized, publish-subscribe communication protocol.
RMW = ROS Middleware Interface hides the details of the DDS implementations.

Figure 1.14 ROS 2 architecture [7, 12].

1.5 Future Considerations and Research 31

user may distribute their application across multiple machines and processes,
and even leverage cloud compute resources, with minimal changes to the
source code. ROS 2 can connect to cloud and edge resources over the internet.

The client libraries rely on an intermediate interface that provides stan-
dard functionality to each client library. This library is written in C and is
used by all the client libraries, although it is not required for their operation.
The middleware abstraction layer, called RMW (ROS Middleware), provides
the essential communication interfaces. The vendors for each middleware
implement the RMW interface and are made interchangeable without code
changes.

Users may choose different RMW implementations, and thereby different
middleware technologies, based on various constraints such as performance,
software licensing, or supported platforms. The network interfaces (e.g.
topics, services, actions) are defined, and ROS 2 defines these types using
specific format files.

Communications are agnostic to the location of endpoints within
machines and processes. Nodes written as components can be allocated to
any process as a configuration, allowing multiple nodes to be configured to
share a process, thereby conserving system resources or reducing latency.

1.5 Future Considerations and Research

1.5.1 Deployment Considerations

Autonomous vehicles for last-mile delivery can reshape the final step of
the supply chain, from the distribution centre to customers’ doorsteps. The
primary advantage of autonomous delivery is the potential for significant
cost reduction and increased efficiency. These vehicles can operate around
the clock, resulting in faster delivery times and improved fleet utilisation.
They can also be designed to be more environmentally friendly, contributing
to more sustainable logistics practices.

The deployment of unmanned ground and aerial autonomous vehicles
and mobile robots requires careful planning and consideration of various
factors such as regulatory compliance, integration with existing logistics
infrastructure, and public perception. Addressing these factors is essential
for the successful adoption of autonomous delivery vehicles in urban areas.
Partnerships with local governments and logistics providers can facilitate
smoother integration and expansion of services.

32 Advancing Edge Al Perception Platforms and Sensor Fusion

N = S 3 ey e

Figure 1.15 The autonomous vehicle [10].

The success of the technology depends on navigating complex urban
environments, which include everything from busy streets to unpredictable
behaviour of pedestrians and traffic participants.

The path to widespread adoption of last-mile delivery autonomous vehi-
cles is filled with challenges. The technology is still evolving, and ensuring
the safety and reliability of autonomous systems is a top priority as the
vehicles must be able to navigate a wide range of real-world scenarios, from
inclement weather to unexpected road closures.

Public acceptance and the impact on the workforce are also critical
considerations. Gaining the trust of consumers and integrating these vehicles
into daily life without causing disruption is key.

Generative Al can enhance the interaction between autonomous vehicles
and users through natural language processing, allowing users to communi-
cate with delivery systems using voice commands, while facilitating seamless
user experiences where customers can track orders or interact directly with
service interfaces.

Addressing future trends and overcoming technological, regulatory, and
social challenges, while developing new technologies and Al-assisted tools,
is key to unlocking the full potential of autonomous last-mile delivery.

1.5.2 Future research

Autonomous last-mile delivery applications are leveraging advancements in
edge Al platforms and sensor fusion technologies (camera, LiDAR, IMU,

1.5 Future Considerations and Research 33

ultrasound, V2X, etc.), specifically tailored to meet the unique requirements
and constraints of these applications, including close-quarters navigation,
interaction with VRUs, and severe cost and power limitations.

Key architectural concepts, including various levels and strategies for
sensor fusion, are employed alongside enabling algorithms (e.g., deep
learning methods such as CNNs and Transformers) and hardware com-
ponents (e.g., GPUs, specialised accelerators, and edge computing plat-
forms). Significant integration challenges, encompassing sensor calibration,
data synchronisation, computational load management, power consumption,
cost-effectiveness, and fault tolerance, still need to be addressed.

The pressing research challenges are achieving robust perception in
adverse conditions, reliable VRU detection, handling sensor limitations, and
ensuring the safety and validation of autonomous systems.

Key future research directions include novel fusion architectures, end-to-
end learning, self-supervised methods, enhanced V2X integration, explain-
able edge Al (XAI) and interpretable edge Al (IAI) for fusion, lightweight
models for edge deployment, and advanced simulation for validation, all
aimed at advancing the safety, reliability, and efficiency of autonomous
last-mile delivery.

Future work includes the concept for a dedicated architecture and a
multimodal Al-based autonomous vehicle platform for perception, automated
control, and decision-making in delivering goods in controlled environments.
The work addresses evaluating the integration of data from multiple sensors.
Multimodal Al and generative Al enable real-time correlation and a more
comprehensive understanding of the vehicle’s surroundings, allowing for
vehicle control through voice and gesture commands.

Future work plans to address the adoption of new concepts provided
by Software-Defined and Al-Defined Vehicles (SDV/AIDV) architectures,
where the vehicle’s features and functionality are determined by the holistic
interplay between sensors/actuators, the hardware, software, Al platforms,
and data and ROS is well-suited to this new paradigm, as it provides a
flexible and modular platform for developing and deploying a wide range
of applications.

As last-mile delivery autonomous vehicles operate in fleets and are con-
nected, there is a growing trend towards offloading the computational tasks
to the edge. ROS 2’s support for DDS makes it easy to extend the vehicle’s
communication system to include edge-based services.

Further research is addressing the advancements of autonomous deliv-
ery vehicles, focusing on enhancing the human-machine interfaces between

34 Advancing Edge Al Perception Platforms and Sensor Fusion

Al-driven vehicles and humans operating individual vehicles or fleets,
improving security measures to protect against tampering, and refining the
sustainability aspects of autonomous vehicle operations through various use
cases and business models. Human-autonomous system interaction and the
development of new human-machine interfaces require further investigation
to enhance trust, acceptance, and the successful integration of last-mile
delivery autonomous vehicles and IoRT into daily life.

Future research combining last-mile delivery autonomous vehicles, IoRT,
and edge Al needs to focus on advancing decentralised swarm intelligence,
enabling fleets of autonomous vehicles to collaborate and make collective
decisions to improve scalability and resilience, allowing the fleet to adapt
to unforeseen events in real-time. Significant research should be directed
towards developing more advanced and energy-efficient edge Al algorithms
for predictive analysis, anticipating delivery demand, and optimising V2X
communication.

Robust security, privacy-preserving protocols, and trustworthiness within
the IoRT framework are crucial for safeguarding sensitive delivery data and
protecting autonomous systems from cyber threats, making this an important
future area of research.

Further research investigation includes the concept for a dedicated
architecture and a multimodal Al-based autonomous vehicle platform for
perception, automated control, and decision-making in delivering goods in
controlled environments. The research also includes evaluating the integra-
tion of data from multiple sensors, combined with decision support that
integrates small language models, vision language models, and agentic Al
Multimodal Al and generative Al enable real-time correlation and a more
comprehensive understanding of the vehicle’s surroundings, enabling the
implementation of vehicle control through voice and gesture commands.

Another key focus is on standardisation and the development of
Al-assisted tools that improve the capabilities of frameworks like ROS
and increase the efficiency of designing last-mile delivery autonomous
vehicles.

1.6 Conclusion

Early implementations of last-mile delivery autonomous vehicle technolo-
gies demonstrate significant potential for cost reduction and efficiency
enhancement in last-mile logistics. Nonetheless, lessons from these oper-
ations underscore the complexity of urban environments and the need for

1.6 Conclusion 35

continuous adaptation of technologies to meet real-world challenges. Key
takeaways include prioritising safety, enhancing Al-based decision-making
across diverse scenarios, and maintaining robust validation methodologies
for autonomous systems.

Al integrates data from multiple sensors, including cameras, LiDAR,
IMU, ultrasound sensors, and GNSS, to create a comprehensive under-
standing of the vehicle’s surroundings. This fusion of sensory information
enhances the vehicle’s decision-making capabilities, as it can analyse and
interpret complex datasets to ascertain the safest and most efficient operation.

Al serves as the backbone of autonomous delivery systems, driving their
efficiency, safety, and user engagement. By harnessing advanced algorithms
and technologies, these systems can provide faster, reliable, and more cost-
effective delivery solutions, revolutionising the logistics and delivery sectors.
As Al technology continues to develop, its role in enhancing autonomous
delivery operations is expected to grow, paving the way for even more
innovative solutions in this area.

Acknowledgements

This publication has received funding through the projects ECSEL Joint
Undertaking (JU) AI4CSM, Chips JU EdgeAl, and Chips JU MOSAIC.
The ECSEL JU AI4CSM “Automotive Intelligence for Connected Shared
Mobility” project was supported by the ECSEL Joint Undertaking and
its members, including top-up funding from Austria, Belgium, the Czech
Republic, Italy, Latvia, Lithuania, the Netherlands, and Norway under grant
agreement No. 101007326. The Chips JU EdgeAl, “Edge AI Technologies
for Optimised Performance Embedded Processing,” project is supported by
the Chips Joint Undertaking and its members, including top-up funding
from Austria, Belgium, France, Greece, Italy, Latvia, the Netherlands, and
Norway, under grant agreement No. 101097300. The Chips JU MOSAIC
“A Mosaic of Essential Electronic Components and Systems (ECS) for our
Automated Digital Future in Industry and Mobility” project is supported by
the Chips Joint Undertaking and its members including top-up funding by
Austria, Belgium, Czech Republic, Denmark, France, Greece, Israel, Italy,
Latvia, Netherlands, Norway, Poland, and Tiirkiye under grant agreement No
101194414. Funded by the European Union. Views and opinions expressed
are, however, those of the author(s) only and do not necessarily reflect those
of the European Union or Chips Joint Undertaking. Neither the European
Union nor the granting authority can be held responsible for them.

36 Advancing Edge Al Perception Platforms and Sensor Fusion

The authors would like to acknowledge the contributions of Espen Teigen,
ISPAS AS, Norway, for the software implementation of the odometry and
path planning modules described in this article during his tenure at NXTECH
AS, Norway.

References

[1] M. G. Augusto et al., “Autonomous Van and Robot Last-Mile Logistics
Platform: A Reference Architecture and Proof of Concept Implementa-
tion,” Logistics, vol. 9, no. 1, pp. 10-10, Jan. 2025, https://doi.org/10.3
390/logistics9010010.

[2] BotPenguin, “Last Mile Delivery,” Botpenguin.com, 2024. https://botp
enguin.com/glossary/last-mile-delivery.

[3] Wise Systems, “The State of the Autonomous Last-Mile Market in
2023,” Wise Systems, Nov. 02, 2023. https://www.wisesystems.co
m/blog/autonomous-last-mile-market-2023/

[4] V. Engesser, E. Rombaut, L. Vanhaverbeke, and P. Lebeau,
“Autonomous Delivery Solutions for Last-Mile Logistics Operations: A
Literature Review and Research Agenda,” Sustainability, vol. 15, no. 3,
p.- 2774, Feb. 2023, https://doi.org/10.3390/sul15032774.

[5] O. Vermesan et al., “4 Internet of Robotic Things -Converging Sens-
ing/Actuating, Hyperconnectivity, Artificial Intelligence and IoT Plat-
forms.” Available at: https://www.riverpublishers.com/pdf/ebook/chap
ter/RP_9788793609105C4.pdf

[6] O. Vermesan et al., “Internet of Robotic Things Intelligent Connectivity
and Platforms,” Frontiers in Robotics and Al, vol. 7, Sep. 2020, https:
//doi.org/10.3389/frobt.2020.00104.

[7] O. Vermesan, “Embedding ROS and Edge Al-Based Perception Capa-
bilities in AV Platforms,” European Conference on EDGE Al Tech-
nologies and Applications — EEAI 2023, 17-19 October 2023, Athens,
Greece. https://edge-ai-tech.eu/wp-content/uploads/2023/11/2023-10
-19_Presentation_C03_2_Conference_ EDGE-AI_Athens_ EEAI_2023.
pdf.

[8] O. Vermesan, “Trustworthy Edge Al Solutions in Autonomous Vehi-
cle Perception and Sensor Fusion,” European Conference on EDGE
Al Technologies and Applications — EEAI 2024, 21-23 October 2024
Cagliari, Italy. https://edge-ai-tech.eu/wp-content/uploads/2024/11/202
4-10-23_Presentation_B03-3_Conference_ EDGE-AI_Cagliari_ EEA
1_2024.pdf.

https://doi.org/10.3390/logistics9010010
https://doi.org/10.3390/logistics9010010
https://botpenguin.com/glossary/last-mile-delivery
https://botpenguin.com/glossary/last-mile-delivery
https://www.wisesystems.com/blog/autonomous-last-mile-market-2023/
https://www.wisesystems.com/blog/autonomous-last-mile-market-2023/
https://doi.org/10.3390/su15032774
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793609105C4.pdf
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793609105C4.pdf
https://doi.org/10.3389/frobt.2020.00104
https://doi.org/10.3389/frobt.2020.00104
https://edge-ai-tech.eu/wp-content/uploads/2023/11/2023-10-19_Presentation_C03_2_Conference_EDGE-AI_Athens_EEAI_2023.pdf
https://edge-ai-tech.eu/wp-content/uploads/2023/11/2023-10-19_Presentation_C03_2_Conference_EDGE-AI_Athens_EEAI_2023.pdf
https://edge-ai-tech.eu/wp-content/uploads/2023/11/2023-10-19_Presentation_C03_2_Conference_EDGE-AI_Athens_EEAI_2023.pdf
https://edge-ai-tech.eu/wp-content/uploads/2024/11/2024-10-23_Presentation_B03-3_Conference_EDGE-AI_Cagliari_EEAI_2024.pdf
https://edge-ai-tech.eu/wp-content/uploads/2024/11/2024-10-23_Presentation_B03-3_Conference_EDGE-AI_Cagliari_EEAI_2024.pdf
https://edge-ai-tech.eu/wp-content/uploads/2024/11/2024-10-23_Presentation_B03-3_Conference_EDGE-AI_Cagliari_EEAI_2024.pdf

References 37

[9] O. Vermesan, (Ed.), “Report on integration activities for reliable, robust
and secure perception systems and platforms for ECAS vehicles. Deliv-
erable D5.15 ECSEL JU AI4CSM project.,” Dec. 2024.

[10] O. Vermesan and R. Bahr, “Fremtidens mobilitet” in Elektronikknett, 12
June 2025, (in Norwegian) https://www.elektronikknett.no/ai4csm-auto
nome-kjoretoy-eu/fremtidens-mobilitet/3207829,

[11] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot Operating System 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, May 2022, https://doi.org/10.1126/scir
obotics.abm6074.

[12] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of
ROS2,” Proceedings of the 13th International Conference on Embedded
Software - EMSOFT 16, 2016, https://doi.org/10.1145/2968478.2968
502.

[13] L. Li, W. Zhang, X. Wang, T. Cui and C. Sun, “NLOS Dies Twice:
Challenges and Solutions of V2X for Cooperative Perception,” in IEEE
Open Journal of Intelligent Transportation Systems, vol. 5, pp. 774-782,
2024, https://doi.org/10.1109/0J1TS.2024.3492211.

[14] J. Koon, “Solving the Last-Mile Delivery Problem,” Semiconductor
Engineering, Jul. 06, 2023. https://semiengineering.com/solving-th
e-last-mile-delivery-problem/

[15] HowToRobot, “Delivery robots: Automating the last mile,” How-
ToRobot, 2024. https://howtorobot.com/expert-insight/delivery-rob
ots-automating-last-mile

[16] GuideNav, “What are the Advantages and Disadvantages of Inertial
Measurement Units (IMUs)?.” GuideNav: The Global Standard in Iner-
tial Navigation Excellence, 2024. https://guidenav.com/what-are-the-
advantages-and-disadvantages-of-inertial-measurement-units-imus%
EF%BC%9F/

[17] The British Standards Institution, “Operational Design Domain (ODD)
taxonomy for an automated driving system (ADS) - Specification.”
2020, ISBN 9780539067354, Avalable at: https://www.bsigroup.com/g
lobalassets/localfiles/en-gb/cav/pas1883.pdf.

[18] TechNexion, “Embedded cameras in delivery robots — their role and
impact,” TechNexion, Jan. 10, 2025. https://www.technexion.com/r
esources/embedded-cameras-in-delivery-robots-their-role-and-impact/

[19] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor
and Sensor Fusion Technology in Autonomous Vehicles: a Review,”
Sensors, Vol. 21, No. 6, p. 2140, Mar. 2021, https://doi.org/10.3390/
$21062140.

https://www.elektronikknett.no/ai4csm-autonome-kjoretoy-eu/fremtidens-mobilitet/3207829,
https://www.elektronikknett.no/ai4csm-autonome-kjoretoy-eu/fremtidens-mobilitet/3207829,
https://doi.org/10.1126/scirobotics.abm6074.
https://doi.org/10.1126/scirobotics.abm6074.
https://doi.org/10.1145/2968478.2968502.
https://doi.org/10.1145/2968478.2968502.
https://doi.org/10.1109/OJITS.2024.3492211
https://semiengineering.com/solving-the-last-mile-delivery-problem/
https://semiengineering.com/solving-the-last-mile-delivery-problem/
https://howtorobot.com/expert-insight/delivery-robots-automating-last-mile
https://howtorobot.com/expert-insight/delivery-robots-automating-last-mile
https://guidenav.com/what-are-the-advantages-and-disadvantages-of-inertial-measurement-units-imus%EF%BC%9F/
https://guidenav.com/what-are-the-advantages-and-disadvantages-of-inertial-measurement-units-imus%EF%BC%9F/
https://guidenav.com/what-are-the-advantages-and-disadvantages-of-inertial-measurement-units-imus%EF%BC%9F/
https://www.bsigroup.com/globalassets/localfiles/en-gb/cav/pas1883.pdf.
https://www.bsigroup.com/globalassets/localfiles/en-gb/cav/pas1883.pdf.
https://www.technexion.com/resources/embedded-cameras-in-delivery-robots-their-role-and-impact/
https://www.technexion.com/resources/embedded-cameras-in-delivery-robots-their-role-and-impact/
https://doi.org/10.3390/s21062140.
https://doi.org/10.3390/s21062140.

38 Advancing Edge Al Perception Platforms and Sensor Fusion

[20] Z. Feng, “Application and Development of Radar Sensors in
Autonomous Driving Technology,” Applied and Computational Engi-
neering, Vol. 140, No. 1, pp. 48-52, Mar. 2025, doi: https://doi.org/10.5
4254/27755-2721/2025.212717.

[21] HESAI, “The Role of Lidar in the Future of Autonomous Vehicles,’
HESAI Jun. 12, 2023. https://www.hesaitech.com/the-role-of-lidar-in-t
he-future-of-autonomous-vehicles/.

[22] A. Singh, “Transformer-Based Sensor Fusion for Autonomous Driving:
A Survey,” 2023 IEEE/CVF International Conference on Computer
Vision Workshops ICCVW), Paris, France, 2023, pp. 3304-3309, https:
/Iwww.doi.org/10.1109/ICCVW60793.2023.00355.

[23] G. Mittermaier. “How important are sensors for autonomous vehicles?,”
Md-elektronik.com, Apr. 25, 2025. https://www.md-elektronik.com/en
/how-important-are-sensors-for-autonomous-vehicles/

[24] Fiveable, “Inertial measurement units (IMU)”, Autonomous Vehicle
Systems Class Notes, Fiveable, 2024. https://library.fiveable.me/aut
onomous-vehicle-systems/unit-2/inertial-measurement-units-imu/stud
y-guide/ffOfWwVL7g5SSoEF

[25] JOUAYV, “A Complete Guide to Inertial Measurement Unit (IMU),”
JOUAV, 2025. https://www.jouav.com/blog/inertial-measurement-
unit.html

[26] Leadvent Group, “The Essential Role of Sensor Accuracy in
Autonomous Vehicle Safety,” Leadventgrp.com, Sep. 10, 2024. https:
/Iwww.leadventgrp.com/blog/the-role-of-sensor-accuracy-in-ensuring
-av-safety

[27] Fiveable “Ultrasonic sensors”, Autonomous Vehicle Systems Class
Notes, Fiveable 2024. https://library.fiveable.me/autonomous-vehi
cle-systems/unit-2/ultrasonic-sensors/study-guide/uTe34rwjglartZFT

[28] Caradas, “Ultrasonic Sensors in Cars” Caradas, Dec. 02, 2023. https:
/[caradas.com/understanding-ultrasonic-sensors-in-cars/

[29] G. Sankar, “How embedded vision is transforming last mile delivery
with delivery robots,” e-con Systems, Oct. 26, 2022. https://www.e-cons
ystems.com/blog/camera/applications/autonomous-mobile-robots-amr
/how-embedded- vision-is-transforming-last-mile-delivery-with-deliv
ery-robots/

[30] T. Huang et al., “V2X Cooperative Perception for Autonomous Driving:
Recent Advances and Challenges,” arXiv.org, Nov. 06, 2023. https://ar
xiv.org/abs/2310.03525

https://doi.org/10.54254/2755-2721/2025.21277.
https://doi.org/10.54254/2755-2721/2025.21277.
https://www.hesaitech.com/the-role-of-lidar-in-the-future-of-autonomous-vehicles/.
https://www.hesaitech.com/the-role-of-lidar-in-the-future-of-autonomous-vehicles/.
https://www.doi.org/10.1109/ICCVW60793.2023.00355
https://www.doi.org/10.1109/ICCVW60793.2023.00355
https://www.md-elektronik.com/en/how-important-are-sensors-for-autonomous-vehicles/
https://www.md-elektronik.com/en/how-important-are-sensors-for-autonomous-vehicles/
https://library.fiveable.me/autonomous-vehicle-systems/unit-2/inertial-measurement-units-imu/study-guide/ff0fWwVL7g5SSoEF
https://library.fiveable.me/autonomous-vehicle-systems/unit-2/inertial-measurement-units-imu/study-guide/ff0fWwVL7g5SSoEF
https://library.fiveable.me/autonomous-vehicle-systems/unit-2/inertial-measurement-units-imu/study-guide/ff0fWwVL7g5SSoEF
https://www.jouav.com/blog/inertial-measurement-unit.html
https://www.jouav.com/blog/inertial-measurement-unit.html
https://www.leadventgrp.com/blog/the-role-of-sensor-accuracy-in-ensuring-av-safety
https://www.leadventgrp.com/blog/the-role-of-sensor-accuracy-in-ensuring-av-safety
https://www.leadventgrp.com/blog/the-role-of-sensor-accuracy-in-ensuring-av-safety
https://library.fiveable.me/autonomous-vehicle-systems/unit-2/ultrasonic-sensors/study-guide/uTe34rwjgIartZFT
https://library.fiveable.me/autonomous-vehicle-systems/unit-2/ultrasonic-sensors/study-guide/uTe34rwjgIartZFT
https://caradas.com/understanding-ultrasonic-sensors-in-cars/
https://caradas.com/understanding-ultrasonic-sensors-in-cars/
https://www.e-consystems.com/blog/camera/applications/autonomous-mobile-robots-amr/how-embedded-vision-is-transforming-last-mile-delivery-with-delivery-robots/
https://www.e-consystems.com/blog/camera/applications/autonomous-mobile-robots-amr/how-embedded-vision-is-transforming-last-mile-delivery-with-delivery-robots/
https://www.e-consystems.com/blog/camera/applications/autonomous-mobile-robots-amr/how-embedded-vision-is-transforming-last-mile-delivery-with-delivery-robots/
https://www.e-consystems.com/blog/camera/applications/autonomous-mobile-robots-amr/how-embedded-vision-is-transforming-last-mile-delivery-with-delivery-robots/
https://arxiv.org/abs/2310.03525
https://arxiv.org/abs/2310.03525

References 39

[31] Y. He, B. Wu, Z. Dong, J. Wan and W. Shi, “Towards C-V2X Enabled
Collaborative Autonomous Driving,” in IEEE Transactions on Vehicular
Technology, vol. 72, no. 12, pp. 15450-15462, Dec. 2023, https://www.
doi.org/10.1109/TVT.2023.3299844.

[32] S. Raghavan, B. Pistone, D. Gibb, J. Gasser, N. Pednekar, and S.
Marzani, “Software-defined Vehicles, GenAl, IoT — The Path to Al-
Defined Vehicles, Amazon Web Services,” Amazon Web Services, Mar.
13, 2025. https://aws.amazon.com/blogs/industries/software-defined-v
ehicles-genai-iot-the-path-to-ai-defined-vehicles/.

[33] S. Gajendra, “What are Al-Defined Vehicles and Why They Are the
Future of Automotive?” Arm Newsroom, May 28, 2025. https://newsro
om.arm.com/blog/what-are-ai-defined- vehicles.

[34] A. Jose and B. Daniel, “Reimagining / Redefining SDVs: Embracing
the Al-Defined Vehicle Era,” Frost & Sullivan, Jun. 10, 2024. https:
/Iwww.frost.com/growth-opportunity-news/reimagining-redefining-sd
vs-embracing-the-ai-defined-vehicle-era/.

[35] P. Estefo, J. Simmonds, R. Robbes, and J. Fabry, “The Robot Operating
System: Package reuse and community dynamics,” Journal of Systems
and Software, vol. 151, pp. 226-242, May 2019, https://doi.org/10.101
6/].jss.2019.02.024.

[36] M. Martinez-Diaz, C. Al-Haddad, F. Soriguera, and C. Antoniou, “Pla-
tooning of connected automated vehicles on freeways: a bird’s eye
view,” Transportation Research Procedia, vol. 58, pp. 479—486, Jan.
2021, https://doi.org/10.1016/j.trpro.2021.11.064.

[37] O. Vermesan et al., “Automotive Intelligence Embedded in Electric Con-
nected Autonomous and Shared Vehicles Technology for Sustainable
Green Mobility,” Frontiers in Future Transportation, vol. 2, Aug. 2021,
https://doi.org/10.3389/ffutr.2021.688482.

[38] G. Jocher, “ultralytics/yolov5,” GitHub, Aug. 21, 2020. https://github.c
om/ultralytics/yolov5

[39] G. Jocher, A. Chaurasia, and J. Qiu, “YOLOVS8 by Ultralytics,” GitHub,
2023. https://github.com/ultralytics/ultralytics

[40] M. Quigley et al., “ROS: an open-source Robot Operating System.”
Available at: https://robotics.stanford.edu/$~S$ang/papers/icraoss0
9-ROS.pdf.

[41] A. Ademovic, “An Introduction to Robot Operating System: The Ulti-
mate Robot Application Framework,” Toptal Engineering Blog. https:
/Iwww.toptal.com/robotics/introduction-to-robot-operating-system.

https://www.doi.org/10.1109/TVT.2023.3299844.
https://www.doi.org/10.1109/TVT.2023.3299844.
https://aws.amazon.com/blogs/industries/software-defined-vehicles-genai-iot-the-path-to-ai-defined-vehicles/
https://aws.amazon.com/blogs/industries/software-defined-vehicles-genai-iot-the-path-to-ai-defined-vehicles/
https://newsroom.arm.com/blog/what-are-ai-defined-vehicles.
https://newsroom.arm.com/blog/what-are-ai-defined-vehicles.
https://www.frost.com/growth-opportunity-news/reimagining-redefining-sdvs-embracing-the-ai-defined-vehicle-era/.
https://www.frost.com/growth-opportunity-news/reimagining-redefining-sdvs-embracing-the-ai-defined-vehicle-era/.
https://www.frost.com/growth-opportunity-news/reimagining-redefining-sdvs-embracing-the-ai-defined-vehicle-era/.
https://doi.org/10.1016/j.jss.2019.02.024.
https://doi.org/10.1016/j.jss.2019.02.024.
https://doi.org/10.1016/j.trpro.2021.11.064.
https://doi.org/10.3389/ffutr.2021.688482.
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://robotics.stanford.edu/$~$ang/papers/icraoss09-ROS.pdf
https://robotics.stanford.edu/$~$ang/papers/icraoss09-ROS.pdf
https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://www.toptal.com/robotics/introduction-to-robot-operating-system

40 Advancing Edge Al Perception Platforms and Sensor Fusion

[42] H. Kutluca, “Robot Operating System 2 (ROS 2) Architecture,”
Medium, Jan. 14, 2021. https://medium.com/software-architecture-fou
ndations/robot-operating-system-2-ros-2-architecture-731ef1867776.

[43] Ultralytics, “ROS Quickstart,” Ultralytics.com, 2024. https://docs.ultra
lytics.com/guides/ros-quickstart/.

[44] S. Dam, “AZoRobotics,” AZoRobotics, Jul. 20, 2013. https://www.azor
obotics.com/Article.aspx?ArticleID=140

[45] Open Robotics, “ROS.org | Powering the world’s robots,” Ros.org, 2020.
https://www.ros.org/

[46] L. Shalom, “Introduction to Robot Operation System (ROS) - DZone
I0T,” dzone.com. https://dzone.com/articles/ros-robotic-operation-syste
ms

[47] R. Ospina and K. Itakura, “Obstacle detection and avoidance system
based on layered costmaps for robot tractors,” Smart Agricultural Tech-
nology, vol. 11, p. 100973, Aug. 2025, https://doi.org/10.1016/j.atech.
2025.100973.

[48] F. Fatima, M. H. Akhter, M. Omama, and S. A. Khan, “ROS-Enabled
Autonomous Vehicle Architecture within CARLA: A Comprehensive
Overview,” Transportation Research Procedia, vol. 84, pp. 129-136,
Mar. 2025, https://doi.org/10.1016/j.trpro.2025.03.055.

[49] K. Gil, J. Yuk, and J. Shin, “Integrated path planning and control for
autonomous vehicle platooning,” Control Engineering Practice, vol.
164, pp. 106470-106470, Jul. 2025, https://doi.org/10.1016/j.cone
ngprac.2025.106470.

[50] R.C. Coulter, “Implementation of the Pure Pursuit Path Tracking Algo-
rithm”, The Robotics Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania. January 1992. https://www.ri.cmu.edu/pub_files/pub3/co
ulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf

[51] H. Jain and P. Babel. “A comprehensive Survey of PID and Pure Pursuit
Control Algorithms for Autonomous Vehicle navigation”, Arxiv org.
September 2024. https://arxiv.org/pdf/2409.09848

https://medium.com/software-architecture-foundations/robot-operating-system-2-ros-2-architecture-731ef1867776
https://medium.com/software-architecture-foundations/robot-operating-system-2-ros-2-architecture-731ef1867776
https://docs.ultralytics.com/guides/ros-quickstart/
https://docs.ultralytics.com/guides/ros-quickstart/
https://www.azorobotics.com/Article.aspx?ArticleID=140
https://www.azorobotics.com/Article.aspx?ArticleID=140
https://www.ros.org/
https://dzone.com/articles/ros-robotic-operation-systems
https://dzone.com/articles/ros-robotic-operation-systems
https://doi.org/10.1016/j.atech.2025.100973
https://doi.org/10.1016/j.atech.2025.100973
https://doi.org/10.1016/j.trpro.2025.03.055
https://doi.org/10.1016/j.conengprac.2025.106470
https://doi.org/10.1016/j.conengprac.2025.106470
https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf
https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf
https://arxiv.org/pdf/2409.09848

2

AIDGE: A Framework for Deep Neural
Network Development, Training and
Deployment on the Edge

Fabian Chersi, Olivier Bichler, Cyril Moineau, Maxence Naud,
Laurent Soutier, Vincent Templier, Thibault Allenet, Inna Kucher,
and Vincent Lorrain

CEA, France

Abstract

The last decade has seen Deep Neural Networks (DNNs) become exponen-
tially larger, more capable, more power hungry, and more ubiquitous. This
has led to the need to bring machine learning to a wide variety of hardware
devices that are either more performing but larger (GPUs) or require less
power and are portable (embedded devices). Currently, efficiently deploying
these networks on devices requires significant manual effort and a deep
knowledge of different tools as well as the hardware’s characteristics.

Here we present Aidge, an open-source comprehensive framework
designed for simple and fast DNN prototyping, manipulation, optimization,
training, testing and deployment. The platform integrates tools for database
construction, data pre-processing, network building, and hardware export to
various targets.

One of the defining characteristics of Aidge is its modular architecture.
More precisely, there is a “Core Module” providing the most common
functionalities (e.g. network manipulation, optimization, etc.) that can be
extended by so called “plugins” that allow users to add functionalities, such
as new quantization algorithms or specific hardware exporters that were not
foreseen or implemented during the initial design of the framework.

41

42 AIDGE: A Framework for Deep Neural Network Development, Training

Aidge is interoperable with the most common frameworks such as
PyTorch and Tensorflow, and formats such as ONNX, and it targets hardware
such as CPU, DSP, MCU, GPU and FPGA. It can be used with Python, C++
and through a Graphical User Interface.

The open-source framework can be found at:

http://projects.eclipse.org/projects/technology.aidge

Keywords: DNN optimisation, quantization, deployment and compilation,
low power, edge devices, graph manipulation, hardware export.

2.1 Introduction and Background

Deep Neural Networks have now reached impressive capabilities in recog-
nizing images, processing natural language, and generating different types of
content. There is thus a growing demand to deploy DNN-based applications
to a great variety of devices, ranging from GPUs and TPUs [1] in cloud
servers, to self-driving cars, to mobile phones and drones, and finally to
DSPs, MCUs and FPGAs. Porting Al architectures to these devices is com-
plicated due to the diversity of hardware characteristics, mainly the different
functioning of their processing units and the available memory.

Modern Deep Learning (DL) frameworks, such as TensorFlow [2],
PyTorch [3] and ONNX [4] utilize a computational graph intermediate
representation (IR) to perform manipulations and optimizations, e.g. oper-
ator fusion, auto differentiation and dynamic memory management. Besides
graph-level manipulations, which are often too high-level, in order to obtain
better results, it is usually necessary to perform target hardware-specific
operator-level transformations. Currently, the method generally utilized is to
deploy generic code developed either for CPUs or GPUs, or to call functions
contained in highly engineered and target-specific operator libraries.

These libraries are usually too target-specific, require significant manual
tuning and knowledge of the hardware characteristics, and are thus too
specialized and opaque to be easily ported to other devices. Presently, major
DL frameworks tend to support only a restricted number of hardware back-
ends due to the significant engineering support and time required to keep
their code up to date. Moreover, even for supported back-ends there is the
difficult task of avoiding graph manipulations that produce operators that are
not natively supported in the target devices because they would need to fall
back to unoptimized implementations.

http://projects.eclipse.org/projects/technology.aidge

2.1 Introduction and Background 43

In order to be able to produce highly optimized and target-specific imple-
mentations of desired DNNs, we developed Aidge, a framework containing
tools and methods that allow users to act both at the graph-level and at the
operator level. Aidge is thus at the same time a neural network graph editor
and a compiler that accepts high-level descriptions of DNNs (e.g. in ONNX)
and produces low-level code (e.g. in C or assembly) optimized and targeted
at chosen hardware back-ends.

One of the great challenges in generating optimized code from high-level
descriptions is the fact that different architectures manage operations, data
and memory in different ways. For example, Deep Learning Accelerators
(DLAs) [5] [1] [6] usually implement optimized tensor compute primitives,
while GPUs [7] exploit their massive parallelism, and modern CPUs [8] [9]
[10] contain vectorized instructions. Moreover, CPUs and GPUs automati-
cally control pipeline dependencies to hide memory access latency, while for
DL As this has to be explicitly implemented by the developer. All these factors
render the creation of a multi-target tool extremely complicated.

2.1.1 Related Work

Although DL models have seen an incredible rise in multiple domains and
applications, the same cannot be said about frameworks that allow to easily
optimize and deploy them to a wide range of hardware targets.

One way to represent and perform high-level optimizations is through
computation graph domain-specific languages (DSLs). Examples of these
are Tensorflow’s XLA [2], DLVM [11] and Glow [12]. Although these rep-
resentations are well suited for high-level optimizations, they are not apt for
low-level operator optimization. To do this, many frameworks resort to low-
ering procedures to directly generate low-level LLVM or utilize proprietary
vendor libraries. Clearly, these methods require considerable engineering
effort, considering that they have to be done for every combination of
hardware backend and operator variant.

An interesting solution has been proposed in the Halide language and
compiler [13] where computing and scheduling are separated. This allows
the authors to obtain considerable simplifications in programming and major
speed-ups compared to hand-tuned C, intrinsics, and CUDA implementa-
tions.

A different optimization method is proposed in Weld [14] where diverse
functions can submit their computations in a simple but general intermediate

44 AIDGE: A Framework for Deep Neural Network Development, Training

representation that captures their data-parallel structure. It then optimizes
data movement across these functions and emits efficient code for diverse
hardware.

DnnWeaver [15] is a framework that automatically generates a synthesiz-
able accelerator for a given (DNN, FPGA) pair from a high-level specification
in Caffe. It uses hand-optimized design template to first translate a given high-
level DNN specification to its novel ISA that represents a macro dataflow
graph of the DNN, then it tiles, schedules, and batches DNN operations
to maximize data reuse and best utilize target FPGA’s memory and other
resources.

Finally, TVM [16] is a DNN compiler that has the capability of opti-
mizing code by searching and combining the best tensor operators. This
compiler provides end-to-end compilation and optimization stacks that allow
the deployment of DNNs on CPUs, but also mobile GPUs, and FPGA-based
devices.

2.2 Our Framework Overview

In this work we present Aidge, a new end-to-end framework for training,
optimizing and compiling DNNs especially for low power edge devices.
This tool was designed to balance efficient compilation, flexibility, low
level control and portability by combining insights from graph analysis and
manipulation with methods from structured and functional programming
languages.

The platform integrates database construction, data pre-processing, net-
work building or importing, manipulation, optimization, quantization, testing
and hardware export functionalities (see Figure 2.1). It is particularly useful
for DNN design and exploration, allowing simple and fast prototyping of
different DNNSs.

With this tool it is possible to define and train multiple topology variations
of a network and to automatically compare their performances (in terms of
accuracy and computational cost).

One distinctive aspect of Aidge is that it is based on the principle of
“modularity”, i.e. there is a “Core Module” (see Figure 2.2) that can be
extended by so called “plugins” that allow to add new functionalities and
to meet needs not foreseen or implemented during the initial design of the
framework.

2.2 Our Framework Overview 45

The AIDGE Framework

Considered criteria) Software DNN libraries
+Applicative pe.rformance metrics « C/OpenMP (+ custom SIMD) %\i ETYERL ST
*Memory requirement * C++/TensorRT (+ CUDA/CuDNN) e g
+Computational complexity + C++/OpenCL Nvidia (all GPUs)
) H * C/C++ (+ custom API) ' E:;:sa&?;g:?
S * Assembly Y
raining Optimization T Custom accelerators
& Testing 7?;/’:‘:?"’ DNN fibraries + ASIC (PNeuro)

« Custom RTL *FPGA (DNe;JrO)

PEIELERY
Quantization Aware
Training

Modeling Training

Trained
DNN

Post-training Code cross- Code execution
quantization generation on target

I ONNX model : :
e 2 to 8 bit integers + lii 2 to 8 bit integers + rescalinj
((X\ ‘Q\O"‘ e’L dqé“.t\ *SotA QaT methods (SAT, LSQ) +Based on dataset distribution
{0 & . 0% N gy
OQ\; <™ A A « Integration of quantization *Quantized applicative performance
N 9 L operators in learning process metrics validation

Figure 2.1 Schematic representation of the Aidge Framework with its main components and
functionalities

The Core Module is developed entirely in C++ (14) with bindings to
Python (>3.7), and includes a set of functions that enable it to:

* Create a computational graph representing a DNN.

* Modify the computational graph (e.g. by deleting, replacing or adding a

node).

* Do graph querying/matching to find a specific sequence of operators in

the computational graph.

* Instantiate operators.

* Instantiate data structures, such as Tensors.

* Create schedulers (for now only sequential) to execute the computational

graph

* Apply graph optimization, such as fusion of operators

Aidge separates the concepts of description and implementation. Oper-
ators and data descriptions are abstract, while implementations are target-
specific.

For example, the software implementation of a convolution may differ
on a GPU or CPU, but the definition of the convolution itself (i.e. its inputs
and parameters) does not change. Moreover, the implementation might also
change according to the utilized library, for example on an NVIDIA GPU,
programming can be done either via CUDA or via TensorRT. For this reason
Aidge introduces the notion of “Backend” to define both the hardware target

46 AIDGE: A Framework for Deep Neural Network Development, Training

Algorithm plugins AIDGE Core Export plugins
Quantization
Core modules
Defense SitiOpenhif
Pruning Graph Matching LEnCoR]
HW Provider
Export/ IPs
p Implementation API p e
7% Jinja
Core Operators
Import plugins Operator plugins
ONNX Custom
Operator
Pytorch Sensor to

Tensor

s °

Database plugins Backend plugins
ImageNet gty CUDA
coco @ v
% TensorRT
A e HLS, VHDL, ...

Figure 2.2 Aidge is built upon the concept of modularity with a “Core” component and

several “plugins” that complete and extend the framework.

and the library used for the implementation (with its data type and a number

precision)

Plugins allow developers and users to add or adapt functionalities of the
platform. Different kinds of plugins can be developed (in C++ or Python)

using the Aidge API, such as:

» “Recipe plugins”, which may allow to load and save the network
description in a specific format, or it may consist in a set of optimizer
algorithms, for example to reduce the model’s cost in terms of mem-
ory and computing complexity, or to increase its robustness against
external/adversarial attacks.

* “Dataset plugins”, which add the capability to load data and labels from
a specific dataset.

» “Backend plugins”, which register to the Core compiled kernel libraries
(e.g. C++, CUDA, HLS) allowing it to execute the computational graph.

2.2 Our Framework Overview 47

Data inputs Leamable parameters

Computation parameters

- Implementation

- Backend

- Inputs datatype & precision
¢ Outputs datatype & precision

parameters

- Stede
- Dilation

- InChannels
- OutChannels
_Kemel

Figure 2.3 The image shows the constituent parts of an example Convolution operator.

* “Operator plugins”, which adds the ability to define a new operator in
C++ which is not available in the Core.

* “Export plugins”, which define a set of rules and methods aimed at
adapting the graph to the targeted hardware, and methods to produce
source code corresponding to the optimized graph.

2.2.1 Internal Graph Representation

Aidge’s low-level architecture is designed to allow the highest flexibility
in DNN representation and computation, thus DNN models are represented
using a directional “computational graph”. This graph is composed of a set
of nodes, representing operations (Operators), connected with directed edges,
representing the flow of data.

Nodes in this computational graph are defined by three properties: the
connectivity, the operation description, and the implementation.

1. Operation description: it describes the operation a node will do
(e.g. Convolution, ReLu, Data Provider, etc.) and its attributes (see
Figure 2.3). This description is agnostic of the implementation. The
attributes are the following:

o The sizes of the Kernel, Dilation (in case of convolutions), Stride,
etc.

o The number of inputs and their dimensions, datatype and precision;

o The number of outputs and their dimensions, datatype and
precision;

48 AIDGE: A Framework for Deep Neural Network Development, Training

o A reference to a forward (i.e. inference) function implementation;
o A reference to a backward (i.e. train) function implementation.

2. Connectivity: it describes which nodes (proper Operators or Data
Providers) are connected to a given node.

3. Implementation: it points to the computational function/kernel used by
the Operator for its forward and backward operations. The selection of
the right implementation is made via a registrar system depending on
the following attributes:

o The Backend, defined by both the hardware target (e.g. CPU, GPU,
...) and available libraries (e.g OpenCV)

o The DataType (float, int, ...) and Precision (8bits, 16bits,
32bits,. . .) of the inputs and outputs

o The DataFormat (NCHW, NHWC, ...)

o The Kernel, the algorithm chosen to perform the computation

This flexible computational graph description is paired with the ability to
use a great variety of data representation (e.g. Tensors, Sparse Tensors, Event
Based stimuli, etc.).

2.2.2 Platform interoperability

Thanks to PyBind11, there is a seamless interoperability with Numpy arrays,
achieved by defining a buffer_protocol in the binding of Aidge Tensors. This
allows to use data imported from other frameworks that are compatible with
Numpy.

Aidge is interoperable with PyTorch and allows:

* Creating an Aidge Tensor from a PyTorch Tensor

* Running an Aidge (sub)graph within the PyTorch environment.

* Running an Aidge computational graph within the PyTorch environ-
ment.

Aidge allows interoperability with Keras by creating a wrapper from a
Keras Model through a conversion step via an ONNX file.

Similarly to PyTorch, Aidge can convert Keras tensors by using the
Numpy interoperability.

2.2.3 Graph Regular Expression (GraphRegex)

The proposed Aidge’s internal graph representation is a powerful tool that
combines carefully chosen abstraction levels. The strategy is to adapt the
internal representation to narrow the gap between a neural network and

2.2 Our Framework Overview 49

hardware devices. Aidge proposes an innovative way to facilitate the manip-
ulation of the internal graph representation: the Graph Regular Expression or
GraphRegex

The Graph Regular Expression combines two main innovations:

1. A description of graph patterns. Taking inspiration from regular expres-
sions from the formal language theory, we introduce a new language to
describe a set of graphs starting from a sequence of characters.

2. Graph matching. Aidge provides a function that allows to extract a
subset of the graph matching the provided GraphRegex description.

Graph Regular Expression is complementary to other graph transfor-
mation methods such as adding and removing nodes or entire parts of the
graph.

With GraphRegex it is possible to work on two distinct levels in a graph:

1. At a conditional level, which corresponds to checking the presence of a
node in a defined dictionary.

2. At a topological level, which allows to describe the interconnections
between symbols.

The topological description, can be compared to classical regular expres-
sions, as it is a form of symbol sequence expression, but extended to the
definition of graphs.

At a practical level, this matching method can be subdivided into two
distinct stages. First, we describe the desired pattern with the syntax of regular
expressions, then we search for that pattern inside the graphs. These two steps
together form the GraphRegex Query.

After extracting all the subgraphs corresponding to a GraphRegex Query,
it is possible to use an intersection resolution algorithm to obtain intersection-
free solutions. However, it is important to note that these algorithms can have
a high complexity, which can make their execution time-consuming.

2.2.4 Network optimization

We can define two categories of optimizations: topological ones, which
change the structure of the computation graph, and parametrical ones, which
change the parameters of the nodes.

An example of topological modification is Tiling. This method splits
convolutions in several ones (for example in 4 convolutions, as show in
Figure 2.4). All of them are computed independently and concatenated at
the end. This manipulation is mathematically exact (lossless).

50 AIDGE: A Framework for Deep Neural Network Development, Training
Here is the practical implementation:

import aidge_ core
import aidge backend cpu
import aidge onnx
import numpy as np

¥ Let's create a small neural network with four layers.

model = aidge core.sequential ([aidge core.LeakyReLU(1,
name= "leakyreluO"), aidge core.Conv2D(3, 32, [3, 3],
name="conv0"), aidge core.BatchNorm2D (32, name="bno0"),

aidge core.ReLU(name="reluO0")])

tiled conv = aidge core.get conv horizontal tiling(
model.get node ("convO"), 2, 4)

node to replace = {model.get node ("conv0"),
model.get node ("conv0").get parent(1l),
model.get node ("conv0").get parent(2)}

aidge core.GraphView.replace (node to replace, tiled conv)

Tile with Slice

Slice 1 —» Conv 1.1 — RelU 2.1

Initial

/ Slice 2 — Conv 1.2 —P RelU 2.2 —\
——» Conv1 —P RelU 1 _— Gt

\> Slice 3 — Conv 1.3 — RelU 2.3 ——/

Slice 4 —» Conv 1.4 —» RelU 2.4

Figure 2.4 Example of operator tiling/splitting: a Conv + Relu subgraph is split into a Slice
+ 4 Conv + 4 Relu + Concat.

One of the key differentiators compared to other frameworks such as
LLVM, is that Aidge applies directly graph modifications, which allows to
make global topological changes as opposed to only focus on local ones.

On the other hand, an example of parametrical optimization is quantiza-
tion after training (PTQ) or during training (QAT). This is a well-established
method for reducing memory usage and in most cases, accelerating the

2.2 Our Framework Overview 51

inference. PTQ is very useful when one does not have the time or the
possibility to re-run the training and does not need to quantize to more than
to 8-bits. If fewer bits are necessary, state-of-the-art QAT methods give very
good results. These and other techniques (e.g. LSQ and FracBit QAT) are
currently being finalized in Aidge.

2.2.5 Export phase

One of the aims of Aidge is to produce an interpretable, explainable and
auditable output. To do this Aidge produces/exports source code files and
a number of related resource files that form a complete package.

In Figure 2.5, which summarizes the export strategy, it is possible to see
two phases: Export Mapping and Export Implementation.

The first objective of the Export Mapping phase is to modify the com-
putational graph to fit the target hardware by using several optimization
techniques (e.g. hardware mapping optimization or graph transformation).

The second objective is the generation of the graph scheduling con-
strained by the architecture rules of the target and additional project rules
imposed by the developer or the user (e.g. the available memory, the available
computer resources or the time allocated for the execution).

Taking into account the architecture rules and the project constraints,
the scheduler will generate a sequential list of nodes from the optimized
graph that will determine how the forward process (i.e. the inference) of the
exported DNN will run on the target.

———
DNN files.

T kernellibrary

Architecture rules
from dvper
(model hardware)

“ma)

Computational Graph
(agnostic optimization
applied like QAT,
pruning,...)

it (B [

h
Optimize hardware mapping op
+ Transform model Generate graph

Project Export mapping Export implementation d

constraints from

user/dvper phase phase

Figure 2.5 Schematic representation of Aidge’s export procedure.

52 AIDGE: A Framework for Deep Neural Network Development, Training

The Export Implementation phase aims at producing a source code of
the hardware-tuned graph returned by the scheduler. The typical steps for
generating source code are the following:

1. Design and export the computation kernels.
2. Export the attributes of the nodes.
3. Export the parameters of the nodes.

Each node of the graph must have an implementation of its forward
method in order to use it in the export. Since only the hardware developers
really know the characteristics and capabilities of their devices, it is their
duty to provide the implementations of the computation kernels. These may
be implemented as a kernel library, which is a collection of optimized func-
tions developed by expert programmers targeting the architecture (computing
functions, DMA programming, etc...).

Together with the kernels, Aidge generates the configuration and parame-
ter files, and also the files that contain the source code of the forward function
of the hardware-adapted graph.

The developer has also the possibility to add files to generate a whole
Software Toolkit that will provide functionalities such as:

» Compilation or project files to compile the export

* Files to run a whole application of the export

* Set of unitary tests (to test the kernels on board, ...)

* Input data for tests

* Third party libraries to use board functions

* Resources to check other constraints like security rules or robustness
directives

* Memory map files indicating information about the static allocation of
the resources used by the

2.3 Conclusion and future work

In this article we proposed Aidge, a framework that allows end-to-end
manipulation, optimization and compilation of DNN architectures and their
deployment to a vast spectrum of hardware devices ranging CPUs to GPUs,
MCUs, DSPs, FPGAs and neuromorphic architectures. Another aim of this
framework is to develop and provide reusable hardware building blocks and
methodologies that are transversal to all types of architectures.

References 53

We would like to point out that one of the driving motivations for the
development of this framework was the need to answer industrial challenges
for the usability of Al

For what concerns future work we foresee the extension of the number
of target architectures including low power ASICS such as PNeuro [17],
STM32, NeuroCorgi [18] and RISC-V.

Moreover, we will focus on graph optimization developing methods
for Quantization Aware Training (QAT), Mixed Precision Quantization,
Compression, Pruning, and Spike coding.

We also plan to add a greater number of supported functionalities
and models such as: Object Detectors, Semantic Segmentation, Multimodal
fusion, Attention models (Transformers)

Finally, we will start to tackle on-chip learning capabilities.

The framework is under active development using an open source and
collaborative process and can be found at:

projects.eclipse.org/projects/technology.aidge

and

https://eclipse-aidge.readthedocs.io/en/latest/

Acknowledgements

We would like to thank the members of the Aidge development group for their

work on the framework and for their valuable contributions to this paper.
This work was supported in part by the Neurokit2E European Project

(GA101112268), and the DeepGreen Projet (ANR-23-DEGR-0001).

References

[1] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor pro-
cessing,” in Proceedings of the 44th Annual International Symposium,
New York, 2017.

[2] M. Abadi, et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation, p. 265-283, 2016.

[3] A. Paszk, et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” ArXiv, 2019.

[4] J. Bai, F. Lu, K. Zhang et al., “ONNX: Open Neural Network
Exchange,” 2019, https://github.com/onnx/onnx

projects.eclipse.org/projects/technology.aidge
https://eclipse-aidge.readthedocs.io/en/latest/
https://github.com/onnx/onnx

54 AIDGE: A Framework for Deep Neural Network Development, Training

[5] Y.-H. Chen, J. Emer and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Pro-
ceedings of the 43rd International Symposium on Computer Architecture
(ISCA ’16), New York, 2016.

[6] Y. Chen, T. Luo, S. Liu et al., “Dadiannao: A machine-learning super-
computer,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, p. 609—622, 2014.

[7] NVIDIA, “H100 Tensor Core GPU,” 2023, https://www.nvidia.com/en-
us/data-center/h100/

[8] NVIDIA, “Grace CPU,” 2023, https://www.nvidia.com/en-us/data-cent
er/grace-cpu/

[9] NVIDIA, “Hopper CPU,” 2023, https://www.nvidia.com/en-us/data-ce
nter/technologies/hopper-architecture/

[10] Intel, “Intel Core Processor Family,” 2023, https://www.intel.com/cont
ent/www/us/en/products/details/processors/core.html

[11] R. Wei, V. Adve and R. Schwartz, “DLVM: A modern compiler
infrastructure for deep learning systems,” ArXiv, 2017.

[12] N. Rotem, et al., “Glow: Graph Lowering Compiler Techniques for
Neural Networks,” arXiv, 2019.

[13] J. Ragan-Kelley, C. Barnes, S. Adams et al., “Halide: A language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines,” Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp.
519-530, 2013.

[14] S. Palkar, J. J. Thomas, D. Narayana et al., “Weld: Rethinking the
interface between data-intensive applications,” ArXiv, 2017.

[15] H. Sharma, J. Park, D. Mahajan et al., “From High-Level Deep Neural
Models to FPGAs,” “49th Annual IEEE/ACM International Symposium
on Microarchitecture”, pp. 1-12, 2016.

[16] T. Chen, T. Moreau, Z. Jiang et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” In 13th USENIX Symposium
on Operating Systems Design and Implementation, p. 578-594, 2018.

[17] A. Carbon, J. M. Philippe, O. Bichler and et al., “PNeuro: a scalable
energy-efficient programmable hardware accelerator for neural net-
works,” Design, Automation & Test in Europe Conference & Exhibition,
2018.

[18] CEA-List, “NeuroCorgi,” 2023, https://github.com/CEA-LIST/neuroc
orgi_sdk.

https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.intel.com/content/www/us/en/products/details/processors/core.html
https://www.intel.com/content/www/us/en/products/details/processors/core.html
https://github.com/CEA-LIST/neurocorgi_sdk
https://github.com/CEA-LIST/neurocorgi_sdk

3

A scalable and flexible interconnect-based
dataflow architecture for Edge Al Inference

Rohit Prasad and Hana Krichene

Université Paris-Saclay, CEA-List, France

Abstract

The scalable approach of edge artificial intelligence (AI) inference, espe-
cially Convolutional Neural Network (CNN) for computer vision and image
recognition functions, has increased its computational complexity due to the
involvement of multiple properties, i.e., input image size, choice of the filter
size, zero padding, and strides. Dataflow architectures based on many Pro-
cessing Elements (PEs) are considered promising solutions to execute CNNss,
efficiently offering high parallelism and bandwidth. However, the existing
dataflow architectures are generally specialised with difficulty in achieving
scalability and flexibility. This work proposes an interconnect-based dataflow
architecture to overcome such problems. The proposed architecture can
efficiently handle convolutions featuring different input image/feature-map
shapes and filters, with data reuse and communication-computation overlap.
It is scalable and configurable to adapt to different CNN layers. The exper-
imental results show that the proposed architecture can accelerate LeNet5
convolution layers by up to 71.2x in latency performance w.r.t. a RISC-V-
based CPU and that it also accelerates MobileNetV2 convolution layers by
up to 2.07x in latency performance w.r.t. a dataflow architecture featuring
row-stationary execution style.

Keywords: dataflow architecture, data reuse, CNN accelerator, interconnect,
hardware accelerator.

55

56 A scalable and flexible interconnect-based dataflow architecture for Edge

3.1 Introduction

CNNs used for Deep Learning (DL) are increasingly achieving higher accu-
racy in processing modern Artificial Intelligence (AI) applications such as
computer vision [4] and image recognition [6]. Existing CNNs face problems
of high computational complexity and large amounts of data to process.
The problem becomes more critical in the context of Edge Al due to the
availability of limited resources. Dataflow architectures [10] are presented as
a promising solution to provide high parallelism with high throughput while
facilitating the movement of shared data via Network-on-Chip (NoC). These
architectures are based on massive PEs performing an elementary function,
e.g., Multiply-ACcumulate (MAC) operation in the case of CNN processing.
Due to the large amount of data in CNN processing, NoC [8] ensures data
exchange among PEs, and between PEs and memories. On the one hand,
existing dataflow architectures are specialised and not very flexible for a given
CNN. Ensuring the flexibility of the architecture and data transfer with the
least delay without compromising the computation are the keys to improving
the performance of those dataflow architectures.

We propose an interconnect-based dataflow architecture in this work. The
proposed architecture comprises distributed memories and an array of PEs
interconnected via a mesh interconnect network. The underlying interconnect
network provides high bandwidth and injection rate to achieve simulta-
neous data transfers via parallel routing paths. The interconnect network
also provides flexible data transfers with different directions of multicast
and broadcast. Thanks to this interconnect network, the proposed archi-
tecture can scale and fit the ever-increasing size of ever-evolving neural
networks and accommodate the amount of data generated. The employed
interconnect network is configurable, allowing the proposed architecture to
handle different CNN shapes and layers of shapes of the same CNN and
optimise the PE utilisation by generating a suitable design configuration
for a given convolution processing. This benefits the proposed architecture
to maximise the reuse of shared data and the communication-computation
overlap.

The remainder of the paper is organised as follows, section 1.2 discusses
the related work, section 1.3 presents the background work, section 1.4
describes the sub-system of the proposed architecture, section 1.5 explains
the execution model of the proposed architecture, section 1.6 presents the
evaluation methodology, details the experiments, and analyses the perfor-
mance results. Finally, section 1.7 presents a conclusion.

3.3 Background: dataflow execution models 57

3.2 Related Work

Typically, in dataflow architecture, a program is seen as a collection of data
nodes where a data flow node is executed when all its inputs are ready. Once
a result is ready at a data node, copies of the result are distributed to their
destination operators. This chain of operations is performed in sequential
order until the end of execution of the program is reached. There is no
separate control flow, and operations scheduling requires in-depth knowledge
of the underlying algorithm of the program. The scope of this section is
limited to the dataflow architectures that target the acceleration of CNNs only.

In [16], a dataflow architecture called Eyeriss is presented that aims to
save energy consumption by minimising the data movement on a PE array.
Eyeriss exploits the reuse of filter weights and feature map pixels in the
convolutions to minimise the data movement due to the accumulations of
partial sums. Eyeriss limits the dimensions of input data due to its fixed PE
array size.

The DianNao series, i.e., DianNao [13], DaDianNao [14], and ShiDi-
anNao [19] aim to increase the efficiency of the system by minimising the
latency of memory accesses. DaDianNao minimises the main-memory access
latency by implementing a large on-chip embedded Dynamic Random Access
Memory (eDRAM). DaDianNao is targeted at the data center solution.
ShiDianNao targets the acceleration of CNN applications by mapping the
parameters onto a smaller on-chip Static Random Access Memory (SRAM).
ShiDianNao has a better energy efficiency than DaDianNao by 60 x because
the former avoids memory access to DRAM by storing data in SRAM.

Maeri [7] is another dataflow architecture that augments multiplication
and addition operators with tiny switches, and communication is available to
them using a reconfigurable interconnect network. Maeri can execute con-
volution, Long Short-Term Memory (LSTM), pooling, and fully connected
layers. It supports cross-layer mapping and also addresses sparsity in the
network.

These architectures feature a different approach for mapping and exe-
cuting convolution layers. In addition to these architectures, the proposed
architecture features the overlap between communication and computation,
and a scalable PE array to adapt to different input data sizes.

3.3 Background: dataflow execution models

In DNN, the same data is used at multiple input data locations. If repeated
accesses of the temporal data from memory are performed, such repetition

58 A scalable and flexible interconnect-based dataflow architecture for Edge

can degrade the performance of a sub-system in terms of latency and energy
consumption. Dataflow architectures can stand out in such situations because
these architectures can efficiently exploit data reuse to avoid repeated mem-
ory accesses of temporal data. There are four ways dataflow architectures
exploit data reuse, which is defined in the existing convolution neural net-
works, i.e., (1) Weight Stationary (WS), (2) Input Stationary (IS), (3) Output
Stationary (OS), and (4) Row Stationary (RS). Below is a short description of
each dataflow model:

1. WS dataflow model exploits the filter weight data reuse. NeuFlow [3]
implements such a dataflow model.

2. IS dataflow model exploits the data reuse by distributing image/input
feature maps (ifmaps) to multiple processing elements (PEs). SCNN [1]
implements such a strategy to handle sparse CNNs, where multiple filter
weight data are zeros.

3. OS dataflow model exploits data reuse by broadcasting filter weights,
and ifmaps are reused throughout the PE array. ShiDianNao [19] imple-
ments such a strategy, where each PE produces the outputs by sharing
ifmap data from the neighbouring PEs.

4. RS dataflow model reuses ifmaps, filter, and partial sum (intermedi-
ate result) to accelerate convolutions. Eyeriss [15] implements such a
strategy. Data reuse is performed by sending filter data horizontally
and ifmap data diagonally. Once all the PEs in the array have received
their respective data, execution begins. Partial sums are accumulated by
moving them vertically in each PE column. The dimension of the PE
array is determined by filter size and output feature map (ofmap) size for
a particular layer. The proposed architecture also uses the RS dataflow
model to exploit data reuse in the execution of convolutions.

3.4 Interconnect-based dataflow architecture

Figure 3.1 (a) represents the proposed architecture, which includes (1) a Neu-
ral Global Controller (NGC), (2) a Neural Processing Element (NPE) array
connected through (3) an Artificial Intelligence Network on Chip (AINoC),
and (4) Global Buffers (GB) for storing input and output data. The rows of
the filter and rows of the ofmap determine the size of the NPE array, e.g. if
the filter size is 6 x 6, then the number of rows in the NPE array would be 6,
and the number of columns would be equal to the number of rows in ofmap,

3.4 Interconnect-based dataflow architecture 59

which is computed using the equation below:

ofmap_rows = (((ifmaps_rows — (filter_rows + padding_start
+ padding_end))/stride) + 1)

3.4.1 NGC: Neural Global Controller

The NGC is a five-stage Finite-State Machine (FSM) shown in Figure 3.1 (b).
Following is the description of each stage:

1. IDLE represents the idle state of the NGC.

2. LOAD_config loads and decodes the configuration line for the current
layer, including the size and number of filters and ifmaps for the current
layer.

3. LOAD_{ilter starts sending the filter data (i.e., payload) and the control
word from the Input GBs (IGBs) to the connected routers. Depending on
the opcode, routers either unicast, multicast, or broadcast the incoming
payload data to the AINoC.

4. LOAD_ifmaps starts sending the ifmaps data and the control word from
the IGBs to the connected router. Depending on the opcode, routers
either unicast, multicast, or broadcast the incoming payload data to
the AINoC. LOAD_filter and LOAD_ifmaps states can be interchanged
to provide some flexibility in the data loading order in the proposed
architecture.

5. COMPUTE starts the MAC operations in the NPEs. Once a Partial Sum
(PSum) is computed in the bottom row NPEs, the results are sent to their
respective north NPEs along with their control words. The NPEs in the
upper row then add the incoming results with their locally computed
PSum and send the computed result to their north NPEs. This chain of
operations is executed until it reaches the top NPE row, where the final
PSum is stored in the Output GBs (OGBs) to be used in the next layer.

3.4.2 NPE: Neural Processing Element

The NPE is a simple operator controlled by the FSM of the NGC, as shown in
Figure 3.1 (c¢). It remains in the idle state until the NGC triggers the execution.
It proceeds in this way according to the control signals sent by the NGC:

e When the load_filter signal is received, it stores the incoming payload
into the filter Register File (RF). Once all the NPEs have received their

60 A scalable and flexible interconnect-based dataflow architecture for Edge

corresponding filter data, the top right NPE in the NPE array sends a
signal to NGC to jump to the next state.

o When the load_ifmap signal is received, it stores the incoming payload
into the ifmaps RF. Once all the NPEs have received their corresponding
ifmaps data, the top right NPE in the NPE array sends a signal to NGC
to jump to the next state.

When the start_compute signal is received, it begins the MAC operation
on the filter and ifmaps data and generates PSum. Then, it either (i) sends the
PSum to the north NPE (if bottom row NPE) or (ii) adds the incoming PSum
from the south NPE with local PSum and sends the result to the north NPE or
OGB (if top row NPE). In this phase, communication-computation overlap is
also performed by the NPEs, which received their required data.

At the end of the computation, an end_compute signal will be sent by the
last NPE of the array to inform the NGC of the end of the execution, in order
to move on to the next execution and the loading of new data.

Proposed Router
Sub-system

(@) b8 —8—a (d) T

Arbiter
o wour .mr
™ ™ fer

s
— §
n H Butfer Switch- crossbar
b
E b

s_out

NPE
(C) \m:l} ifmap Inzﬂ:llher

i i
Relation between ! Localmemory |

e
NGC FSM and NPE
operator
E——

start compute 4

LOAD
config

multiply

LOAD
filter

accumulate Psum to

J" North NPE
Psum from

COMPUTE

NPE operator

Figure 3.1 (a) The proposed interconnect-based dataflow architecture sub-system, (b) Neu-
ral Global Controller (NGC), (c) Neural Processing Element (NPE), (d) Router in Artificial
Intelligence Network on Chip (AINoC).

3.4 Interconnect-based dataflow architecture 61

3.4.3 AINoC: Artificial Intelligence Network-on-Chip

The AINoC [9] consists of routers optimised for parallel dataflow processing
with minimal data transfer cost to achieve energy-efficient CNN processing
without compromising accuracy and application performance.

As shown in Figure 3.1 (d), the routing device is composed of several
parallel routing paths, each including a buffer, a communication controller,
an arbiter, and a switch. All these paths are designed to guarantee a large
bandwidth and flexible communication. Indeed, through several buffering
modules, e.g. First-In-First-Out (FIFO), different communication requests
received in parallel can be stored without any loss. These requests are
then processed simultaneously in several control modules. These modules
ensure a deterministic control of the data transfer according to a static
X-Y (X-direction priority) routing algorithm and management of different
communications (unicast, multicast, and broadcast). Parallel arbitration of
the processing order of incoming data packets according to the Round-
Robin Arbitration (RRA) [5] based on scheduled access allows for better
collision management, i.e., a request that has just been granted, will have the
lowest priority on the next arbitration cycle. Parallel switching comes next
to simultaneously route data to the right outputs according to the Wormhole
switching [11], i.e. the connection between one of the inputs and one of the
outputs of a router is maintained until all the elementary data of a message
packet are sent and this in a simultaneous way through the different switching
modules.

The data packet format is shown in Figure 3.2. A data message consists
of two packets: a control packet followed by a data packet. A packet is
composed of a header (flit code) and a payload. In the control packet, the
payload is a destination or source address, while in the data packet, the
payload is a set of data flits. The packet size is 32-bit. However, the size
of the header and the payload are variable. It depends on the size of the
interconnection network, as the number of routing devices increases, more
bits are needed to encode the addresses of the receivers or senders. Similarly,
the flit size and number vary with the size of the payloads (filter weights,
activation inputs, or PSums) to be passed through the network. The value
of the header determines the communication to be provided by the router.
There are three possible types of communication inter-PEs: unicast, multicast
(horizontal, vertical, and diagonal), and broadcast. For memory access, the

62 A scalable and flexible interconnect-based dataflow architecture for Edge

« 32-hit >
« 4-bit —»
Addr dest X Add dest Y
paylcad
(i) Unicast
< 32-bit >
+— 4-bit —»
Addr source X Add source Y
payload

(ii} Multicast and Broadcast

N 32-bit

« 4-bit —»

v

payload

{iii} Memory Access

Figure 3.2 Packet format

reading from the IGB is a multicast communication; however, the writing
to the OGB is a communication type that processes a direct parallel unicast
from the first NPEs rows, and the OGB. The routing device first receives
the control packet containing the type of communication and the source or
destination address. The routing device decodes this control packet and then
allocates the communication path to transmit the data packet that arrives at
the cycle following the control packet. Once the data flits are transmitted, the

allocated path will be released for further transfers.

3.5 Execution Model 63

3.4.4 Global Buffers

GBs are dual-port Random Access Memory (DPRAM) that are used to store
the input data i.e., filter and ifmaps or output data i.e., PSum from top row
NPEs. The size of each GB type is determined according to the data size
requirement for each layer, such that the overhead due to GB is minimised.

3.5 Execution Model

The data movement and execution pattern in the proposed architecture are
presented in this section. Once the data is ready in IGB, the execution in the
proposed architecture can be divided into three phases, i.e., (1) load ifmap
data into their respective NPEs, (2) load filter data into their respective NPEs,
and (3) perform execution on the available data in each NPE. These steps are
explained below:

1. Load ifmap data: In this phase, ifmap data are loaded into their respec-
tive NPEs. Data from IGBs are diagonally loaded into the NPEs, which
have connections with them through a single router, and then data reuse
is performed by moving the data diagonally to the target NPEs.

2. Load filter data: In this phase, filter data are loaded into their respective
PEs. Data from IGBs are horizontally loaded into the NPEs, which have
connections with them through a single router, and then data reuse is
performed by moving the data horizontally to their respective NPEs.
During this phase, the overlap between communication and computation
is also performed. The NPEs, which receive the required data to compute
the partial sum, begin the computation phase. Particularly, the first
column of the NPE array gets all the required data and jumps from
the communication (i.e., data receiving) phase to the computation phase
while other columns still wait for input data.

3. Execute MAC operation: When an NPE receives all required data,
it jumps from the communication phase to the computation phase.
Each column is locally synchronised, where the bottom NPE sends
the computed PSum to the north NPE. Each NPE (except the bottom
NPE) adds the PSum received from their south NPE with the locally
computed PSum before sending the result to their north NPE. This
chain of receiving, adding, and sending data is performed until the data
reaches the top NPE, where the computed result is stored back into the
OGB. NPE array is executing in the Globally Asynchronous Locally

64 A scalable and flexible interconnect-based dataflow architecture for Edge

Synchronous (GALS) pattern to enable overlap between communication
and computation in the proposed architecture.

3.6 Experiments and Results
3.6.1 Evaluation Methodology

In this work, different CNN algorithms from state-of-the-art were used as
case studies. They have different sizes and include different types of layers
and shapes. LeNetS [18] and MobileNetV2 [12] were chosen to have a
collection of data resulting from a range of small to large CNN and using a set
of layers including classical 2D convolution (CONV2D) and fully connected
layers (FC) but also point-wise (PW) and depth-wise (DW) convolution
layers in MobileNetV2. Table 3.1 details the characteristics of all these
CNN algorithms, including the types of layers they have and the number of
each layer type. The values in the proposed architecture configuration are
obtained by following the calculation rule presented in section 1.4. In our
experimental study, we chose to test the key convolution layers that emphasise
different filter sizes and ifmaps and the fully connected layers that require a
linear spatial representation of the proposed architecture. We also note that
a configuration for the proposed architecture must be generated for each

Table 3.1 CNN Layers type

Layer Config. of
CNNs Type ifmap size filter shape proposed
architecture
conv_1 1x32x32 1x5x5 5x28
conv_2 6x14x14 6x5x5 5x10
LeNet5 conv_3 16x5x5 16x1x1 1x5
fc_1 1x1x120 1x120x84 1x84
fc_2 1x1x84 1x84x10 1x10
conv_1 1x128x128 8x[3x3x3] 3x126
conv_2 8x64x64 8x3x3 3x62
conv_3 24x64x64 24x3x3 3x62
conv_4 36x32x32 36x3x3 3x30
MobileNetV2 conv_5 48x16x16 48x3x3 3x14
conv_6 96x8x8 96x3x3 3x6
conv_7 144x8x8 144x3x3 3x6
conv_8 240x4x4 240x3x3 3x2

conv_9 80x4x4 256x1x1 1x4

3.6 Experiments and Results 65

evaluated layer to respect the RS dataflow execution mode (section 1.3.2).
However, the row width for the FC layer (i.e., 1000) of MobileNetV?2 is too
big for the proposed architecture, due to the limited space allotted to store the
value of the number of channels in the configuration word, so this layer has
been excluded from our experiments.

3.6.2 FPGA Implementation Results

The evaluation platform used for all tests is the Versal ACAP VCK190
kit [20] featuring an “XCVC1902-2VSVA2197” FPGA partition containing
899840 programmable LUTs, 899840 Flip-Flops, 1968 DSP58, and 158Mb
of URAM and BRAM. The software tools used to implement and test
different configurations of the proposed architecture are:

* QuestaSim or Questa Advanced Simulator (version 2021.4) from Men-
tor Graphics is provided to simulate and test the programming and
debugging of FPGA chips.

* Vivado Design Suite (version 2021.2) is a software suite produced by
Xilinx to synthesise and analyse hardware description language (HDL)
designs.

3.6.2.1 Area

The different configurations of the proposed architecture include four main
modules: the NGC, distributed memories (IGB & OGB), a given number of
NPEs, and routers that are directly connected to the NPEs. All configura-
tions of the proposed architecture are designed with the VHDL description
language to be rapidly implemented on FPGA. The implementation results
estimate the frequency of the proposed architecture, which is around 125
MHz. This frequency depends on the frequency of the longest critical path
in the configuration. A good place and route for the modules of the proposed
architecture is necessary to reduce the length of the critical path and acceler-
ate the propagation of the signals. The synthesis results define the occupied
area (logic elements, memory, Digital Signal Processing (DSP) blocks,
etc.) and the hardware resources consumption of the proposed architecture
according to the different configurations defined in Table 3.1.

The synthesis results of the different modules constituting the proposed
architecture are given in Table 3.2. Due to the simple structure of the different
modules, the consumption of logic and memory resources remains low. This
allows generating a configuration of the proposed architecture with a large

66 A scalable and flexible interconnect-based dataflow architecture for Edge

grid of computing elements to process large convolution layers. For the GB
memories, we opted for the use of Block Random Access Memory (BRAM)
by forcing the synthesis tool to choose these memory blocks instead of the
configurable logic blocks (CLB). We also notice that the size of the router
is relatively larger than the NPE. This can be explained by NPE providing
a simple convolution operation. At the same time, the router has multiple
routing paths to provide parallel multicast and control of blocking areas in
the communication network. These multiple routing paths mainly accelerate
the data transfer and reduce the energy consumption during the execution of
a convolution layer. It is then a trade-off between area and performance in
the proposed architecture. Area can be treated as a small overhead to ensure
a balance in the choice of the architecture and the objectives to be achieved.

Table 3.2 Breakdown of Versal ACAP VCK190 FPGA resources used by the modules of
the proposed architecture after synthesis

Module CLB BRAM Area occupancy (%)
NGC 12.21 0 0.02
GB 0 0.5 0.05
Router 76.78 0 0.13
NPE 39.10 0 0.07

120

uCLB m BRAM

100

80

60

40

20
0 l — l - | — —

conv conv conv fc 1 fc 2 conv conv conv conv conv conv conv
1 2 3 1 2 4 5 6 8 9

Ressources utilization (%]

Lenet 5 MobileNetv2

Figure 3.3 Synthesis results of different configurations of the proposed architecture

3.6 Experiments and Results 67

Figure 3.3 shows the percentages of FPGA resource utilization when
executing the different layers of LenetS and MobilenetV?2 given in Table 3.1.
The processing of each type of layer requires a particular configuration of the
proposed architecture. A configuration of the proposed architecture depends
on the number of filter rows, ifmap rows, and ofmap rows. We observe a
correlation between the variation in the size of the proposed architecture
and the consumption of the CLBs. The larger the configuration, the greater
the resource consumption. The consumption of the BRAM memory blocks
depends on the size of the input image or the ifmaps. This means that the
memory size remains fixed for a fixed input image/feature-map size, and the
size of the filter. Particularly, for the conv_1 of MobileNetV2, we notice that
the number of CLBs exceeds the maximum number of CLBs available in
the FPGA targeted in these experiments. This representation shows that the
proposed architecture remains flexible to support all convolution layer sizes.
We just need to aim for a prototyping platform that provides the necessary
logic resources for mapping all layers.

3.6.2.2 Latency

Figure 3.4 shows the latency performance of the proposed architecture for
each convolution type. It can be observed that the proposed architecture is up
to 71.2x (conv_1, Lenet5) faster w.r.t. single RISC-V CPU [2]. The total
execution time for each convolution type for the proposed architecture is
divided into ifmap loading time, filter loading time, data reuse, and overlap
between communication-computation including time required for the PSum
to traverse across their respective columns to store the computed ofmap. The
breakdown of latency reports that data reuse and overlap between communi-
cation and computation significantly improve the overall execution time in the
proposed architecture. For latency comparison of the proposed architecture
with RISC-V CPU, the time required for access L2 to load data into IGBs is
also considered for a fair comparison.

The overall speedup of MobileNetV2 convolution layers is up to 2.07 x
w.r.t. Eyeriss v2 [16, 17]. Here, Eyeriss v2 executes all layers of MobileNetV2
while the proposed architecture executes convolution layers (Table 3.1).
These results are obtained through RTL simulations.

3.6.2.3 Energy consumption

Different hardware modules of the proposed architecture involved in different
execution phases for each convolution type are shown in Table 3.3. The
explanation of each phase is as follows: (1) Phase A represents data loading

68 A scalable and flexible interconnect-based dataflow architecture for Edge

from all IGBs, (2) Phase B represents data reuse, (3) Phase C represents data
loading from row IGBs, and (4) Phase D represents computation in NPE
array. The results in this section are obtained through hardware emulation.

100000000
10000000
1000000 I
w |
£ 100000
-
[&)
T
10000
£ o I
—
1000 . |
100 I I
10
¥3 ES ¥R ER ¥@
o = o = o = o= o =
> z® zE 25 2E
| — |~ I |~ |~
— | ~ 1 Ll | — | ™~
Sz SE T g e
g 8 5 8 g 8
o o o
LeNets
W IGB Access (ifmap) W Data reuse (ifmap)
W IGB Access | lter) Data Reuse overlap
B Psum overlap W L2_access
M RISC-V

Latency (ns)

12000000
10000000
8000000
6000000
4000000
2000000
0 |
WORK EYERISS v2
Maobilenet v2
= conv_1 = conv_2
¥conv_3 conv_4
W conv_5 W conv_B
W conv_7 B conv_8
W conv_9 BN EYERISS w2

Figure 3.4 Breakdown of latency (ns). For the proposed architecture, the convolution layer
includes memory accesses and computations. WORK = This Work, RV32 = RISC-V CPU.

Table 3.3 Different execution phases in the proposed architecture

Execution NPE AINoC IGB IGB 0GB NGC
Phase array row column

A X X X X X

B X X X

C X X X X

D X X X X

3.6 Experiments and Results 69

10000

100

IGB Access (ifmap) ~ Data reuse (ifmap) ~ ®IGB Access (Iter) = Data Reuse overlap M Psum overlap
-

1000 I
||
- .
i
[| I
|

fc_2 conv_1l conv_2 conv_3 conv_4 conv_5 conv_6 conv_7 conv_8 conv_9

Energy (ul)

0.1

-

conv_1l conv_2 conv_3 fc_

LeNet5 MobileNetv2

Figure 3.5 Energy consumption (uJ) of the proposed architecture

Using Table 3.3, energy consumption for each execution phase for
the proposed architecture is computed. Figure 3.5 shows the total energy
consumption of the proposed architecture per convolution layer. It can be
observed that a significant energy saving is achieved because following input
data loading into the NPEs, which have direct connections with IGBs, the
proposed architecture applies data reuse by sending the loaded input data to
target NPEs in the array. Notably, a significant energy saving can be observed
during the loading of ifmap data because IGBs are not accessed during this
phase (Phase B). Due to different design flows i.e., Eyeriss v2 is ASIC and
the proposed architecture is FPGA, it is not a fair comparison between the
two architectures, and also due to the unavailability of design flow scripts
for RISCV CPU [2], we concluded to exclude the energy consumption
comparisons for both architectures with the proposed architecture.

3.6.2.4 Energy efficiency

The proposed architecture can reach up to 2498 MOPS/W on an FPGA
target for fc_1 of LeNet5 because of a single row with a large number of
columns configuration, i.e., 1 x84 (Figure 3.6). However, conv_2 of LeNet5
and conv_9 of MobileNetV2 have the lowest energy efficiency because in
these layers there is less scope for optimized computation due to a low ratio

70 A scalable and flexible interconnect-based dataflow architecture for Edge

3000
1 MAC = 2 clock cycles
2500

2000

1500

MOPS/W

1000

500

fe_1 I—

fc_2 I——

conv_1 I——
conv_3 I
conv_4 [

conv_5 [

)
conv 2 I

conv_3 N
conv_8 N

conv_1
conv_2
conv_6
conv_7

conv_9 Il

LeNet5 MobileNetv2

Figure 3.6 Energy efficiency (MOPS/W) of the proposed architecture

between ifmaps size and filter size (conv_2, LeNet5) or single row with few
number of columns (conv_9, MobileNetV?2).

3.7 Conclusion

This work presented a new flexible and scalable interconnect-based
dataflow architecture, which can leverage data reuse and overlap between
communication and computation to accelerate CNNs. We evaluated the
proposed architecture results using LeNet5 and MobileNetV2 to show its
adaptability to different types of DNNs. We then compared the latency
results with state-of-the-art architectures. The proposed architecture is imple-
mented (place and route) onto the Versal ACAP VCKI190 kit featuring
XCVC19022VSVA2197 FPGA partition. The experimental results show that
the proposed architecture can speedup LeNet5 convolution layers by up to
71.2x in latency performance w.r.t. a RISC-V-based CPU and also speedup
MobileNetV2 convolution layers by up to 2.07x in latency performance
w.r.t. Eyeriss v2. We plan, in the future, to continue implementing optimi-
sation techniques in the proposed architecture to better its energy efficiency
and make the most of the underlying AINoC for accelerating complete
Convolution Neural Networks execution.

References 71

Acknowledgements

This work was conducted within the scope of the European NEUROKIT2E
project, funded by the European Union’s Horizon Europe research and
innovation program, under grant agreement number 101112268.

References

[1] A. Parashar et al., “SCNN: An Accelerator for Compressed-Sparse
Convolutional Neural Networks,” in arXiv. 2017 https://doi.org/10.4
8550/ARXIV.1708.04485

[2] A. Pullini et al., “Mr. Wolf: An Energy-Precision Scalable Parallel Ultra
Low Power SoC for IoT Edge Processing,” in IEEE JSSC, 2019, vol. 54,
7, pp- 1970-1981. https://doi.org/10.1109/JSSC.2019.2912307

[3] C. Farabet et al., “NeuFlow: A runtime reconfigurable dataflow pro-
cessor for vision,” in CVPR WORKSHOPS. IEEE, USA, 2011, pp.
109-116. https://doi.org/10.1109/CVPRW.2011.5981829

[4] D. Bhatt et al., “CNN Variants for Computer Vision: History, Archi-
tecture, Application, Challenges, and Future Scope,” in Electronics:
Ambient Assistive Methodologies/Frameworks for Internet of Medical
Things, 2021, vol. 10, https://doi.org/10.3390/electronics10202470

[5] E. S. Shin et al., i Round-robin Arbiter Design and Generation,” in
Proceedings of the 15" ISSS. Japan, 2002, pp. 243-248. https://doi.
org/10.1145/581199.581253

[6] G. Sapijaszko et al., “An Overview of Recent Convolutional Neural
Network Algorithms for Image Recognition,” in 615* MWSCAS. 2018.
Canada. https://doi.org/10.1109/MWSCAS.2018.8623911

[7] H. Kwon et al., “MAERI: Enabling Flexible Dataflow Mapping over
DNN Accelerators via Reconfigurable Interconnects,” in ACM SIG-
PLAN Notices. Vol. 53. 2018. pp. 461-475. https://doi.org/10.1145/
3296957.3173176

[8] H. Krichene et al., “Analysis of on-chip communication proper-
ties in accelerator architectures for Deep Neural Networks,” in 15"
IEEE/ACM NOCS. USA, 2021. pp. 9-14. https://doi.org/10.1145/
3479876.3481588

[9] H. Krichene et al., “AINoC: New Interconnect for Future Deep Neural
Network Accelerators,” in DASIP, 2023. pp 55-69.

[10] K. Sankaralingam et al., “Distributed Micro-architectural Protocols in
the TRIPS Prototype Processor,” in 39" MICRO’06. USA. 2006. https:
//doi.org/10.1109/MICRO.2006.19

https://doi.org/10.48550/ARXIV.1708.04485
https://doi.org/10.48550/ARXIV.1708.04485
https://doi.org/10.1109/JSSC.2019.2912307
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1145/581199.581253
https://doi.org/10.1145/581199.581253
https://doi.org/10.1109/MWSCAS.2018.8623911
https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1145/3479876.3481588
https://doi.org/10.1145/3479876.3481588
https://doi.org/10.1109/MICRO.2006.19
https://doi.org/10.1109/MICRO.2006.19

72 A scalable and flexible interconnect-based dataflow architecture for Edge

[11] L. M. Ni et al. 1993. “A survey of wormhole routing techniques in direct
networks,” in IEEE Trans. Computer. 1993, Vol. 26, pp. 62-76. https:
//doi.org/10.1109/2.191995

[12] M. Sandler et al. 2018. “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” in CVPR, 2018, USA, pp. 4510-4520. https://doi.org/10
.1109/CVPR.2018.00474

[13] T. Chen et al., “DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning,” in Proceedings of the 19"
ASPLOS, USA, 2014, pp. 269-284. https://doi.org/10.1145/2541940.
2541967

[14] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in
47" Annual IEEE/ACM MICRO, UK, 2014, pp. 609—622. https://doi.
org/10.1109/MICRO.2014.58

[15] Y. H. Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks,” in ACM/IEEE 43"¢
ISCA, Korea (South), 2016, pp. 367-379. https://doi.org/10.1109/1S
CA.2016.40

[16] Y. H. Chen et al., “Eyeriss v2: A Flexible Accelerator for Emerging
Deep Neural Networks on Mobile Devices,” in IEEE JETCAS, 2019,
vol. 9, pp. 292-308. https://doi.org/10.1109/JETCAS.2019.2910232

[17] Y. T. Chen et al., “Tile-Based Architecture Exploration for Convolu-
tional Accelerators in Deep Neural Networks,” in IEEE 3"¢ AICAS,
USA, 2021, pp. 1-4. https://doi.org/10.1109/AICAS51828.2021.94
58540

[18] Y. Lecun et al., “Gradient-based learning applied to document recog-
nition,” in Proceedings of the IEEE, 1998, vol. 86, pp. 2278-2324.
https://doi.org/10.1109/5.726791

[19] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in ACM/IEEE 42nd ISCA, USA, 2015, pp. 92-104. https:
//doi.org/10.1145/2749469.2750389

[20] Xilinx. “User Guide UG1366” (v1.1). https://docs.xilinx.com/t/en-US/
ug1366-vck190-eval-bd.

https://doi.org/10.1109/2.191995
https://doi.org/10.1109/2.191995
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/AICAS51828.2021.9458540
https://doi.org/10.1109/AICAS51828.2021.9458540
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2749469.2750389
https://docs.xilinx.com/r/en-US/ug1366-vck190-eval-bd
https://docs.xilinx.com/r/en-US/ug1366-vck190-eval-bd

4

Federated Learning for Malware Detection
in Edge devices

Dimitrios Serpanos and Georgios Xenos

University of Patras, Greece

Abstract

Malware detection is fundamental to safe and secure computing systems,
from the cloud to Internet of Things (IoT) devices and Operational Tech-
nology (OT) systems. Malware detection is a process that inputs software
samples, extracts their static and dynamic features and classifies them as
malware or benign exploiting a range of Machine Learning (ML) algorithms
and Deep Neural Networks (DNNs). The need for significant amounts of
training data to obtain effective and efficient detection models is limited
by the absence of sufficient benchmark datasets and by the intellectual
property and privacy constraints that do not allow for data sharing among
organizations.

In our work, we present an effective Federated Learning (FL) solution for
malware detection, which achieves high accuracy in malware detection with
a detection model that is developed in a distributed fashion among members
of a federation that are not required to exchange source data. We consider
a federation of Edge or near-Edge devices that are deployed as security
providers for their organizational networks. Each device trains its own neural
network (NN) model with its own data; local models are combined in a
global, aggregated NN model exploiting cross-silo FL, and the global model
is distributed to the federation members. We evaluate the FL solution with the
EMBER dataset and demonstrate that our approach reaches accuracy above
93%, which is the accuracy of the non-federated centralized NN model. Our
work demonstrates that our FL solution is effective and efficient achieving
high accuracy without need to exchange source data, i.e. respecting privacy,

73

74 Federated Learning for Malware Detection in Edge devices

while it scales well with the size of the federation. Importantly, the approach
demonstrates that organizations are highly motivated to participate in the fed-
eration because they achieve significantly higher malware detection accuracy
than the one they would achieve by exploiting only their own training data.

Keywords: federated learning, malware detection, deep learning.

4.1 Introduction and Background

Malware detection is a process where software samples are analysed, features
are extracted from them and classified -as malware or benign- based on
the extracted features. The typical process is shown in Figure 4.1 which
presents the operational structure of Sisyfos [1], a representative malware
and analysis platform which we use as our target pilot platform. For analysis
of a sample, Sisyfos processes the sample and extracts two categories of
features, static and dynamic, employing static and dynamic analysis tools,
respectively. Static features are extracted without executing the sample [2].
Dynamic features are also extracted because malware is often obfuscated,
limiting static analysis [3]; dynamic features are extracted through sample
execution in a virtual environment (sandbox) [4]. All features, static and
dynamic, are logged in a feature database. Sisyfos’ classifying engine uses
the logged features of a sample to classify it as malware or benign, employing
several classifiers including ML algorithms and neural networks. Sisyfos’
classifying engine approach is analogous to all modern classifiers that employ
ML algorithms, e.g. gradient boosting, random forests and support vector
machines [5, 6], and, increasingly, DNNs [7, 8].

Effective employment of ML methods is limited by the well-known
problem of data availability for training and developing effective models.

Static Analysis

Y

-
—
Classifiers
Database

Figure 4.1 Sisyfos architecture: a malware analysis and detection system.

»{ Dynamic Analysis

4.2 Federated Learning and Related Work 75

In malware classification, effective and efficient detection models require
significant amounts of training data. Although such amounts of data could
be collected and made available through data sharing among organizations,
there are intellectual property and privacy concerns and constraints that forbid
or limit such exchanges. Federated Learning (FL) is a promising method
for building effective and efficient detection models in a distributed fashion,
using data of different organizations, because it does not require the exchange
of source data [9].

FL is employed in two main configurations, cross-device and cross-silo.
In cross-device configurations a large number of members (clients) with
limited data samples each are coordinating in developing a model. Cross-silo
configurations have significantly less members (clients), each with a large
population of data samples. FL has been employed for malware detection in
cross-device environments, focusing on IoT and Android devices [18, 19, 20].
However, FL in cross-silo configurations has not been explored. Our work
focuses on cross-silo FL, considering the requirements of applications and
services such as Edge or near-Edge devices and their coordination and
collaboration in hierarchies that are being developed internationally.

In this paper, we present cross-silo FL-based malware detection, where
the detection model is constructed exploiting horizontal FL and employing a
NN. Considering an analysis approach analogous to the one in Sisyfos, we
measure the performance in malware detection and evaluate its dependence
on several parameters, such as number of clients, repetitions of aggregation
steps, dataset size and the percentage of common training data. Our results
demonstrate that FL. enables high accuracy in malware detection for all
members of the federation, irrespective of the size of their own training
dataset. This demonstrates an important advantage of FL in malware detec-
tion: members of the federation with small training datasets would never
achieve independently the high accuracy which they achieve through their
participation in the federation.

The paper is organized as follows. Section 1.2 presents an overview of FL
and the current state-of-the-art in its employment in malware detection. Sec-
tion 1.3 presents our cross-silo FL system architecture. Section 1.4 presents
our evaluation results and demonstrates the effectiveness of our approach.

4.2 Federated Learning and Related Work

Federated Learning is an emerging machine learning approach that enables
the training of Al models in a decentralized manner. Participating clients

76 Federated Learning for Malware Detection in Edge devices

collaborate to train ML algorithms under the coordination of a central server,
without sharing their private datasets with other parties [10].

To train a federated model a central server distributes to the participating
clients an initial model and the training parameters. Then the following steps
take place:

1. each participant trains the received model using their private dataset,
producing a local model and then sends it to the server;

2. the server aggregates all local models into a global one;

3. the global model is distributed to all clients.

Figure 4.2 illustrates this process which can be repeated for multiple
learning steps and stopped when a designated criterion is met.
FL is considered in two different configurations, in general [10]:

e Cross-device: clients are computing systems with limited computing
capabilities, varying device availability and small datasets, e.g. IoT
devices or smartphones.

e Cross-silo: clients are computing systems with high computational
power, high reliability and large datasets (data silos), such as centralized
and enterprise systems (typically 2-100).

In traditional centralized machine learning environments, a device or an
organization must train a model on its own self-collected data. In practice,
these devices or organizations may not have access to sufficiently large data
sets and the computing capabilities necessary to train an effective model.
Additionally, data privacy concerns and intellectual property rights limit
collaboration between parties. FL. addresses these challenges by enabling
collaboration between multiple parties to jointly train effective ML models
with large, diverse datasets collected from all members of the federation
[11]. As the produced models are the only information shared among fed-
eration members, local data never leave the participating devices enabling
data owners to keep their data private. Importantly, FL scales well because
additional members can contribute to model training without any burden to
other members and with reduced data traffic among them.

FL is employed in several operations of cybersecurity such as attack
detection, anomaly detection, trust management, authentication and other IoT
related tasks [12, 13, 14, 15]. FL is also effective in malicious URL and
Denial-of-Service (DoS) attacks detection [16, 17].

In malware detection, research in FL. employment is mainly focused on
cross-device FL where federation members (clients) are smartphones [18, 19]
or IoT devices [20], while limited effort has been spent on malware detection

4.3 Architecture 77

- -~
\
Global 1
1
. Model |,
Client .. _- Client
% Private data Aggreer?:trion Private data

@ Local model @ Local model

Figure 4.2 Federated Learning configuration.

using cross-silo FL configurations. In our work, we propose a cross-silo FL-
based malware detection method, where federation members are different
Edge or near-Edge devices deployed to provide security to different organi-
zational networks. The devices collect large amounts of data and have higher
computational capabilities relatively to the devices considered in cross-device
configurations.

State-of-the-art malware detection approaches employ neural networks
architectures to train models for sample classification as either malicious or
benign [8, 9]. In our system, we employ a similar neural network [21] that can
effectively learn to detect malware from the training data, while being able to
fit in Edge or near-Edge devices. Some preliminary results of this work were
presented in [26].

4.3 Architecture

Our proposed architecture consists of a FL cross-silo configuration as shown
in Figure 4.3. Multiple participating members, indicated as clients, collabo-
ratively train a global malware detection model, and a server is responsible
for all communications as well as the aggregation of the global model. Each
client owns and trains with some large amount of local private data which it
does not share with the other clients nor the server.

78 Federated Learning for Malware Detection in Edge devices

In training, each client uses the same feed forward neural network, i.e. the
same architecture and training parameters, an increasingly popular method
for malware detection [8, 9]. Specifically, we employ a neural network
deployed in [21]. We adopt its architecture because it is versatile, widely
adopted and can be fitted in devices with limited computing power such as
near-edge or edge devices. The model consists of 3 linear layers and a dropout
layer. The output layer performs binary classification using a SoftMax layer,
classifying a sample as either malicious or benign. We adapt the model in [21]
to accommodate our different dataset: EMBER v2 [22] instead of EMBER
vl. EMBER v2 is an update on the original EMBER dataset and contains
2381 input features instead of the 2351 used in [21]. The dataset is discussed
in more detail in Section 1.4.1.

Our detection system, operates in two modes: (a) training, where multiple
clients are using FL to collaboratively train the detection model and (b)
detection, where each participating client uses the produced global model
to detect malware.

In training mode, the FL-based training process takes place in multiple
steps. In each step the following process occurs: (i) each client trains a local
model using its own private data, (ii) each client sends the produced local
model to the server, (iii) the server aggregates all local models, producing a
global model and (iv) the server distributes the global model to all clients.
Then, the clients can use the global model to measure the model’s perfor-
mance against their private datasets. The process can be repeated for multiple
steps to improve the model’s performance further, until a satisfactory model
is achieved, considering the time and processing constraints of the clients or
until no further accuracy improvement is achieved.

After training is complete, in detection mode, all participating clients
have received a copy of the final global model from the server. Each client
can use this model to detect malware in their own systems and networks,
independently from all other clients. Finally, the clients can return to training
mode to refresh and retrain their model with new data.

4.4 Experiments

We evaluate the performance of cross-silo FL measuring the malware detec-
tion accuracy on a benchmark dataset containing features from malware and
benign files. To further explore the effectiveness of FL, we consider multiple
FL training setups measuring how the detection rate is affected by the number
of learning steps, the number of participating clients and the commonality in

4.4 Experiments 19

the participating clients’ datasets. Furthermore, to demonstrate the benefits
of FL for the participants, we also train a centralized model of the same
architecture and parameters and evaluate its performance different training
dataset sizes. To conduct the experiments, we employ flower [23], a pop-
ular FLL framework, for training the federated models, in conjunction with
Pytorch [24].

4.4.1 Dataset

In all our experiments we use the EMBER v2 dataset [22], a publicly available
benchmark dataset, which contains features extracted from both malware
and benign samples using static analysis. We use EMBER because there
are no widely available standard datasets; this is a well-known problem in
cybersecurity research. Although it does not distribute the sample binary files,
due to privacy concerns, EMBER is common choice in malware detection and
analysis because of three factors: (i) its sufficient size, (ii) its set of features
and (iii) it contains features of malware and benign samples.

EMBER v2 contains 2381 features per sample, extracted using static
analysis from 1.1 million Windows Portable Executables (PE). More specif-
ically for training, the dataset contains 600.000 samples labelled as either
benign or malicious (300.000 benign and 300.000 malicious), and 300.000
unlabelled samples. The dataset also contains 200.000 samples labelled as
either benign or malicious (100.000 benign and 100.000 malicious) to be
used as a dedicated benchmark testing set. In our experiments we only use
labelled samples, 600.000 for training the neural networks and 200.000 for
testing the produced models.

4.4.2 Evaluation results

In the first experiment we consider a FL setup where 2 participating clients
train a common model for 10 learning steps using the entire dataset. Thus,
each client trains each local model with 300.000 data samples. We measure
the accuracy, precision. recall and f1 score of the model on the test set for each
step. Table 4.1 summarizes the results of the experiment. For comparison we
also train a centralized model on the full dataset, 600.000 data samples and
we measure an accuracy of 0,9338 on the test set.

Figure 4.3 plots the accuracy of the FL. model for multiple learning steps.
The orange line denotes the accuracy of the centralized model as reference
trained with the entire EMBER dataset of 600K samples. The results show
that the accuracy of FL increases with the increasing number of training loops

80 Federated Learning for Malware Detection in Edge devices

Table 4.1 Accuracy on test set of FL. model with 2 clients for multiple learning steps.

Number of steps Accuracy Precision Recall F1 Score
1 0,8711 0,8419 0,9137 0,8763
2 09111 0,9012 0,9236 0,9123
3 0,9176 0,9066 0,9312 0,9187
4 0,9194 0,9091 0,9321 0,9205
5 0,9211 0,911 0,9335 0,9221
6 0,9232 0,9123 0,9365 0,9242
7 0,9242 0,9143 0,9361 0,9251
8 0,9261 0,9183 0,9355 0,9268
9 0,9247 0,9143 0,9373 0,9257
10 0,9251 0,9157 0,9365 0,926

Accu racy on test set
Best centralized learning accuracy
0.97
0.95

0.93 o

0.91

Accuracy

0.89
0.87

0.85
1 2 3 4 5 6 7 8 9 10

Learning Steps

Figure 4.3 Federated Learning model performance for variable training loops.

and importantly reaches the performance of the centralized model and is on
par with the results presented in [21]. Additionally, we observe that we make
most of the accuracy gains in the first 2 FL training steps for this dataset.
Thus, in subsequent experiments we train all FL. models for 2 training steps.

Next, we evaluate whether the number of participants influences the
accuracy of the produced model. We use the entirety of the EMBER dataset
(600.000 samples) and keep the same total dataset size for all experiments,
distributing it equally among the participating clients in every case (i.e. for 2

4.4 Experiments 81

participating clients, each clients holds 300.000 samples and for 5 partic-
ipating clients, each clients holds 120.000 samples). We run experiments
for 2,5,10,15 and 20 participants and measure the accuracy of the produced
models on the test set. Table 4.2 summarizes the results of the experiments
for 2 learning steps.

Table 4.2 Accuracy on test set of FL model for different number of clients for 2 learning
steps.

Number of clients Accuracy Precision Recall F1 Score
2 0,9103 0,9015 0,9212 09112
5 0,9201 0,9156 0,9255 0,9205
10 0,9144 0,9091 0,921 0915
15 0,9139 0,9089 0,92 0,9144
20 0,9175 0,913 0,9221 0,9175

Figure 4.4 plots the accuracy of the FL model for different number
of clients. The orange line denotes the accuracy of the centralized model
as reference trained with the entire EMBER dataset of 600K samples.
We observe accuracy is effectively independent of the number of clients,
suggesting that the malware detection system can scale to more and more
participants without accuracy losses.

Accu racy on test set
Best centralized learning accuracy
0.97
0.95
0.93

0.01 ./.\ ° ® O

0.89

Accuracy

0.87

0.85
2 5 10 15 20

Number of clients

Figure 4.4 Federated Learning model accuracy for different number of clients.

82 Federated Learning for Malware Detection in Edge devices

Next, we consider a case where different organizations or different
devices in the same organization that participate in a FL setup, have common
data samples in their private data. As attackers and malware authors use the
same malware samples to infect multiple targets and as organizations process
a large amount of malware on daily basis it seems a likely scenario that partic-
ipants will have some degree of commonality in their private datasets. Thus,
we evaluate whether the presence of overlapping samples in the participants’
training sets influences the accuracy of the produced FL model. We consider
different dataset overlap percentages between the participants for 2 and 10
participating clients. Tables 4.3 and 4.4 present the results of the experiments
for 2 and 10 participants respectively for 2 FL training steps.

Table 4.3 Accuracy on test set of FL models for different dataset overlaps for 2 clients.

2 Clients
Overlap percentage Accuracy Precision Recall F1 Score
0 09111 0,9012 0,9236 0,9123
5 0,9166 0,9139 0,92 0,9169
10 0,9045 0,9039 0,9054 0,9046
15 0,9129 0,9057 0,9218 0,9137
20 09114 0,902 0,9231 0,9124
25 0,918 09117 0,9256 0,9186
30 0,9125 0,9063 0,9201 0,9131
35 0,9124 0,9098 0,9157 0,9128
40 0,9173 0,9127 0,9228 0,9178
45 0,9319 0,9267 0,9378 0,9322
50 0,9262 0,9197 0,934 0,9268

Table 4.4 Accuracy on test set of FL models for different dataset overlaps for 10 clients.

10 Clients
Overlap percentage Accuracy Precision Recall F1 Score

0 0,9144 0,9091 0,921 0,915

5 0,9162 0,9108 0,9229 0,9168
10 0,9154 0,9086 0,9238 0,9161
15 0,9167 0,9096 0,9255 0,9175
20 0,9171 0,9121 0,9233 0,9176
25 0,9169 0,909 0,9267 0,9177
30 0,9171 09114 0,9242 0,9177
35 09178 0,9138 0,9227 0,9182
40 0,9146 0,9059 0,9254 0,9155
45 0,9179 0,9093 0,9285 0,9188

50 0,9174 09114 0,9247 0,918

4.4 Experiments 83

Accuracy on test set

—@— Accuracy - 2 clients
=@ Accuracy - 10 clients

Best centralized learning accuracy
0.95

acy

ur

50.91

Aci

0.89

0 5 10 15 20 25 30 35 40 45 50
Overlap percentage

Figure 4.5 Federated model accuracy for different dataset overlaps.

Figure 4.5 plots the accuracy on the test set of the FL. models produced
as a function of the overlap (common subset) of the clients’ training data, i.e.
x=5 indicates 5% common data in the client datasets. The blue and green lines
depict the accuracy of the models trained by 2 and 10 clients respectively. The
orange line denotes the accuracy of the centralized model as reference trained
with the entire EMBER dataset of 600K samples. As we observe in both
setups, accuracy seems to be effectively independent of the common samples
present in the participants’ private data even in the extreme case of a 50%
overlap, meaning that the produced models do not overfit on the common
data.

Finally, to showcase the benefits of FL for organizations, we consider a
scenario where a single organization or device is not participating in a FL
setup but instead trains its own centralized model using its own private data.
We consider organizations of different sizes that have different training data
availability. We train a centralized model (no federation present) of the same
architecture and parameters as in the previous FL setups with different dataset
sizes. Table 4.5 summarizes the results.

84 Federated Learning for Malware Detection in Edge devices

Table 4.5 Accuracy on test set of centralized models for different dataset sizes.

Number of samples Accuracy Precision Recall F1 Score
5000 0,8443 0,8299 0,8662 0,8477
10000 0,8482 0,8428 0,8828 0,8623
50000 0,8949 0,8791 0,9156 0,897
100000 0,9126 0,904 0,9232 0,9135
600000 0,9338 0,9271 0,9417 0,9343

Figure 4.6 plots the accuracy for the centralized (non-federated) system
as a function of the dataset size. The blue line denotes the best FL accu-
racy we measured in our experiments for reference. The results indicate
that a data set size of 600K is necessary in the centralized (non-federated)
case for achieving high accuracy that reaches above 93% and matches the
accuracy of the FL system. This result is the reference accuracy towards
which we evaluate the performance of the federated system cases. Impor-
tantly, when considering Figure 4.3 as well, the plot demonstrates the benefit
of FL for small organizations and near-edge devices with limited data
availability that do not have access to large datasets to train centralized
models. We also note that even that even organizations and devices that

Accuracy on test set

== == Best federated accuracy

0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

0.8

Accuracy

5,000 10,000 50,000 100,000 600,000
Dataset size

Figure 4.6 Centralized learning model’s performance for different dataset sizes.

4.5 Conclusions 85

have access to large datasets can benefit from FL, as a model generated
with contributions from multiple participants is trained on a potentially more
diverse dataset with malware and benign samples coming from different
networks.

4.5 Conclusions

Federated learning constitutes an effective and efficient machine learning
technology of classification in malware detection. It provides significant
advantages over centralized machine learning solutions, because it enables
distributed building of effective malware detection models without source
data exchange among members of a federation. We demonstrate that with the
adoption of NNs for model training, members of a federation achieve high
malware detection accuracy, exceeding, in cases, the accuracy achieved with
centralized machine learning methods. Importantly, all members of the feder-
ation achieve this accuracy, which would be unattainable if they were limited
to training using only their own local data. This advantage also provides a
motivation for organizations to participate in federations. In addition to the
performance and privacy advantages, federated learning scales well to large
federations, due to the low data exchange, and accommodates systems and
devices with limited processing power, because the employed NNs of the
clients can be efficiently executed even in low-power computational environ-
ments. In our work, we considered a centralized aggregating server and Edge
or near-Edge devices that provide security in their respective local networks
as the federation participants. When considering real word deployments of
such setups, additional design parameters should be taken into account.
Firstly, the Edge devices should have the computational power and memory
to fit and train the chosen NN. In our implementation we specifically used a
small model that solves the malware detection task adequately, while requir-
ing low computational power and small memory footprint. Additionally, as
discussed in Section 1.3, during training all devices should be available for
training and a reliable network connection should be present between each
participant and the server. After the training is complete, during inference,
no such limitations are present. Finally, the power consumption, latency costs
and network communications overhead should be explored; we leave that as
future work.

86 Federated Learning for Malware Detection in Edge devices

Acknowledgements

Part of D. Serpanos’ research was conducted at the Industrial Systems Insti-
tute/ATHENA under funding and support by the Hellenic Foundation for
Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research
Projects to support Faculty Members & Researchers” (Project Number:
4012).

References

[1] D. Serpanos, P. Michalopoulos, G. Xenos, and V. leronymakis, “Sisy-
fos: A Modular and Extendable Open Malware Analysis Platform.”
Applied Sciences, 11(7), p. 2980, 3/2021, https://doi.org/10.3390/ap
p11072980.

[2] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine
Learning Aided Static Malware Analysis: A Survey and Tutorial.” In
A. Dehghantanha, M. Conti, and T. Dargahi (Eds) Eds., Cyber Threat
Intelligence. Advances in Information Security, vol. 70. Cham: Springer
International Publishing, 2018, pp. 7-45.

[3] A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis for
Malware Detection.” In Proceedings of 23rd Annual Computer Secu-
rity Applications Conference (ACSAC 2007), Miami Beach, FL, USA,
10-14 December 2007, pp. 421-430.

[4] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: High-fidelity,
behavior-based automated malware analysis and classification.” Com-
puters & Security, vol. 52, pp. 251-266, Jul. 2015.

[5] W. Li, J. Ge, and G. Dai, “Detecting Malware for Android Platform: An
SVM-Based Approach.” In Proceedings of 2nd International Conference
on Cyber Security and Cloud Computing, New York, NY, USA: IEEE,
Nov. 2015, pp. 464-469.

[6] F.C.C. Garcia and F.P. Muga II, “Random Forest for Malware Classifi-
cation.” arXiv, Sep. 25, 2016. [Online]. Available: http://arxiv.org/abs/
1609.07770.

[7] R. Vinayakumar, et al. “Robust Intelligent Malware Detection Using
Deep Learning.” IEEE Access, vol. 7, pp. 46717-46738, 2019.

[8] E. Raff, et al, “Classifying Sequences of Extreme Length with Con-
stant Memory Applied to Malware Detection.” AAAI, 35(11), pp.
9386-9394, May 2021, https://doi.org/10.1609/aaai.v35i11.17131.

https://doi.org/10.3390/app11072980
https://doi.org/10.3390/app11072980
http://arxiv.org/abs/1609.07770
http://arxiv.org/abs/1609.07770
https://doi.org/10.1609/aaai.v35i11.17131

References 87

[9] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning.” In Computers & Industrial Engineering, vol. 149,
p- 106854, Nov. 2020, https://doi.org/10.1016/j.cie.2020.106854.

[10] P. Kairouz et al., “Advances and Open Problems in Federated Learning,”
MAL, vol. 14, no. 1-2, pp. 1-210, Jun. 2021, https://doi.org/10.1561/
2200000083.

[11] T.Zhang, et al, “Federated Learning for the Internet of Things: Applica-
tions, Challenges, and Opportunities.” In IEEE Internet of Things, 5(1),
pp. 24-29, Mar. 2022, https://doi.org/10.1109/I0TM.004.2100182.

[12] M. Alazab, et al., “Federated Learning for Cybersecurity: Concepts,
Challenges, and Future Directions,” IEEE Trans. Ind. Inf., 18(5), pp.
3501-3509, May 2022, https://doi.org/10.1109/T11.2021.3119038.

[13] M. Venkatasubramanian, A. H. Lashkari, and S. Hakak, “IoT Malware
Analysis Using Federated Learning: A Comprehensive Survey.” In IEEE
Access, vol. 11, pp. 5004-5018, 2023.

[14] T. D. Nguyen, et al, “DIoT: A Federated Self-learning Anomaly Detec-
tion System for [oT.” In Proceedings IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), Dallas, TX, USA:
IEEE, Jul. 2019, pp. 756-767. https://doi.org/10.1109/ICDCS.2019.000
80.

[15] V. Mothukuri, et al, “Federated-Learning-Based Anomaly Detection for
IoT Security Attacks.” IEEE Internet of Things, 9(4), pp. 2545-2554,
Feb. 2022, https://doi.org/10.1109/JI0T.2021.3077803.

[16] E. Khramtsova, C. Hammerschmidt, S. Lagraa, and R. State, “Feder-
ated Learning For Cyber Security: SOC Collaboration For Malicious
URL Detection.” In Proceedings IEEE 40th International Conference
on Distributed Computing Systems (ICDCS), Singapore, Nov. 2020, pp.
1316-1321. https://doi.org/10.1109/ICDCS47774.2020.00171.

[17] R. Doriguzzi-Corin and D. Siracusa, “FLAD: Adaptive Federated
Learning for DDoS Attack Detection.” arXiv, Aug. 23, 2022. [Online].
Available: http://arxiv.org/abs/2205.06661.

[18] R. Gélvez, V. Moonsamy, and C. Diaz, “Less is More: A privacy-
respecting Android malware classifier using federated learning.” In
Proceedings on Privacy Enhancing Technologies, 2021(4), pp. 96-116,
Oct. 2021, https://doi.org/10.2478/popets-2021-0062

[19] R.-H. Hsu et al., “A Privacy-Preserving Federated Learning System for
Android Malware Detection Based on Edge Computing.” In Proceed-
ings 15th Asia Joint Conference on Information Security (AsiaJCIS),
Taipei, Taiwan, Aug. 2020, pp. 128-136.

https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083
https://doi.org/10.1109/IOTM.004.2100182
https://doi.org/10.1109/TII.2021.3119038
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/JIOT.2021.3077803
https://doi.org/10.1109/ICDCS47774.2020.00171
http://arxiv.org/abs/2205.06661
https://doi.org/10.2478/popets-2021-0062

88 Federated Learning for Malware Detection in Edge devices

[20] V. Rey, P. M. S. Séanchez, A. H. Celdrdn, G. Bovet, and M. Jaggi,
“Federated Learning for Malware Detection in IoT Devices,” Computer
Networks, vol. 204, p. 108693, Feb. 2022, https://doi.org/10.1016/j.co
mnet.2021.108693.

[21] S. Pramanik and H. Teja, “EMBER - Analysis of Malware Dataset
Using Convolutional Neural Networks.” In Proceedings 2019 Third
International Conference on Inventive Systems and Control (ICISC),
Coimbatore, India, Jan. 2019, pp. 286-291, https://doi.org/10.1109/
ICISC44355.2019.9036424.

[22] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models.” arXiv, Apr. 16, 2018,
https://doi.org/10.48550/arXiv.1804.04637.

[23] D. J. Beutel et al., “Flower: A Friendly Federated Learning Research
Framework.” arXiv, Mar. 5, 2022, https://doi.org/10.48550/arXiv.2007.
14390.

[24] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” arXiv, Dec. 03, 2019, https://doi.org/10.485
50/arXiv.1912.01703.

[25] “VirusTotal.” https://www.virustotal.com/gui/.

[26] D. Serpanos and G. Xenos, “Federated Learning in Malware Detection,”
2023 IEEE 28th International Conference on Emerging Technologies
and Factory Automation (ETFA), Sinaia, Romania, 2023, pp. 1-4,
https://doi.org/10.1109/ETFA54631.2023.10275578.

https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/10.1109/ICISC44355.2019.9036424
https://doi.org/10.1109/ICISC44355.2019.9036424
https://doi.org/10.48550/arXiv.1804.04637
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://www.virustotal.com/gui/
https://doi.org/10.1109/ETFA54631.2023.10275578

3]

Image Signal Processor (ISP) Tuning using
Machine Learning (ML) methods

Sepehr Bijani

NXP Semiconductors, Germany

Abstract

Image Signal Processor (ISP) is responsible for improving camera signal
quality and producing high-quality images. ISP has a vast number of param-
eters which should be tunned based on both camera sensor and operating
environment. Sensor related ISP parameters are tunned offline for each cam-
era sensor. Parameters related to environment such as white balancing gains
must be fine-tuned during the runtime. The offline phase is cumbersome
and costly. At the same time, the runtime for fine-tuning should be fast and
accurate. Therefore, the proposed tuning framework needs to achieve two
goals at the same time: a) tune the sensor related parameters automatically in
lab and b) fine-tuning ISP in the field with a runtime.

For the static parameters, a tuner finds the optimal parameters in lab
condition. Tuning dynamic parameters needs a dataset with various scenes
and corresponding optimal parameters. A data generation pipeline produces
the dataset by running the tuner in a loop. An ML model is trained based on
generated dataset as runtime for fine-tuning ISP.

Keywords: image signal processor, ISP, machine learning, ML, tuning,
camera tuning.

&9

90 Image Signal Processor (ISP) Tuning using Machine Learning (ML) methods

5.1 Introduction and Background
5.1.1 Tuning problem

Improving System performance by changing bounded parameters respect to
predefined Key Performance Indicator (KPI).

5.1.2 Image Signal processor (ISP)

ISP is a hardware or software component responsible for converting camera
signal (Bayer Pattern Image) to perceivable image for human eye. It improves
image quality by attenuating image artifacts. For achieving optimal perfor-
mance in different environmental scenarios and various cameras, ISP has
many parameters which should be tuned and optimized for different use cases.
The tuning process is manual and costly. The effect of varying ISP parameters
has a considerable impact on deep learning-based object detection systems, so
having an automatic process and measuring the ISP performance will improve
overall Advanced Driver Assistance Systems (ADAS) response [1].

Bayer Pattern Output Image

Figure 5.1 Image Generation using ISP and Camera.

5.1.3 Mathematical Optimization Problem

Having a mathematical model for a system, the behavior of the system can be
improved by defining an optimization problem as [2]:

minimize f(z)
T

subject to g;(z) <0, i=1,...,m
h](m) =0, j=1,...,p

Figure 5.2 Linear Optimization Problem [3].

Feasible set

=) Constrains Objective

Function

Where cost function f(x) models the KPI needed to improve system
performance. In a tuning problem, f(x) is blocking, and high number of f(x)

5.1 Introduction and Background 91

calls will be impractically slow. As a result, running f with a parameter
set X is time consuming, and any solver for tuning problem should find
optimal parameters with the smallest number of iterations. An example of
optimization problem is Linear Programming (LP) where f, g, and h are linear
function and define a polyhedron. Changing parameter x will move a linear
function across the feasibility set as show in Figure 5.2.

5.1.4 Static and Dynamic Parameters in ISP

Different algorithms utilized in ISP which have individual parameters. Each
algorithm tries to attenuate artifacts from a specific source:

a) Static Parameters: Algorithms responsible for improving artifacts origi-
nated from camera sensor have static parameters which should be tuned
only once.

b) Dynamic Parameters: Algorithm responsible for improving artifacts
due to light condition and environmental phenomena have dynamic
parameters which should be updated during runtime.

The static parameters which are related to camera sensor characteristics
can be tuned once for the specific camera. After tuning the ISP for the specific
camera, the parameters can be fixed in configuration file for deployment.

Tuning dynamic parameters improves the image quality in different envi-
ronmental conditions. The dynamic parameters should be updated during
runtime to guaranty best image quality performance.

5.1.5 State of Art

The tuning process is done manually by experts. Each ISP algorithm is
responsible for reducing specific artifact in image and the expert can mea-
sure the artifact intensity using a specific KPI. Then by changing the ISP
parameters and try and error, the expert can find best parameters combination
for specific camera sensor.

For tuning dynamic parameters, expert do the same process, but for
a range of environmental conditions. That means, first a set of input ISP
images (Bayer Pattern) are captured from sensor in different environmental
condition, then expert should tune the ISP for each one of the input images.
ISP has an algorithm for gathering the statistical data for Bayer pattern
image. Having the statical data for all images and corresponding optimal ISP
parameters, one can make a “decision tree” which changes the parameters on
flight based on statistical data provided by ISP.

92 Image Signal Processor (ISP) Tuning using Machine Learning (ML) methods

5.2 Automatic ISP Tuning

The automatic tuning process should be done for both Dynamic and Static
parameters.

5.2.1 KPIs for Artifact Attenuation

For measuring ISP performance, various KPIs should be defined. Each KPI
measures the intensity of a specific artifact in image. It should be noted that
there is no one to one relation between artifacts and ISP algorithms. In many
cases one KPI could be used for tuning multiple ISP algorithms. The list of
KPIs is [4]:

Table 5.1 KPIs for Measuring Image Artifacts.

Artifact ISP block KPI
Noise Noise Reduction Block(s) PSNR
Loss of detail Sharpness Correction MTF50
Color Inaccuracy Color Correction Matrix (CCM) AE
Color Casting White Balancing AE

5.2.2 Static Parameters

The setup is done once in lab and a camera is attached to the capturing
device. The captured Bayer pattern is fed to the ISP as input. The ISP
generates an image. For measuring the performance of specific ISP algorithm
in attenuating an artifact, corresponding KPI in Table 1 is used. ISP tuner can
track KPI value for judging performance result of a set of parameters. ISP
tuner changes the ISP parameters in multiple iterations and tries to optimize
parameters based on KPI value. The process is iterative, and the iterative
process is needed to be done only once for static ISP parameters as shown
in Figure 5.3. The optimal value found by Tuner will be stored as fixed
configuration for runtime.

scene

Figure 5.3 Tuning ISP Static Parameters.

5.2 Automatic ISP Tuning 93

5.2.3 Dynamic Parameters and Runtime

Achieving optimal performance with dynamic parameters is harder. The
parameters should be re-tuned to adapt environmental effects such as light
condition, temperature, etc.

There are limitations in using same iterative approach for tuning static
parameters:

1. The iterative approach makes it impossible to have optimal parameters
per frame or even per minute.

2. Measuring the KPI during runtime is challenging since there is no
reference for the scene captured by camera.

A proposal solution is to use a machine learning model which can map
image statistical data to optimal parameters. All ISPs measure image statis-
tical data and provide it per frame. The dataset can be created by utilizing
same tuning procedure mentioned for tuning statistical parameters in a loop
as demonstrated in Figure 5.4.

E: All desired environmental conditions which ISP should operate in.
Forein E

{

1. Run tuner for optimizing ISP.
2. Store Optimal ISP parameters + ISP statistical
data for the scene.

~\C \/
o B

Bayer Pattern

Figure 5.4 Dynamic Parameters Data Generation.

In theory, a Neural Network (NN) should be able to predict optimal
values for dynamic parameters after training; however, an NN creates a high
computation load during inference, so a more efficient solution is needed.

94 Image Signal Processor (ISP) Tuning using Machine Learning (ML) methods

In this paper, a gradient boost model is proposed for inferencing the
optimal parameters. Gradient boosting models are trainable decision trees.
Unlike NN which use Directed acyclic graphs (DAGs) as underlaying data
structure for training and inferencing, gradient boost (GB) utilizes trees which
are simpler data structures [5]. GB models are fast to inference and has similar
performance as NNs for tabular data which exactly matches the use case and
dataset we have for dynamic tuning application.

DataBase

: Solver lterations

Raw Input Image

Figure 5.5 Storing Optimal Parameters and ISP Statistical Data for Training ML model.

5.2.4 Test Setup

Testing the proposed methods for tuning static and dynamic parameter are
done with Solectrix SoftISP SXIVE!. The ISP runs on PC with dedicated
graphic card. The tuner uses 16 cores CPU to speed up the process in lab for
finding static parameters in ISP.

Same tuner is utilized to create a dataset of ISP statistical data and optimal
parameters for ten lighting color temperature. The dataset is then used for
training a GB model named XGboost as runtime. The trained model then
runs on single core with minimum load on the same machine to update White
Balancing parameters.

5.2.5 Results

The demo software (SW) is instantiated with init button. ISP with random
parameters is run and the ISP output image is shown to the user. The user
can select the boundaries of the Color Checker (CC) board inside the image
then press “Tune”. The SW will crop the image to find cc board and samples

! sxive.com

5.2 Automatic ISP Tuning 95

patches from the board and shows the sampling areas to the user (Annotated
CC). Then, tuning process begins. In Figure 5.6 the process for finding a
better optimum point is illustrated as tuner progress. The measured AE for
all color blocks in color checkerboard is calculated and aggregated as Mean
Squared Error (MSE) of AE values:

23 2
MSE(AE) = %.
k=0

The SW results in Figure 5.6 can be interpreted as:

“ISP output” shows ISP output image for the current iteration, and “Best
Config” shows the best result found by tuner until the current iteration. When
tuner iterates over different configurations, it generates various “ISP outputs”

Iter: 0 Iter: 500 Iter: 1000

ize || Tune | exit cior | intiize (Tune) Ext

« - c

a

ISP Output

Best Config

Annotated CC

Iter: 1500 Iter: 1600 Iteration | MSE(AE)
; = S R . 100
500 560
1000 330
1500 270
1600 226

Best Config

Figure 5.6 Offline Tuning Results for Color Correction Matrix Tuning.

96 Image Signal Processor (ISP) Tuning using Machine Learning (ML) methods

and corresponding KPI values; Based on observed KPI value, tuner guesses a
better parameter set for the next iteration. As iterations go on, tuner can find
better parameter sets which results in better KPI values, so as it can be seen,
the “Best Config” image is improved when tuner progresses.

White balancing (WB) is the algorithm chosen for dynamic tuning. Same
tuner finds optimal parameter for various light conditions and intensities in

Sofisp

XGboost WB
Figure 5.7 Runtime Result of Trained XGboost WB.

References 97

Iab in a loop as explained in Figure 5.4. The generated dataset maps image
histogram to optimal WB configuration is used to train a XGboost model.
The ISP has its own Automatic White Balancing (AWB), but we turned it
off to show the effectiveness our of XGboost WB. The results are shown in
Figure 5.7 without and with white balancing under blue light source.

5.3 Conclusion

Tuning ISP was conventionally a cumbersome, costly, and suboptimal task.
The iterative process should have been done for combination of numerous
ISPs and cameras. In pursue of a more automated solution, the proposed
method tries to distinguish parameters based on static/dynamic nature. The
parameters which are related to specific camera, can be tuned in lab, and
the optimal parameters will be fixed as static parameters. For ISP algorithms
which attenuates environmental impact on image quality, a runtime should
fine-tune the ISP in the field. The runtime algorithm should be light enough
to run on a restricted HW processor. For tuning both static and dynamic
parameters, the paper presents a tuning framework to automate the process.
A tuner finds optimal parameters for static parameters. A data generation
pipeline utilizes same tuner in a loop for various environmental conditions.
The generated data maps the statistical data provided by ISP to optimal
parameters found by tuner. In the next steps, the trained GB model based on
the generated dataset is used as a lightweighted runtime for tuning dynamic
parameters in changing environmental condition.

References

[1] D. Molloy et al., “Impact of ISP Tuning on Object Detection,” Journal of
Imaging, vol. 9, no. 12, pp. 260-260, Nov. 2023, doi: https://doi.org/10.3
390/jimaging9120260.

[2] S. Boyd and L. Vandenberghe, “Convex Optimization,” Mar. 2004, doi:
https://doi.org/10.1017/cbo9780511804441.

[3] https://en.wikipedia.org/wiki/Linear_programming.

[4] https://www.imatest.com/support/docs/23-2/colorcheck/

[5] T. Chen and C. Guestrin, “XGBoost: a Scalable Tree Boosting System,”
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’16, pp. 785-794, 2016,
doi: https://doi.org/10.1145/2939672.2939785.

https://doi.org/10.3390/jimaging9120260
https://doi.org/10.3390/jimaging9120260
https://doi.org/10.1017/cbo9780511804441
https://en.wikipedia.org/wiki/Linear_programming
https://www.imatest.com/support/docs/23-2/colorcheck/
https://doi.org/10.1145/2939672.2939785

6

Using Edge Al in loT devices for Smart
Agriculture: Autonomous Weeding

Christian Germain!?, Barna Keresztes'?, Aymeric Deshayes!,
and Jean-Pierre Da Costa'?

1University of Bordeaux, CNRS, France
2Bordeaux Sciences Agro, France

Abstract

This paper presents the evolution of a vision system dedicated to automatic
weeding, initially implemented on a NVIDIA Jetson Xavier board. This
evolution aims to take advantage of a new computing board able to implement
efficient artificial intelligence oriented computations, keeping a low power
consumption, and a low cost, developed in the ANDANTE project. The
paper presents the automatic weeding tool, the existing vision system and
the weeding data used to train the system. It also describes the specifications
of the new board and the adaptation needed in order to integrate the previous
algorithm in this new board. The results obtained during the first step of this
integration are presented and compared to those obtained with the previous
vision system. These new results are encouraging and rich in lessons for the
future.

Keywords: edge computing, precision agriculture, smart agriculture, auto-
matic weeding, image processing, deep learning.

6.1 Introduction

Agriculture has to face many challenges in the 21st century. With the increas-
ing artificialization of land and the augmentation of the global population, we
have to produce more food using less surface. Another challenge in order to

99

100 Using Edge Al in 10T devices for Smart Agriculture: Autonomous Weeding

preserve our natural resources and soil quality for agriculture, is to produce
differently, with less inputs (fertilizers, phytosanitary products, herbicides...).
In addition, climate change has a huge impact on production, yields, water
availability and many more aspects.

To address those challenges, several solutions can be proposed, among
which are smart farming, the usage of digital technologies in agriculture and
precision agriculture, which can be summarised as applying to the crops the
appropriate action, at the best moment, and at the right place and quantity.

In order to make those improvements in crop management, two key
technologies can provide a significant help: in-field connected sensors and
robotic processing of the crops.

In-field connected sensors have proven to be very useful for collecting
data on the plots (vegetation index, soil composition, weather parameters...).
These data are then processed and integrated in decision support systems to
help the farmer manage the crops. Installing sensors in the field is not an
easy task: outdoor conditions require robust material that can resist moisture,
dust and shocks. Moreover, access to a power supply is not practical, so it
is important to have low consumption devices, which limits the processing
power available. Cloud computing could offer a solution: the sensor sends the
data via internet in order to process it on a server. However, internet access
is often limited in the fields and the amount of data can be large (images or
videos). Another solution could be to use a long-range technology such as
LoRa or SigFox. However, those technologies have a limited data rate and
can’t support huge amounts of data to send in the cloud.

Edge computing is a promising alternative, with the possibility to make
computing on board, dramatically reducing the amount of data to be send
(only the results), via LoRa for example. This makes it possible to use a
connected sensor even in areas with poor network access. It also allows to
reduce the power consumption involved in the communication in case of
large amount of data. However, this latter advantage can be neutralized by
the energy cost of the calculations carried out on board.

In the case of robotic processing of the crops, embedded sensors are
necessary to provide real-time data to the system so that it can implement
the operations needed to process the culture. This real time constraint favours
the edge architecture, avoiding loss of time in data transfer and reception of
results, especially for significant input data quantity (image or video).

In both cases, the constraints are similar: processing signals, images
or videos of natural scenes require complex computations; the return on
investment expected for the farmers limits the cost of the technologies used,

6.2 Material and Methods 101

and the lack of availability of both network and energy imposes a certain
electrical and communication frugality. Therefore, the edge architectures to
be deployed in such use-cases must rely on low-cost circuits, capable of
implementing the most efficient algorithms — such as deep learning based
neural networks — with low power consumption.

The purpose of the European project ANDANTE is to create such circuits
and to test them in various real-life situations, among which smart agriculture
use cases.

In this paper, we will focus on a specific smart agriculture device:
a mobile vision system dedicated to the perception task of an automatic
weeding tool for market gardening (BIPBIP).

The paper will be organised as follows: Section 2, “Material and meth-
ods”, will describe the system. Section 3, “Reference results” will show the
results obtained before the integration of ANDANTE circuits. Section 4 will
show some results already obtained and will discuss the next steps.

6.2 Material and Methods

6.2.1 BIPBIP: the automatic weeding system

The automatic weeding use case within the ANDANTE project was based
on the BIPBIP system developed in a previous project [1, 2]. BIPBIP is a
precision weeding module designed to weed maize and bean crops in the
intra-row without using any phytosanitary products. The state of the art of the
weeding systems is illustrated in Figure 6.1.

Chemical
Weeding system

v N
= N Ll e W |
Inter-row weeding) - N> 5
~ =

To date, no
commercial

Mechanical

Intra-row weeding

Figure 6.1 State of the art of the weeding systems.

To date, commercial intra-solution mechanical weeding solutions exists
like the IC-weeder Lemkem [3], the RoboCrop InRow from Garford [4] or
even the Robovator from VisionWeeding [5]. Those solutions are adapted

102 Using Edge Al in 10T devices for Smart Agriculture: Autonomous Weeding

for lettuce, cabbage, celery etc, that are crops with higher distance between
two plants, as opposed to beans and maize, that have small inter-plant gap,
making the intra-row weeding more challenging (geometric precision, leaf
overlapping, weed and crop closer and more difficult to differentiate, etc.)

Figure 6.2 Left: BIPBIP weeding system behind a robotized tractor. Right: Inside BIPBIP,
the camera and the lighting system [2].

BIPBIP is composed of a vision system that detects crops and locate crop
stems and of a mechanical weeding tool (Figure 6.2 left). It targets market
gardening crops such as bean, and field crops with large intra-row spacing
such as maize. A similar vision-based approach is described in [6] but on
lettuce and in laboratory conditions. Other approach exists like GPS-based
weeding on tomato crop [7] but won’t be integrated in our use case.

The system speed is 0.5 m/s. The mechanical weeding tool is composed
of a metal tip that scraps the soil to remove all weeds without distinction
around each plant of interest. Therefore, detecting weeds is not required for
hoeing, only the crop stem positions need to be known as they are the only
part of the crops to be avoided by the mechanical weeding system.

6.2.2 BIPBIP vision system

This crop detection system of the weeding module should operate in real-time
and provide the stem position of crops with a great location accuracy which is
required for the precision hoeing process. It is mainly based on one detector
to identify the crop of interest and a second one to locate precisely its stem.
These two detectors are intended to be transferred to the circuits developed in
the ANDANTE project.

The initial implementation was done using a 3 megapixels RGB camera
which can capture images at a rate of 15 frames per second. The camera is

6.2 Material and Methods 103

Figure 6.3 BIPBIP weeding module. The mechanical intra-row hoeing tool is represented
by the rod on the left, the computing system in yellow, the two LED panels and the camera
in black inside the vision chamber (in gray) which allows to isolate the vision system from
changing light conditions [2].

confined in a hull avoiding natural lighting. Light conditions are controlled
by 2 LED panels (Figure 6.2 right, Figure 6.3). The images are processed
in real time on an NVIDIA Jetson Xavier which should be replaced by the
ANDANTE board when available. The algorithms are developed in Python
and deployed in C++ for faster processing speed. The software framework
used for the neural network inference is written in C++ and CUDA. The
detectors implemented in the weeding tool were based on a convolutional
neural network YOLOv4 [8]. This model was chosen for its accuracy and
speed. Indeed, the weeding operation needs to be very precise as the farm-
ers cannot afford to lose a significant percentage of the crop during the
weeding. Besides, the detection needs to be fast, as the image needs to be
processed between the image acquisition and weeding operation. This allows
a processing time on the embedded device within 50ms.

Regarding the training of the network, we used 4 databases (2 for maize
and 2 for bean) composed of 15 fps videos saved as consecutive frames. These
databases were annotated with bounding box ground-truths to provide labels
for the neural network training and for the evaluation. The crop bounding

104 Using Edge Al in 0T devices for Smart Agriculture: Autonomous Weeding

Table 6.1 Number of images and annotations for each crop.

Label Images Crop annotations Stem annotations
Maize 1034 2 095 2133
Bean 748 2 820 2824
Total 1782 4915 4957

Figure 6.4 Example of annotations on the image database. Maize crops are annotated in
blue and the stems in cyan, bean crops in red and the stems in orange [2].

box surround the whole crop (red and blue boxes in Figure 6.4) while the
stem bounding box is centred on the stem entry point (orange and cyan boxes
in Figure 6.4). Table 6.1 gives the number of images and annotations per
crop.

6.2.3 ANDANTE board integration

Our objective is to replace the NVIDIA Jetson Xavier computing system by
the IA accelerator board and circuit developed in ANDANTE project, and to
evaluate the performances of the resulting system. Figure 6.5 illustrates the

6.2 Material and Methods 105
Comm.
(()) LoRa / Wifi

Storage

W (ARRA
- Camera

Power
supply

AN DANTE

Figure 6.5 Schematic representation of the BIPBIP vision system with both hardware
accelerator possible: a GPU for the NVIDIA Jetson case or an ASIC for the platform 4.1a.

future place of the ANDANTE board (Platform 4.1a) in the BIPBIP vision
system.

The ANDANTE board consists of the NeuroCorgi [9, 10] ASIC and
a Kria KV260 FPGA, running the network backbone and detection head
respectively. The NeuroCorgi circuit implements a Mobilenet vl network
backbone [11]. The encoder uses hard-coded weights trained on the COCO
dataset. The weights are quantized on 8-bit integers to lower the memory
requirements and speed up the computation. To keep the possibility to adapt
the circuit to different use cases, the FPGA is programmable and is able to
run a PetaLinux distribution in order to deploy different software easily. The
plant detection is performed by an SSD-Lite type head, providing similar
results to the SSD detector [12] with a much lower number of parameters, by
replacing the convolution layers by separable 2D convolution. The head of the
SSDLite network uses 4M parameters, about half than the full SSD network’s
8M parameters. This reduces the memory requirement and the computational
cost for the network.

The NeuroCorgi circuit provides access to four layers of the encoder at
different scales, to provide data at different levels of encoding. The output

106 Using Edge Al in 10T devices for Smart Agriculture: Autonomous Weeding

layers are taken right before the down-sampling operations (max pooling).
This allows the network head to access features of various resolutions and
complexity.

6.3 Reference Results

In this section, we focus on the results obtained in the initial version of
the BIPBIP vision system, with the NVIDIA Jetson board in order to get
reference for comparison with the future vision system with the ANDANTE
board. To date, the results of the ANDANTE board are from a simulated
environment, with the SSDLite running on a classical computer. We split the
image database in a training set and a validation set with an 80%-20% ratio.
In terms of power consumption, the current system work around 30W. In
the case of the weeding platform, power consumption isn’t a critical point.
Having a system consuming less power, like the ANDANTE platform, is
much more beneficial regarding energy sobriety and transferring for other IoT
devices such as in field sensors for which it provides a much higher autonomy.

Table 6.2 Detection performance (%) and inference speed (fps) for Yolo v4 on the NVIDIA
Jetson Xavier including video acquisition and post-processing for each crop.

Network AP APs5g AP75 mIOU FPS
Yolo V4 53.87 89.71 54.59 80.96 13
SSDLite 51.6 84.6 52 80.5 N/A

Table 6.2 shows the performance using AP0.5:0.95 (AP), the AP50,
AP75, AR100, the mean Intersection over Union (mloU) [13] and the
inference speed in frames per second (FPS). The YoloV4 results previously
obtained gives us a reference for this use case. We can observe similar results
with the SSDLite, which is satisfactory but on condition of an acceptable
inference speed. However, as the SSDLite is running in a simulated environ-
ment, it isn’t relevant to measure the number of FPS for this network. When
available, the processing speed should allow at least 10 FPS.

Detailed results can be found in [1, 2].

6.4 Work in Progress and Future Work

6.4.1 Work in progress

Since the ANDANTE Platform 4.1a is not yet available, our network archi-
tecture described in section 1.2 has been implemented and tested using the

6.4 Work in Progress and Future Work 107

available development tools. The Mobilenet-based SSD detector was imple-
mented using the Pytorch library, with separate classes for the backbone and
the detection head. A simulator for the NeuroCorgi circuit was implemented
on the N2D2 platform [14], which is a deep learning framework for creating
artificial neural networks intended to work on constrained environments.
The SSD network head was translated for the Kria KV260 FPGA using the
VitisAl library.

2

Conv3 Layer types

Sl Qay Classification |
»
Conv7 . 4 Pl |
&8

B Reusion

Figure 6.6 The adapted network architecture used for this application. The figure presents
how the duplicated Mobilenet layers and the SSD head are connected to the NeuroCorgi
backbone.

Some modifications to the network structure were necessary: as the
training database for the encoder contains few examples of plants, the initial
detection results were inadequate. Duplicating some of the encoder layers on
the FPGA and making them trainable improved considerably the detection
accuracy. The resulting network architecture is presented in Figure 6.6.

Table 6.3 shows the first results from the proposed architecture (these
results are expressed in terms of loss function but the precision performances
will be available soon). These results are promising, even if the SSD archi-
tecture is less precise that the reference Yolo V4 network. They also show

108 Using Edge Al in 10T devices for Smart Agriculture: Autonomous Weeding

that it is necessary to use at least a partially retrained backbone. However, the
improvement after retraining the first layers is marginal.

Table 6.3 Detection performance (loss function) using the new architecture.

Network training Loss on SSD Loss on SSD Lite
Head only 3.8 4.6
Partially retrained backbone 1.8 1.9
Retrained backbone 1.5 1.7

Figure 6.7 presents examples of detection obtained by the reference
system and by the proposed network.

Figure 6.7 Results from the Yolo V4 network (left) and the proposed SSD network (right)
on maize. Blue rectangles show the plants. Green rectangles show the stem locations.

6.4.2 Future work

The two parts of the network are currently being transferred on the Platform
4.1a. The performances, in terms of accuracy, processing time and power

6.5 Conclusion 109

consumption will then be measured and compared to the reference (NVIDIA
Jetson Xavier board). If the accuracy and computing time are adequate, the
implementation inside the BIPBIP weeding system will then be possible,
allowing field testing.

6.5 Conclusion

In this paper we presented a vision system for automatic weeding (BIPBIP
platform), and described the objectives and the progress of a project to
evolve this vision system, through the integration of an Artificial Intelli-
gence oriented computation board with low cost and low power consumption
(ANDANTE project).

The existing vision system (BIPBIP) should allow easy hardware integra-
tion by replacing the NVIDIA Jetson Xavier with the new circuit. However,
an adaptation of the Convolutional Neural Network model appeared to be
necessary. Encouraging simulations have shown the overall feasibility of
the transfer, and have been very informative, particularly about the need to
adapt the initial architecture of the circuit to achieve the expected precision
performance expected for weed control applications.

Furthermore, the availability of the new ANDANTE circuit makes it
possible to address other “smart agriculture” use case such as a fixed vineyard
monitoring vision sensor. The integration of the new ANDANTE board, even
in its current architecture, should make it possible to improve the very simple
vision processing algorithms carried out on board the existing prototype,
while keeping a low power consumption inherent to this type of device, thus
allowing to extend its uses.

Acknowledgements

The ANDANTE project has received funding from the ECSEL Joint Under-
taking (JU) under grant agreement No 876925. The JU receives support from
the European Union’s Horizon 2020 research and innovation programme and
Belgium, France, Germany, The Netherlands, Portugal, Spain, Switzerland.
www.andante-ai.eu.

The BIPBIP project has been funded by the French Research Agency
(ANR) (grant ANR-17-ROSE-0001 - BIPBIP) and has been supported by
the organizers of the ROSE Challenge and all the partners of the BIPBIP
project.

110 Using Edge Al in 10T devices for Smart Agriculture: Autonomous Weeding

References

[1] L. Lac, J-P. Da Costa, M. Donias, B. Keresztes, A. Bardet, “Crop
stem detection and tracking for precision hoeing using deep learning”.
Computers and Electronics in Agriculture, 2022, 192:106606.

[2] L. Lac, “Méthodes de vision par ordinateur et d’apprentissage profond
pour la localisation, le suivi et I’analyse de structure de plantes : applica-
tion au désherbage de précision”, PhD Thesis, Université de Bordeaux,
2022.

[3] Lemken. ‘IC-Weeder: Automatic intra-row hoeing machine for vegeta-
bles’. Accessed 21 June 2024. https://lemken.com/en-en/agricultural-
machines/cropcare/weed-control/mechanical-weed-control/ic-weeder.

[4] Garford Farm Machinery. ‘Robocrop InRow Weeder’. Accessed 21 June
2024. https://garford.com/products/robocrop-inrow-weeder.

[5] VisionWeeding. ‘Mechanical Robovator’. Accessed 21 June 2024. https:
/lwww.visionweeding.com/robovator-mechanical/.

[6] B. Jiang, J-L. Zhang, W-H Su, and R. Hu. ‘A SPH-YOLOv5x-Based
Automatic System for Intra-Row Weed Control in Lettuce’. Agronomy
13, no. 12 (Dec. 2023): 2915. https://doi.org/10.3390/agronomy 131229
15.

[7] M. Pérez-Ruiz, D.C. Slaughter, C.J. Gliever, and S.K. Upadhyaya.
‘Automatic GPS-Based Intra-Row Weed Knife Control System for
Transplanted Row Crops’. Computers and Electronics in Agriculture 80
(1 January 2012): 41-49. https://doi.org/10.1016/j.compag.2011.10.0
06.

[8] A. Bochkovskiy, C.Y. Wang, H.Y.M. Liao, “YOLOv4: Optimal Speed
and Accuracy of Object Detection”. in arXiv:2004.10934, 2020.

[9] I. Miro-Panades, 1. Kucher, V. Lorrain, A. Valentian, “Meeting the
latency and energy constraints on timing-critical edge-Al systems”, in
International Workshop on Embedded Artificial Intelligence Devices,
Systems, and Industrial Applications (EAI), 2022.

[10] I. Miro-Panades, E. Romay, L. Mateu Saez, M. Diaz Nava “Platform
4.1a : A Multi-Application Platform Supporting Several Uses Cases
in the Domains Digital Farming and Transport and Smart Mobility”,
European Conference on EDGE Al Technologies and Applications
-EFEA, 17_10 October 2023 Athens, Greece.

[11] A.G. Howard, M. Zhu, B. Chen, D Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications”, https://arxiv.org/abs/1704
.04861, 2017.

https://lemken.com/en-en/agricultural-machines/cropcare/weed-control/mechanical-weed-control/ic-weeder
https://lemken.com/en-en/agricultural-machines/cropcare/weed-control/mechanical-weed-control/ic-weeder
https://garford.com/products/robocrop-inrow-weeder
https://www.visionweeding.com/robovator-mechanical/
https://www.visionweeding.com/robovator-mechanical/
https://doi.org/10.3390/agronomy13122915
https://doi.org/10.3390/agronomy13122915
https://doi.org/10.1016/j.compag.2011.10.006
https://doi.org/10.1016/j.compag.2011.10.006
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861

References 111

[12] W. Liu, D. Anguelov, D., Erhan, C. Szegedy, S. Reed, C.Y. Fu,
A.C. Berg, “SSD: Single shot multibox detector”. In Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, Springer International Publishing, 2016, Proceedings, Part I 14,
pp. 21-37.

[13] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.
Dollar, C.L. Zitnick, “Microsoft COCO: Common Objects in Context”,
in Computer Vision— ECCV 2014. Springer International Publishing
D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars, Eds., vol. 8693, 2014,
pp. 740-755.

[14] CEA-LIST. “N2D2: Neural Network Design & Deployment”, in
github.com, 2017, https://github.com/CEA-LIST/N2D2.

https://github.com/CEA-LIST/N2D2

Index

A
advanced driver assistance system
(ADAS) 90
agentic Al 34
Al-defined vehicles (AVD) 1, 33, 39
Aidge xi, 41, 43, 45, 46, 48, 52
artifact attenuation 92
artificial intelligence network on chip
(AINoC) 58, 60, 61
automatic weeding 99, 101, 109
autonomous vehicle xi, 1, 2, 3, 6, 11,
15,16, 17, 32

C
camera tuning 89
CNN accelerator 55
convolutional neural network (CNN)
54, 55,71, 88, 103, 109

D
data distribution service (DDS) 27
data reuse 44, 55, 58, 63, 69, 70
dataflow architecture xi, 55, 56, 57,
58, 60
deep learning 33, 42, 43, 56, 86, 90,
101
deep learning accelerators (DLAs) 43
deep neural network (DNN) xi, 41,
42,71,73, 118
denial-of-service (DoS) 76
deployment and compilation 42
DNN optimisation 42

dynamic driving task (DDT) 5
dynamic random access memory
(DRAM) 57

E
edge Al xi, 1, 3, 26, 55, 99
edge computing xi, 3, 15, 26, 87, 100
edge devices xii, 44, 73, 77, 84
electronic control unit (ECU) 18
embedded dynamic random access
memory (eDRAM) 57
energy consumption 57, 58, 66, 67,
69
energy efficiency 26, 57, 69, 70
explainable edge Al (XAI) 33

F
federated learning 73, 75, 77, 80, 81,
85
field-programmable gate array
(FPGA) 26

G
graph manipulation 42
graphics processing unit (GPU) 26

H
hardware accelerator 54, 105
hardware export 41, 44

I
image processing 54, 99

113

114 Index

image signal processor (ISP) xii, 89,
90

inertial measurement unit (IMU) 37,
38

inertial navigation systems (INS) 14

interconnect xi, 3, 49, 55, 56, 58

Internet of Robotic Things (IoRT) 3,
36

Internet of Things (IoT) 7, 73, 87,
117

interpretable edge Al (IAI) 33

ISP 89, 90, 91, 92, 93, 97

K
Keras 17, 48

L
last-mile delivery xi, 1, 15, 17, 25, 32
latency 9, 14, 43, 57, 67, 68, 85
light detection and ranging (LiDAR)
1,4,8,9,35
long range radio (LoRa) 100
low power xii, 9, 44, 53, 85, 99, 101

M

machine learning xii, 16, 23, 28, 41,
72,773,775, 85, 89

malware detection xii, 73, 74, 75, 77,
85

micro-electro-mechanical systems
(MEMS) 12

ML 16, 73, 74,75, 89, 94

N
network optimization 49
neural global controller (NGC) 58,
59, 60
neural processing element (NPE) 58,
59, 60

neural processing unit (NPU) 26

o

object recognition 2

odometry 12, 23, 24, 36

open neural network exchange
(ONNX) 42, 43, 48, 53

OpenCV 17, 48

operational design domain (ODD) 4,
5,37

operational technology (OT) 73

P
path planning 23, 26, 36, 40
perception xi, 1,4, 9, 12, 15, 16, 33,
101
platooning 13, 18, 19, 20
point cloud &, 10
precision agriculture 100
pruning 53
Python 17, 42, 45, 46, 103
PyTorch 17, 26, 28, 42, 48, 79, 107

Q
quality of service (QoS) 29
quantization 41, 44, 50, 53
quantization aware training (QAT) 53

R

radar 1,4,7,8,9, 11

real-time kinematic (RTK) 14

real-time operating system (RTOS)
26

reduced instruction set computing
(RISC) 53, 55, 67, 69

roadside units (RSUs) 13

robot operating system (ROS) 4, 27,
37,39

ROS 127,29

ROS 2 27, 29, 30, 31, 33
ROS middleware (RMW) 31

S
sensor fusion xi, 1, 4, 7, 12, 16, 23,
29, 33, 38
SimpleCV 17
simultaneous localization
and mapping (SLAM) 12
small language models (SLMs) 34
smart agriculture xii, 99, 101, 109
software-defined vehicle (SDV) 1, 7,
33,39
static random access memory
(SRAM) 57
System-on-a-Chip (SoC) 26

T
tensor processing unit (TPU) 26
TensorFlow 17, 26, 28, 42, 43

Index 115

transformers 33, 53
tuning xii, 21, 42, 89, 90, 93, 95

A"

vehicle control unit (VCU) 18

vehicle-to-everything (V2X) 1, 7, 9,
13,33

vision system 99, 101, 102, 103, 105,
106

vulnerable road users (VRUs) 8, 10,
33

W
weeding system xii, 101, 102, 109

X
XGboost 94, 96, 97

Y
You Only Look Once (YOLO) 20

About the Editors

Dr. Ovidiu Vermesan holds a PhD degree in microelectronics and a Master
of International Business (MIB) degree. He is Chief Scientist at SINTEF Dig-
ital, Oslo, Norway. His research interests are intelligent systems integration,
mixed-signal embedded electronics, analogue neural networks, edge artificial
intelligence and cognitive communication systems. Dr. Vermesan received
SINTEF’s 2003 award for research excellence for his work on implementing
a biometric sensor system. He is currently working on projects addressing
nanoelectronics, integrated sensor/actuator systems, communication, cyber-
physical systems (CPSs) and the Industrial Internet of Things (IloT), with
applications in green mobility, energy, autonomous systems, and smart cities.
He has authored or co-authored over 100 technical articles and conference
papers. He is actively involved in the activities of the European partnership for
Key Digital Technologies (KDT) Joint Undertaking (JU), now the Chips JU.
He has coordinated and managed various national, EU and other international
projects related to smart sensor systems, integrated electronics, electromobil-
ity and intelligent autonomous systems such as E3Car, POLLUX, CASTOR,
IoE, MIRANDELA, I0F2020, AUTOPILOT, AutoDrive, ArchitectECA2030,
Al4DI, AI4CSM. Dr. Vermesan actively participates in national, Horizon
Europe and other international initiatives by coordinating and managing
various projects. He is a member of the Alliance for Al, IoT and Edge
Continuum Innovation (AIOTI) board. He is currently the coordinator of
the Edge Al Technologies for Optimised Performance Embedded Processing
(EdgeAl) project.

Marcello Coppola is technical Director at STMicroelectronics. He has more
than 25 years of industry experience with an extended network within the
research community and major funding agencies with the primary focus on
the development of break-through technologies. He is a technology innovator,
with the ability to accurately predict technology trends. He is involved in
many European research projects targeting Industrial IoT and IoT, cyber
physical systems, Smart Agriculture, Al, Low power, Security, 5G, and

117

118 About the Editors

design technologies for Multicore and Many-core System-on-Chip, with par-
ticular emphasis to architecture and network-on-chip. He has published more
than 50 scientific publications, holds over 26 issued patents. He authored
chapters in 12 edited print books, and he is one of the main authors of “Design
of Cost-Efficient Interconnect Processing Units: Spidergon STNoC” book.
Until 2018, he was part of IEEE Computing Now Journal Technical edito-
rial board. He contributed to the security chapter of the Strategic Research
Agenda (SRA) to set the scene on R&I on Embedded Intelligent Systems in
Europe. He is serving under different roles numerous top international con-
ferences and workshops. Graduated in Computer Science from the University
of Pisa, Italy in 1992.

Dr. Fabian Chersi has a BSC and a master’s in electronic physics, and a
PhD in Artificial Intelligence and Robotics. From 2001 to 2003, he worked
as a researcher at the Technical University of Munich, Germany, at the
department of Robotics and Embedded Systems. From 2003 to 2007, he
worked at the University of Parma and of Minho on the neurophysiological
experiments with monkeys, and the development of biologically realistic
models of the mirror neuron system and on the development of biologically
inspired robotic systems. From 2007 to 2009, he did a Postdoc at the Institute
for Neuroinformatics in Zurich and at the University College of in London
on the development of attractor networks for context dependent reasoning and
mental state transitions. From to 2009 he was working at the National Council
for Research in Rome, on the development of biologically inspired models
of the cortico-basal ganglia system for goal-directed and habitual action
execution and of the hypothalamus-striatum circuit for spatial navigation. He
then moved to Paris where he worked on the development of neuromorphic
algorithms and ASICs for deep neural networks. He currently works at the
Commission for Atomic and Alternative Energies Commission (CEA) in
Paris as a senior Al architect on DNN optimization and low power Al chips
for the edge.

Beyond Horizons

The Rise of the Edge Al Processing Paradigm

Editors

Ovidiu Vermesan, Marcello Coppola and Fabian Chersi

Welcome to the cutting edge of innovation, where intelligent processing is migrating to
every device that interacts with the physical world. The convergence of edge computing,
artificial intelligence (Al). and the Internet of Things (IoT) drives a shift in the computing
continuum, giving rise to the dynamic and transformative field of edge Al

This book, a curated collection of resecarch work presented at the European
Conference on EDGE AI Technologies and Applications (EEAI) held on 17-19
October 2023, Athens, Greece, serves as both a ledger and a beacon for this exciting new
era of edge intelligence-driven technologies.

The EEAI stands as a vital European forum. bringing together interested minds
from academia and industry to explore the entire edge Al technology stack. From sili-
con circuits, Al accelerators, and specialised hardware platforms to the complexities of
advanced algorithms and the architecture of next-generation edge Al systems. the confer-
ence fosters a vibrant exchange of ideas that propel the field of edge Al forward.

The research presented in these pages captures the spirit of that collaboration, offer-
ing a panoramic view of the challenges being addressed and the groundbreaking solutions
being developed.

The book is more than a collection of papers. it is a synopsis presenting the real-
world impact of edge Al It moves beyond theoretical discussions to showcase how these
technologies are being applied to solve some of the most pressing challenges.

The chapters of the book navigate from the complex urban landscapes of last-mile
delivery to the fertile fields of smart agriculture, discovering how intelligent systems
are creating new efficiencies, enhancing security, and redefining what is possible at the
network’s edge.

We invite you to immerse yourself in these chapters, not just as a reader but as a
participant in the ongoing dialogue that is shaping the future of edge intelligence.

Whether you are a curious and creative researcher, an innovative engineer, or a
student eager to understand the next wave of edge Al processing, the insights shared here
provide a comprehensive and deep understanding of the technologies and applications
that are bringing intelligence to the edge.

ISBN 978-87-438-0863-3

R

River Publishers

	Front Cover

	Beyond Horizons – The Rise of the Edge AI Processing Paradigm
	Contents
	Preface
	List of Figures
	List of Tables
	List of Contributors
	1 Advancing Edge AI Perception Platforms and Sensor Fusion for Last-Mile Delivery Autonomous Vehicles
	1.1 Introduction and Background
	1.2 Sensor Fusion in Last-Mile Context
	1.3 Autonomous Vehicle Architecture for Last-Mile Delivery
	1.3.1 Localisation and High-Definition Map
	1.3.2 Perception Implementation
	1.3.3 Prediction, Decision-Making, Planning and Route Optimisation
	1.3.3.1 Odometry and path planning

	1.4 Edge AI Platforms
	1.4.1 Robot Operating System

	1.5 Future Considerations and Research
	1.5.1 Deployment Considerations
	1.5.2 Future research

	1.6 Conclusion

	2 AIDGE: A Framework for Deep Neural Network Development, Training and Deployment on the Edge
	2.1 Introduction and Background
	2.1.1 Related Work

	2.2 Our Framework Overview
	2.2.1 Internal Graph Representation
	2.2.2 Platform interoperability
	2.2.3 Graph Regular Expression (GraphRegex)
	2.2.4 Network optimization
	2.2.5 Export phase

	2.3 Conclusion and future work

	3 A scalable and flexible interconnect-based dataflow architecture for Edge AI Inference
	3.1 Introduction
	3.2 Related Work
	3.3 Background: dataflow execution models
	3.4 Interconnect-based dataflow architecture
	3.4.1 NGC: Neural Global Controller
	3.4.2 NPE: Neural Processing Element
	3.4.3 AINoC: Artificial Intelligence Network-on-Chip
	3.4.4 Global Buffers

	3.5 Execution Model
	3.6 Experiments and Results
	3.6.1 Evaluation Methodology
	3.6.2 FPGA Implementation Results
	3.6.2.1 Area
	3.6.2.2 Latency
	3.6.2.3 Energy consumption
	3.6.2.4 Energy efficiency

	3.7 Conclusion

	4 Federated Learning for Malware Detection in Edge devices
	4.1 Introduction and Background
	4.2 Federated Learning and Related Work
	4.3 Architecture
	4.4 Experiments
	4.4.1 Dataset
	4.4.2 Evaluation results

	4.5 Conclusions

	5 Image Signal Processor (ISP) Tuning using Machine Learning (ML) methods
	5.1 Introduction and Background
	5.1.1 Tuning problem
	5.1.2 Image Signal processor (ISP)
	5.1.3 Mathematical Optimization Problem
	5.1.4 Static and Dynamic Parameters in ISP
	5.1.5 State of Art

	5.2 Automatic ISP Tuning
	5.2.1 KPIs for Artifact Attenuation
	5.2.2 Static Parameters
	5.2.3 Dynamic Parameters and Runtime
	5.2.4 Test Setup
	5.2.5 Results

	5.3 Conclusion

	6 Using Edge AI in IoT devices for Smart Agriculture: Autonomous Weeding
	6.1 Introduction
	6.2 Material and Methods
	6.2.1 BIPBIP: the automatic weeding system
	6.2.2 BIPBIP vision system
	6.2.3 ANDANTE board integration

	6.3 Reference Results
	6.4 Work in Progress and Future Work
	6.4.1 Work in progress
	6.4.2 Future work

	6.5 Conclusion

	Index
	About the Editors
	Back Cover

