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Abstract

The last decade has seen Deep Neural Networks (DNNs) become exponen-
tially larger, more capable, more power hungry, and more ubiquitous. This
has led to the need to bring machine learning to a wide variety of hardware
devices that are either more performing but larger (GPUs) or require less
power and are portable (embedded devices). Currently, efficiently deploying
these networks on devices requires significant manual effort and a deep
knowledge of different tools as well as the hardware’s characteristics.

Here we present Aidge, an open-source comprehensive framework
designed for simple and fast DNN prototyping, manipulation, optimization,
training, testing and deployment. The platform integrates tools for database
construction, data pre-processing, network building, and hardware export to
various targets.

One of the defining characteristics of Aidge is its modular architecture.
More precisely, there is a “Core Module” providing the most common
functionalities (e.g. network manipulation, optimization, etc.) that can be
extended by so called “plugins” that allow users to add functionalities, such
as new quantization algorithms or specific hardware exporters that were not
foreseen or implemented during the initial design of the framework.
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Aidge is interoperable with the most common frameworks such as
PyTorch and Tensorflow, and formats such as ONNX, and it targets hardware
such as CPU, DSP, MCU, GPU and FPGA. It can be used with Python, C++
and through a Graphical User Interface.

The open-source framework can be found at:

http://projects.eclipse.org/projects/technology.aidge

Keywords: DNN optimisation, quantization, deployment and compilation,
low power, edge devices, graph manipulation, hardware export.

2.1 Introduction and Background

Deep Neural Networks have now reached impressive capabilities in recog-
nizing images, processing natural language, and generating different types of
content. There is thus a growing demand to deploy DNN-based applications
to a great variety of devices, ranging from GPUs and TPUs [1] in cloud
servers, to self-driving cars, to mobile phones and drones, and finally to
DSPs, MCUs and FPGAs. Porting Al architectures to these devices is com-
plicated due to the diversity of hardware characteristics, mainly the different
functioning of their processing units and the available memory.

Modern Deep Learning (DL) frameworks, such as TensorFlow [2],
PyTorch [3] and ONNX [4] utilize a computational graph intermediate
representation (IR) to perform manipulations and optimizations, e.g. oper-
ator fusion, auto differentiation and dynamic memory management. Besides
graph-level manipulations, which are often too high-level, in order to obtain
better results, it is usually necessary to perform target hardware-specific
operator-level transformations. Currently, the method generally utilized is to
deploy generic code developed either for CPUs or GPUs, or to call functions
contained in highly engineered and target-specific operator libraries.

These libraries are usually too target-specific, require significant manual
tuning and knowledge of the hardware characteristics, and are thus too
specialized and opaque to be easily ported to other devices. Presently, major
DL frameworks tend to support only a restricted number of hardware back-
ends due to the significant engineering support and time required to keep
their code up to date. Moreover, even for supported back-ends there is the
difficult task of avoiding graph manipulations that produce operators that are
not natively supported in the target devices because they would need to fall
back to unoptimized implementations.
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In order to be able to produce highly optimized and target-specific imple-
mentations of desired DNNs, we developed Aidge, a framework containing
tools and methods that allow users to act both at the graph-level and at the
operator level. Aidge is thus at the same time a neural network graph editor
and a compiler that accepts high-level descriptions of DNNs (e.g. in ONNX)
and produces low-level code (e.g. in C or assembly) optimized and targeted
at chosen hardware back-ends.

One of the great challenges in generating optimized code from high-level
descriptions is the fact that different architectures manage operations, data
and memory in different ways. For example, Deep Learning Accelerators
(DLAs) [5] [1] [6] usually implement optimized tensor compute primitives,
while GPUs [7] exploit their massive parallelism, and modern CPUs [8] [9]
[10] contain vectorized instructions. Moreover, CPUs and GPUs automati-
cally control pipeline dependencies to hide memory access latency, while for
DL As this has to be explicitly implemented by the developer. All these factors
render the creation of a multi-target tool extremely complicated.

2.1.1 Related Work

Although DL models have seen an incredible rise in multiple domains and
applications, the same cannot be said about frameworks that allow to easily
optimize and deploy them to a wide range of hardware targets.

One way to represent and perform high-level optimizations is through
computation graph domain-specific languages (DSLs). Examples of these
are Tensorflow’s XLA [2], DLVM [11] and Glow [12]. Although these rep-
resentations are well suited for high-level optimizations, they are not apt for
low-level operator optimization. To do this, many frameworks resort to low-
ering procedures to directly generate low-level LLVM or utilize proprietary
vendor libraries. Clearly, these methods require considerable engineering
effort, considering that they have to be done for every combination of
hardware backend and operator variant.

An interesting solution has been proposed in the Halide language and
compiler [13] where computing and scheduling are separated. This allows
the authors to obtain considerable simplifications in programming and major
speed-ups compared to hand-tuned C, intrinsics, and CUDA implementa-
tions.

A different optimization method is proposed in Weld [14] where diverse
functions can submit their computations in a simple but general intermediate
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representation that captures their data-parallel structure. It then optimizes
data movement across these functions and emits efficient code for diverse
hardware.

DnnWeaver [15] is a framework that automatically generates a synthesiz-
able accelerator for a given (DNN, FPGA) pair from a high-level specification
in Caffe. It uses hand-optimized design template to first translate a given high-
level DNN specification to its novel ISA that represents a macro dataflow
graph of the DNN, then it tiles, schedules, and batches DNN operations
to maximize data reuse and best utilize target FPGA’s memory and other
resources.

Finally, TVM [16] is a DNN compiler that has the capability of opti-
mizing code by searching and combining the best tensor operators. This
compiler provides end-to-end compilation and optimization stacks that allow
the deployment of DNNs on CPUs, but also mobile GPUs, and FPGA-based
devices.

2.2 Our Framework Overview

In this work we present Aidge, a new end-to-end framework for training,
optimizing and compiling DNNs especially for low power edge devices.
This tool was designed to balance efficient compilation, flexibility, low
level control and portability by combining insights from graph analysis and
manipulation with methods from structured and functional programming
languages.

The platform integrates database construction, data pre-processing, net-
work building or importing, manipulation, optimization, quantization, testing
and hardware export functionalities (see Figure 2.1). It is particularly useful
for DNN design and exploration, allowing simple and fast prototyping of
different DNNs.

With this tool it is possible to define and train multiple topology variations
of a network and to automatically compare their performances (in terms of
accuracy and computational cost).

One distinctive aspect of Aidge is that it is based on the principle of
“modularity”, i.e. there is a “Core Module” (see Figure 2.2) that can be
extended by so called “plugins” that allow to add new functionalities and
to meet needs not foreseen or implemented during the initial design of the
framework.
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Figure 2.1 Schematic representation of the Aidge Framework with its main components and
functionalities

The Core Module is developed entirely in C++ (14) with bindings to
Python (>3.7), and includes a set of functions that enable it to:

 Create a computational graph representing a DNN.

* Modify the computational graph (e.g. by deleting, replacing or adding a

node).

* Do graph querying/matching to find a specific sequence of operators in

the computational graph.

* Instantiate operators.

* Instantiate data structures, such as Tensors.

* Create schedulers (for now only sequential) to execute the computational

graph

* Apply graph optimization, such as fusion of operators

Aidge separates the concepts of description and implementation. Oper-
ators and data descriptions are abstract, while implementations are target-
specific.

For example, the software implementation of a convolution may differ
on a GPU or CPU, but the definition of the convolution itself (i.e. its inputs
and parameters) does not change. Moreover, the implementation might also
change according to the utilized library, for example on an NVIDIA GPU,
programming can be done either via CUDA or via TensorRT. For this reason
Aidge introduces the notion of “Backend” to define both the hardware target
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Figure 2.2 Aidge is built upon the concept of modularity with a “Core” component and
several “plugins” that complete and extend the framework.

and the library used for the implementation (with its data type and a number
precision)

Plugins allow developers and users to add or adapt functionalities of the
platform. Different kinds of plugins can be developed (in C++ or Python)
using the Aidge API, such as:

» “Recipe plugins”, which may allow to load and save the network
description in a specific format, or it may consist in a set of optimizer
algorithms, for example to reduce the model’s cost in terms of mem-
ory and computing complexity, or to increase its robustness against
external/adversarial attacks.

* “Dataset plugins”, which add the capability to load data and labels from
a specific dataset.

» “Backend plugins”, which register to the Core compiled kernel libraries
(e.g. C++, CUDA, HLS) allowing it to execute the computational graph.
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Figure 2.3 The image shows the constituent parts of an example Convolution operator.

e “Operator plugins”, which adds the ability to define a new operator in
C++ which is not available in the Core.

* “Export plugins”, which define a set of rules and methods aimed at
adapting the graph to the targeted hardware, and methods to produce
source code corresponding to the optimized graph.

2.2.1 Internal Graph Representation

Aidge’s low-level architecture is designed to allow the highest flexibility
in DNN representation and computation, thus DNN models are represented
using a directional “computational graph”. This graph is composed of a set
of nodes, representing operations (Operators), connected with directed edges,
representing the flow of data.

Nodes in this computational graph are defined by three properties: the
connectivity, the operation description, and the implementation.

1. Operation description: it describes the operation a node will do
(e.g. Convolution, ReLu, Data Provider, etc.) and its attributes (see
Figure 2.3). This description is agnostic of the implementation. The
attributes are the following:

o The sizes of the Kernel, Dilation (in case of convolutions), Stride,
etc.

o The number of inputs and their dimensions, datatype and precision;

o The number of outputs and their dimensions, datatype and
precision;
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o A reference to a forward (i.e. inference) function implementation;
o A reference to a backward (i.e. train) function implementation.

2. Connectivity: it describes which nodes (proper Operators or Data
Providers) are connected to a given node.

3. Implementation: it points to the computational function/kernel used by
the Operator for its forward and backward operations. The selection of
the right implementation is made via a registrar system depending on
the following attributes:

o The Backend, defined by both the hardware target (e.g. CPU, GPU,
...) and available libraries (e.g OpenCV)

o The DataType (float, int, ...) and Precision (8bits, 16bits,
32bits,. . .) of the inputs and outputs

o The DataFormat (NCHW, NHWC, ...)

o The Kernel, the algorithm chosen to perform the computation

This flexible computational graph description is paired with the ability to
use a great variety of data representation (e.g. Tensors, Sparse Tensors, Event
Based stimuli, etc.).

2.2.2 Platform interoperability

Thanks to PyBind11, there is a seamless interoperability with Numpy arrays,
achieved by defining a buffer_protocol in the binding of Aidge Tensors. This
allows to use data imported from other frameworks that are compatible with
Numpy.

Aidge is interoperable with PyTorch and allows:

* Creating an Aidge Tensor from a PyTorch Tensor

* Running an Aidge (sub)graph within the PyTorch environment.

* Running an Aidge computational graph within the PyTorch environ-
ment.

Aidge allows interoperability with Keras by creating a wrapper from a
Keras Model through a conversion step via an ONNX file.

Similarly to PyTorch, Aidge can convert Keras tensors by using the
Numpy interoperability.

2.2.3 Graph Regular Expression (GraphRegex)

The proposed Aidge’s internal graph representation is a powerful tool that
combines carefully chosen abstraction levels. The strategy is to adapt the
internal representation to narrow the gap between a neural network and
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hardware devices. Aidge proposes an innovative way to facilitate the manip-
ulation of the internal graph representation: the Graph Regular Expression or
GraphRegex

The Graph Regular Expression combines two main innovations:

1. A description of graph patterns. Taking inspiration from regular expres-
sions from the formal language theory, we introduce a new language to
describe a set of graphs starting from a sequence of characters.

2. Graph matching. Aidge provides a function that allows to extract a
subset of the graph matching the provided GraphRegex description.

Graph Regular Expression is complementary to other graph transfor-
mation methods such as adding and removing nodes or entire parts of the
graph.

With GraphRegex it is possible to work on two distinct levels in a graph:

1. At a conditional level, which corresponds to checking the presence of a
node in a defined dictionary.

2. At a topological level, which allows to describe the interconnections
between symbols.

The topological description, can be compared to classical regular expres-
sions, as it is a form of symbol sequence expression, but extended to the
definition of graphs.

At a practical level, this matching method can be subdivided into two
distinct stages. First, we describe the desired pattern with the syntax of regular
expressions, then we search for that pattern inside the graphs. These two steps
together form the GraphRegex Query.

After extracting all the subgraphs corresponding to a GraphRegex Query,
it is possible to use an intersection resolution algorithm to obtain intersection-
free solutions. However, it is important to note that these algorithms can have
a high complexity, which can make their execution time-consuming.

2.2.4 Network optimization

We can define two categories of optimizations: topological ones, which
change the structure of the computation graph, and parametrical ones, which
change the parameters of the nodes.

An example of topological modification is Tiling. This method splits
convolutions in several ones (for example in 4 convolutions, as show in
Figure 2.4). All of them are computed independently and concatenated at
the end. This manipulation is mathematically exact (lossless).
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Here is the practical implementation:

import aidge core

import aidge backend cpu

import aidge onnx

import numpy as np

¥ Let's create a small neural network with four layers.

model = aidge core.sequential ([ aidge core.LeakyReLU (1,
name= "leakyreluO" ), aidge core.Conv2D(3, 32, [3, 3],
name="conv0"), aidge core.BatchNorm2D (32, name="bno"),
aidge core.ReLU( name="relu0" ) ])

tiled conv = aidge core.get conv horizontal tiling(
model.get node ("conv0"), 2, 4)

node to replace = {model.get node ("convO"),
model.get node ("conv0").get parent (1),
model.get node ("conv0").get parent (2)}

aidge core.GraphView.replace(node to replace, tiled conv)

Tile with Slice

Slice 1 — Conv 1.1 — RelU 2.1

Initial

/ Slice 2 — Conv 1.2 —» RelU 2.2 \
—» Conv1 —» RelU 1 —_—

Concat

\V Slice 3 —» Conv 1.3 —» RelU 2.3 —/

Slice 4 —» Conv 1.4 —» RelU 2.4

Figure 2.4 Example of operator tiling/splitting: a Conv + Relu subgraph is split into a Slice
+ 4 Conv + 4 Relu + Concat.

One of the key differentiators compared to other frameworks such as
LLVM, is that Aidge applies directly graph modifications, which allows to
make global topological changes as opposed to only focus on local ones.

On the other hand, an example of parametrical optimization is quantiza-
tion after training (PTQ) or during training (QAT). This is a well-established
method for reducing memory usage and in most cases, accelerating the
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inference. PTQ is very useful when one does not have the time or the
possibility to re-run the training and does not need to quantize to more than
to 8-bits. If fewer bits are necessary, state-of-the-art QAT methods give very
good results. These and other techniques (e.g. LSQ and FracBit QAT) are
currently being finalized in Aidge.

2.2.5 Export phase

One of the aims of Aidge is to produce an interpretable, explainable and
auditable output. To do this Aidge produces/exports source code files and
a number of related resource files that form a complete package.

In Figure 2.5, which summarizes the export strategy, it is possible to see
two phases: Export Mapping and Export Implementation.

The first objective of the Export Mapping phase is to modify the com-
putational graph to fit the target hardware by using several optimization
techniques (e.g. hardware mapping optimization or graph transformation).

The second objective is the generation of the graph scheduling con-
strained by the architecture rules of the target and additional project rules
imposed by the developer or the user (e.g. the available memory, the available
computer resources or the time allocated for the execution).

Taking into account the architecture rules and the project constraints,
the scheduler will generate a sequential list of nodes from the optimized
graph that will determine how the forward process (i.e. the inference) of the
exported DNN will run on the target.

Graph tooling /

ol =) = e )

Computational Graph Hardware adapted
(agnostic optimization Graph
applied like QAT,
pruning,...)

Export mapping Export implementation
phase phase

Figure 2.5 Schematic representation of Aidge’s export procedure.
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The Export Implementation phase aims at producing a source code of
the hardware-tuned graph returned by the scheduler. The typical steps for
generating source code are the following:

1. Design and export the computation kernels.
2. Export the attributes of the nodes.
3. Export the parameters of the nodes.

Each node of the graph must have an implementation of its forward
method in order to use it in the export. Since only the hardware developers
really know the characteristics and capabilities of their devices, it is their
duty to provide the implementations of the computation kernels. These may
be implemented as a kernel library, which is a collection of optimized func-
tions developed by expert programmers targeting the architecture (computing
functions, DMA programming, etc...).

Together with the kernels, Aidge generates the configuration and parame-
ter files, and also the files that contain the source code of the forward function
of the hardware-adapted graph.

The developer has also the possibility to add files to generate a whole
Software Toolkit that will provide functionalities such as:

» Compilation or project files to compile the export

* Files to run a whole application of the export

* Set of unitary tests (to test the kernels on board, ...)

* Input data for tests

* Third party libraries to use board functions

* Resources to check other constraints like security rules or robustness
directives

* Memory map files indicating information about the static allocation of
the resources used by the

2.3 Conclusion and future work

In this article we proposed Aidge, a framework that allows end-to-end
manipulation, optimization and compilation of DNN architectures and their
deployment to a vast spectrum of hardware devices ranging CPUs to GPUs,
MCUs, DSPs, FPGAs and neuromorphic architectures. Another aim of this
framework is to develop and provide reusable hardware building blocks and
methodologies that are transversal to all types of architectures.
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We would like to point out that one of the driving motivations for the
development of this framework was the need to answer industrial challenges
for the usability of Al

For what concerns future work we foresee the extension of the number
of target architectures including low power ASICS such as PNeuro [17],
STM32, NeuroCorgi [18] and RISC-V.

Moreover, we will focus on graph optimization developing methods
for Quantization Aware Training (QAT), Mixed Precision Quantization,
Compression, Pruning, and Spike coding.

We also plan to add a greater number of supported functionalities
and models such as: Object Detectors, Semantic Segmentation, Multimodal
fusion, Attention models (Transformers)

Finally, we will start to tackle on-chip learning capabilities.

The framework is under active development using an open source and
collaborative process and can be found at:

projects.eclipse.org/projects/technology.aidge

and

https://eclipse-aidge.readthedocs.io/en/latest/
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