3

A scalable and flexible interconnect-based
dataflow architecture for Edge Al Inference

Rohit Prasad and Hana Krichene

Université Paris-Saclay, CEA-List, France

Abstract

The scalable approach of edge artificial intelligence (AI) inference, espe-
cially Convolutional Neural Network (CNN) for computer vision and image
recognition functions, has increased its computational complexity due to the
involvement of multiple properties, i.e., input image size, choice of the filter
size, zero padding, and strides. Dataflow architectures based on many Pro-
cessing Elements (PEs) are considered promising solutions to execute CNNss,
efficiently offering high parallelism and bandwidth. However, the existing
dataflow architectures are generally specialised with difficulty in achieving
scalability and flexibility. This work proposes an interconnect-based dataflow
architecture to overcome such problems. The proposed architecture can
efficiently handle convolutions featuring different input image/feature-map
shapes and filters, with data reuse and communication-computation overlap.
It is scalable and configurable to adapt to different CNN layers. The exper-
imental results show that the proposed architecture can accelerate LeNet5
convolution layers by up to 71.2x in latency performance w.r.t. a RISC-V-
based CPU and that it also accelerates MobileNetV2 convolution layers by
up to 2.07x in latency performance w.r.t. a dataflow architecture featuring
row-stationary execution style.

Keywords: dataflow architecture, data reuse, CNN accelerator, interconnect,
hardware accelerator.

55

56 A scalable and flexible interconnect-based dataflow architecture for Edge

3.1 Introduction

CNNs s used for Deep Learning (DL) are increasingly achieving higher accu-
racy in processing modern Artificial Intelligence (Al) applications such as
computer vision [4] and image recognition [6]. Existing CNNs face problems
of high computational complexity and large amounts of data to process.
The problem becomes more critical in the context of Edge Al due to the
availability of limited resources. Dataflow architectures [10] are presented as
a promising solution to provide high parallelism with high throughput while
facilitating the movement of shared data via Network-on-Chip (NoC). These
architectures are based on massive PEs performing an elementary function,
e.g., Multiply-ACcumulate (MAC) operation in the case of CNN processing.
Due to the large amount of data in CNN processing, NoC [8] ensures data
exchange among PEs, and between PEs and memories. On the one hand,
existing dataflow architectures are specialised and not very flexible for a given
CNN. Ensuring the flexibility of the architecture and data transfer with the
least delay without compromising the computation are the keys to improving
the performance of those dataflow architectures.

We propose an interconnect-based dataflow architecture in this work. The
proposed architecture comprises distributed memories and an array of PEs
interconnected via a mesh interconnect network. The underlying interconnect
network provides high bandwidth and injection rate to achieve simulta-
neous data transfers via parallel routing paths. The interconnect network
also provides flexible data transfers with different directions of multicast
and broadcast. Thanks to this interconnect network, the proposed archi-
tecture can scale and fit the ever-increasing size of ever-evolving neural
networks and accommodate the amount of data generated. The employed
interconnect network is configurable, allowing the proposed architecture to
handle different CNN shapes and layers of shapes of the same CNN and
optimise the PE utilisation by generating a suitable design configuration
for a given convolution processing. This benefits the proposed architecture
to maximise the reuse of shared data and the communication-computation
overlap.

The remainder of the paper is organised as follows, section 1.2 discusses
the related work, section 1.3 presents the background work, section 1.4
describes the sub-system of the proposed architecture, section 1.5 explains
the execution model of the proposed architecture, section 1.6 presents the
evaluation methodology, details the experiments, and analyses the perfor-
mance results. Finally, section 1.7 presents a conclusion.

3.3 Background: dataflow execution models 57

3.2 Related Work

Typically, in dataflow architecture, a program is seen as a collection of data
nodes where a data flow node is executed when all its inputs are ready. Once
a result is ready at a data node, copies of the result are distributed to their
destination operators. This chain of operations is performed in sequential
order until the end of execution of the program is reached. There is no
separate control flow, and operations scheduling requires in-depth knowledge
of the underlying algorithm of the program. The scope of this section is
limited to the dataflow architectures that target the acceleration of CNNs only.

In [16], a dataflow architecture called Eyeriss is presented that aims to
save energy consumption by minimising the data movement on a PE array.
Eyeriss exploits the reuse of filter weights and feature map pixels in the
convolutions to minimise the data movement due to the accumulations of
partial sums. Eyeriss limits the dimensions of input data due to its fixed PE
array size.

The DianNao series, i.e., DianNao [13], DaDianNao [14], and ShiDi-
anNao [19] aim to increase the efficiency of the system by minimising the
latency of memory accesses. DaDianNao minimises the main-memory access
latency by implementing a large on-chip embedded Dynamic Random Access
Memory (eDRAM). DaDianNao is targeted at the data center solution.
ShiDianNao targets the acceleration of CNN applications by mapping the
parameters onto a smaller on-chip Static Random Access Memory (SRAM).
ShiDianNao has a better energy efficiency than DaDianNao by 60 x because
the former avoids memory access to DRAM by storing data in SRAM.

Maeri [7] is another dataflow architecture that augments multiplication
and addition operators with tiny switches, and communication is available to
them using a reconfigurable interconnect network. Maeri can execute con-
volution, Long Short-Term Memory (LSTM), pooling, and fully connected
layers. It supports cross-layer mapping and also addresses sparsity in the
network.

These architectures feature a different approach for mapping and exe-
cuting convolution layers. In addition to these architectures, the proposed
architecture features the overlap between communication and computation,
and a scalable PE array to adapt to different input data sizes.

3.3 Background: dataflow execution models

In DNN, the same data is used at multiple input data locations. If repeated
accesses of the temporal data from memory are performed, such repetition

58 A scalable and flexible interconnect-based dataflow architecture for Edge

can degrade the performance of a sub-system in terms of latency and energy
consumption. Dataflow architectures can stand out in such situations because
these architectures can efficiently exploit data reuse to avoid repeated mem-
ory accesses of temporal data. There are four ways dataflow architectures
exploit data reuse, which is defined in the existing convolution neural net-
works, i.e., (1) Weight Stationary (WS), (2) Input Stationary (IS), (3) Output
Stationary (OS), and (4) Row Stationary (RS). Below is a short description of
each dataflow model:

1. WS dataflow model exploits the filter weight data reuse. NeuFlow [3]
implements such a dataflow model.

2. IS dataflow model exploits the data reuse by distributing image/input
feature maps (ifmaps) to multiple processing elements (PEs). SCNN [1]
implements such a strategy to handle sparse CNNs, where multiple filter
weight data are zeros.

3. OS dataflow model exploits data reuse by broadcasting filter weights,
and ifmaps are reused throughout the PE array. ShiDianNao [19] imple-
ments such a strategy, where each PE produces the outputs by sharing
ifmap data from the neighbouring PEs.

4. RS dataflow model reuses ifmaps, filter, and partial sum (intermedi-
ate result) to accelerate convolutions. Eyeriss [15] implements such a
strategy. Data reuse is performed by sending filter data horizontally
and ifmap data diagonally. Once all the PEs in the array have received
their respective data, execution begins. Partial sums are accumulated by
moving them vertically in each PE column. The dimension of the PE
array is determined by filter size and output feature map (ofmap) size for
a particular layer. The proposed architecture also uses the RS dataflow
model to exploit data reuse in the execution of convolutions.

3.4 Interconnect-based dataflow architecture

Figure 3.1 (a) represents the proposed architecture, which includes (1) a Neu-
ral Global Controller (NGC), (2) a Neural Processing Element (NPE) array
connected through (3) an Artificial Intelligence Network on Chip (AINoC),
and (4) Global Buffers (GB) for storing input and output data. The rows of
the filter and rows of the ofmap determine the size of the NPE array, e.g. if
the filter size is 6 x 6, then the number of rows in the NPE array would be 6,
and the number of columns would be equal to the number of rows in ofmap,

3.4 Interconnect-based dataflow architecture 59

which is computed using the equation below:

ofmap_rows = (((ifmaps_rows — (filter_rows + padding_start
+ padding_end))/stride) + 1)

3.4.1 NGC: Neural Global Controller

The NGC is a five-stage Finite-State Machine (FSM) shown in Figure 3.1 (b).
Following is the description of each stage:

1. IDLE represents the idle state of the NGC.

2. LOAD_config loads and decodes the configuration line for the current
layer, including the size and number of filters and ifmaps for the current
layer.

3. LOAD_filter starts sending the filter data (i.e., payload) and the control
word from the Input GBs (IGBs) to the connected routers. Depending on
the opcode, routers either unicast, multicast, or broadcast the incoming
payload data to the AINoC.

4. LOAD_ifmaps starts sending the ifmaps data and the control word from
the IGBs to the connected router. Depending on the opcode, routers
either unicast, multicast, or broadcast the incoming payload data to
the AINoC. LOAD _filter and LOAD_ifmaps states can be interchanged
to provide some flexibility in the data loading order in the proposed
architecture.

5. COMPUTE starts the MAC operations in the NPEs. Once a Partial Sum
(PSum) is computed in the bottom row NPEs, the results are sent to their
respective north NPEs along with their control words. The NPEs in the
upper row then add the incoming results with their locally computed
PSum and send the computed result to their north NPEs. This chain of
operations is executed until it reaches the top NPE row, where the final
PSum is stored in the Output GBs (OGBs) to be used in the next layer.

3.4.2 NPE: Neural Processing Element

The NPE is a simple operator controlled by the FSM of the NGC, as shown in
Figure 3.1 (c¢). It remains in the idle state until the NGC triggers the execution.
It proceeds in this way according to the control signals sent by the NGC:

e When the load_filter signal is received, it stores the incoming payload
into the filter Register File (RF). Once all the NPEs have received their

60 A scalable and flexible interconnect-based dataflow architecture for Edge

corresponding filter data, the top right NPE in the NPE array sends a
signal to NGC to jump to the next state.

o When the load_ifmap signal is received, it stores the incoming payload
into the ifmaps RF. Once all the NPEs have received their corresponding
ifmaps data, the top right NPE in the NPE array sends a signal to NGC
to jump to the next state.

When the start_compute signal is received, it begins the MAC operation
on the filter and ifmaps data and generates PSum. Then, it either (i) sends the
PSum to the north NPE (if bottom row NPE) or (ii) adds the incoming PSum
from the south NPE with local PSum and sends the result to the north NPE or
OGB (if top row NPE). In this phase, communication-computation overlap is
also performed by the NPEs, which received their required data.

At the end of the computation, an end_compute signal will be sent by the
last NPE of the array to inform the NGC of the end of the execution, in order
to move on to the next execution and the loading of new data.

Proposed Router

Al D
=]

-

-l X ..
o Switeh- crosshar

==
! "
son s

NaE NPE

(b) ESMofNGE | [< Q (C) e Jeadfites

Relation between i Lo(almemow H

NGC FSM and NPE
operator

startcompute

LOAD
config

multiply

LOAD
filter

accumulate Psumto
North NPE
end compute
.....
Psum from
NPE operator south NPE

Figure 3.1 (a) The proposed interconnect-based dataflow architecture sub-system, (b) Neu-
ral Global Controller (NGC), (c) Neural Processing Element (NPE), (d) Router in Artificial
Intelligence Network on Chip (AINoC).

3.4 Interconnect-based dataflow architecture 61

3.4.3 AINoC: Artificial Intelligence Network-on-Chip

The AINoC [9] consists of routers optimised for parallel dataflow processing
with minimal data transfer cost to achieve energy-efficient CNN processing
without compromising accuracy and application performance.

As shown in Figure 3.1 (d), the routing device is composed of several
parallel routing paths, each including a buffer, a communication controller,
an arbiter, and a switch. All these paths are designed to guarantee a large
bandwidth and flexible communication. Indeed, through several buffering
modules, e.g. First-In-First-Out (FIFO), different communication requests
received in parallel can be stored without any loss. These requests are
then processed simultaneously in several control modules. These modules
ensure a deterministic control of the data transfer according to a static
X-Y (X-direction priority) routing algorithm and management of different
communications (unicast, multicast, and broadcast). Parallel arbitration of
the processing order of incoming data packets according to the Round-
Robin Arbitration (RRA) [5] based on scheduled access allows for better
collision management, i.e., a request that has just been granted, will have the
lowest priority on the next arbitration cycle. Parallel switching comes next
to simultaneously route data to the right outputs according to the Wormhole
switching [11], i.e. the connection between one of the inputs and one of the
outputs of a router is maintained until all the elementary data of a message
packet are sent and this in a simultaneous way through the different switching
modules.

The data packet format is shown in Figure 3.2. A data message consists
of two packets: a control packet followed by a data packet. A packet is
composed of a header (flit code) and a payload. In the control packet, the
payload is a destination or source address, while in the data packet, the
payload is a set of data flits. The packet size is 32-bit. However, the size
of the header and the payload are variable. It depends on the size of the
interconnection network, as the number of routing devices increases, more
bits are needed to encode the addresses of the receivers or senders. Similarly,
the flit size and number vary with the size of the payloads (filter weights,
activation inputs, or PSums) to be passed through the network. The value
of the header determines the communication to be provided by the router.
There are three possible types of communication inter-PEs: unicast, multicast
(horizontal, vertical, and diagonal), and broadcast. For memory access, the

62 A scalable and flexible interconnect-based dataflow architecture for Edge

< 32-hit >
o 4-bit —»
Addr dest X Add dest Y
paylcad
(i) Unicast
< 32-bit >
+— 4-bit —»
Addr source X Add source Y
payload

(ii} Multicast and Broadcast

" 32-bit

« 4-bit —p

v

payload

{iii) Memory Access

Figure 3.2 Packet format

reading from the IGB is a multicast communication; however, the writing
to the OGB is a communication type that processes a direct parallel unicast
from the first NPEs rows, and the OGB. The routing device first receives
the control packet containing the type of communication and the source or
destination address. The routing device decodes this control packet and then
allocates the communication path to transmit the data packet that arrives at
the cycle following the control packet. Once the data flits are transmitted, the

allocated path will be released for further transfers.

3.5 Execution Model 63

3.4.4 Global Buffers

GBs are dual-port Random Access Memory (DPRAM) that are used to store
the input data i.e., filter and ifmaps or output data i.e., PSum from top row
NPEs. The size of each GB type is determined according to the data size
requirement for each layer, such that the overhead due to GB is minimised.

3.5 Execution Model

The data movement and execution pattern in the proposed architecture are
presented in this section. Once the data is ready in IGB, the execution in the
proposed architecture can be divided into three phases, i.e., (1) load ifmap
data into their respective NPEs, (2) load filter data into their respective NPEs,
and (3) perform execution on the available data in each NPE. These steps are
explained below:

1. Load ifmap data: In this phase, ifmap data are loaded into their respec-
tive NPEs. Data from IGBs are diagonally loaded into the NPEs, which
have connections with them through a single router, and then data reuse
is performed by moving the data diagonally to the target NPEs.

2. Load filter data: In this phase, filter data are loaded into their respective
PEs. Data from IGBs are horizontally loaded into the NPEs, which have
connections with them through a single router, and then data reuse is
performed by moving the data horizontally to their respective NPEs.
During this phase, the overlap between communication and computation
is also performed. The NPEs, which receive the required data to compute
the partial sum, begin the computation phase. Particularly, the first
column of the NPE array gets all the required data and jumps from
the communication (i.e., data receiving) phase to the computation phase
while other columns still wait for input data.

3. Execute MAC operation: When an NPE receives all required data,
it jumps from the communication phase to the computation phase.
Each column is locally synchronised, where the bottom NPE sends
the computed PSum to the north NPE. Each NPE (except the bottom
NPE) adds the PSum received from their south NPE with the locally
computed PSum before sending the result to their north NPE. This
chain of receiving, adding, and sending data is performed until the data
reaches the top NPE, where the computed result is stored back into the
OGB. NPE array is executing in the Globally Asynchronous Locally

64 A scalable and flexible interconnect-based dataflow architecture for Edge

Synchronous (GALS) pattern to enable overlap between communication
and computation in the proposed architecture.

3.6 Experiments and Results
3.6.1 Evaluation Methodology

In this work, different CNN algorithms from state-of-the-art were used as
case studies. They have different sizes and include different types of layers
and shapes. LeNetS [18] and MobileNetV2 [12] were chosen to have a
collection of data resulting from a range of small to large CNN and using a set
of layers including classical 2D convolution (CONV2D) and fully connected
layers (FC) but also point-wise (PW) and depth-wise (DW) convolution
layers in MobileNetV2. Table 3.1 details the characteristics of all these
CNN algorithms, including the types of layers they have and the number of
each layer type. The values in the proposed architecture configuration are
obtained by following the calculation rule presented in section 1.4. In our
experimental study, we chose to test the key convolution layers that emphasise
different filter sizes and ifmaps and the fully connected layers that require a
linear spatial representation of the proposed architecture. We also note that
a configuration for the proposed architecture must be generated for each

Table 3.1 CNN Layers type

Layer Config. of
CNNs Type ifmap size filter shape proposed
architecture
conv_1 1x32x32 1x5x5 5x28
conv_2 6x14x14 6x5x5 5x10
LeNet5 conv_3 16x5x5 16x1x1 1x5
fc_1 1x1x120 1x120x84 1x84
fc_2 1x1x84 1x84x10 1x10
conv_1 1x128x128 8x[3x3x3] 3x126
conv_2 8x64x64 8x3x3 3x62
conv_3 24x64x64 24x3x3 3x62
conv_4 36x32x32 36x3x3 3x30
MobileNetV2 conv_5 48x16x16 48x3x3 3x14
conv_6 96x8x8 96x3x3 3x6
conv_7 144x8x8 144x3x3 3x6
conv_8 240x4x4 240x3x3 3x2

conv_9 80x4x4 256x1x1 1x4

3.6 Experiments and Results 65

evaluated layer to respect the RS dataflow execution mode (section 1.3.2).
However, the row width for the FC layer (i.e., 1000) of MobileNetV?2 is too
big for the proposed architecture, due to the limited space allotted to store the
value of the number of channels in the configuration word, so this layer has
been excluded from our experiments.

3.6.2 FPGA Implementation Results

The evaluation platform used for all tests is the Versal ACAP VCK190
kit [20] featuring an “XCVC1902-2VSVA2197” FPGA partition containing
899840 programmable LUTs, 899840 Flip-Flops, 1968 DSP58, and 158Mb
of URAM and BRAM. The software tools used to implement and test
different configurations of the proposed architecture are:

* QuestaSim or Questa Advanced Simulator (version 2021.4) from Men-
tor Graphics is provided to simulate and test the programming and
debugging of FPGA chips.

* Vivado Design Suite (version 2021.2) is a software suite produced by
Xilinx to synthesise and analyse hardware description language (HDL)
designs.

3.6.2.1 Area

The different configurations of the proposed architecture include four main
modules: the NGC, distributed memories (IGB & OGB), a given number of
NPEs, and routers that are directly connected to the NPEs. All configura-
tions of the proposed architecture are designed with the VHDL description
language to be rapidly implemented on FPGA. The implementation results
estimate the frequency of the proposed architecture, which is around 125
MHz. This frequency depends on the frequency of the longest critical path
in the configuration. A good place and route for the modules of the proposed
architecture is necessary to reduce the length of the critical path and acceler-
ate the propagation of the signals. The synthesis results define the occupied
area (logic elements, memory, Digital Signal Processing (DSP) blocks,
etc.) and the hardware resources consumption of the proposed architecture
according to the different configurations defined in Table 3.1.

The synthesis results of the different modules constituting the proposed
architecture are given in Table 3.2. Due to the simple structure of the different
modules, the consumption of logic and memory resources remains low. This
allows generating a configuration of the proposed architecture with a large

66 A scalable and flexible interconnect-based dataflow architecture for Edge

grid of computing elements to process large convolution layers. For the GB
memories, we opted for the use of Block Random Access Memory (BRAM)
by forcing the synthesis tool to choose these memory blocks instead of the
configurable logic blocks (CLB). We also notice that the size of the router
is relatively larger than the NPE. This can be explained by NPE providing
a simple convolution operation. At the same time, the router has multiple
routing paths to provide parallel multicast and control of blocking areas in
the communication network. These multiple routing paths mainly accelerate
the data transfer and reduce the energy consumption during the execution of
a convolution layer. It is then a trade-off between area and performance in
the proposed architecture. Area can be treated as a small overhead to ensure
a balance in the choice of the architecture and the objectives to be achieved.

Table 3.2 Breakdown of Versal ACAP VCK190 FPGA resources used by the modules of
the proposed architecture after synthesis

Module CLB BRAM Area occupancy (%)
NGC 12.21 0 0.02
GB 0 0.5 0.05
Router 76.78 0 0.13
NPE 39.10 0 0.07
120
uCLB ® BRAM
100
¥ 80
S
:‘_5 60
ﬁ 40
20
0 I_ 1 l - _ — =
conv conv conv fC_l fC_Z conv conv conv conv conv conv conv
1 - § 3 1 2 4 5 6 8 9
Lenet 5 MobileNetV2

Figure 3.3 Synthesis results of different configurations of the proposed architecture

3.6 Experiments and Results 67

Figure 3.3 shows the percentages of FPGA resource utilization when
executing the different layers of LenetS and MobilenetV?2 given in Table 3.1.
The processing of each type of layer requires a particular configuration of the
proposed architecture. A configuration of the proposed architecture depends
on the number of filter rows, ifmap rows, and ofmap rows. We observe a
correlation between the variation in the size of the proposed architecture
and the consumption of the CLBs. The larger the configuration, the greater
the resource consumption. The consumption of the BRAM memory blocks
depends on the size of the input image or the ifmaps. This means that the
memory size remains fixed for a fixed input image/feature-map size, and the
size of the filter. Particularly, for the conv_1 of MobileNetV2, we notice that
the number of CLBs exceeds the maximum number of CLBs available in
the FPGA targeted in these experiments. This representation shows that the
proposed architecture remains flexible to support all convolution layer sizes.
We just need to aim for a prototyping platform that provides the necessary
logic resources for mapping all layers.

3.6.2.2 Latency

Figure 3.4 shows the latency performance of the proposed architecture for
each convolution type. It can be observed that the proposed architecture is up
to 71.2x (conv_1, Lenet5) faster w.r.t. single RISC-V CPU [2]. The total
execution time for each convolution type for the proposed architecture is
divided into ifmap loading time, filter loading time, data reuse, and overlap
between communication-computation including time required for the PSum
to traverse across their respective columns to store the computed ofmap. The
breakdown of latency reports that data reuse and overlap between communi-
cation and computation significantly improve the overall execution time in the
proposed architecture. For latency comparison of the proposed architecture
with RISC-V CPU, the time required for access L2 to load data into IGBs is
also considered for a fair comparison.

The overall speedup of MobileNetV2 convolution layers is up to 2.07 x
w.r.t. Eyeriss v2 [16, 17]. Here, Eyeriss v2 executes all layers of MobileNetV2
while the proposed architecture executes convolution layers (Table 3.1).
These results are obtained through RTL simulations.

3.6.2.3 Energy consumption

Different hardware modules of the proposed architecture involved in different
execution phases for each convolution type are shown in Table 3.3. The
explanation of each phase is as follows: (1) Phase A represents data loading

68 A scalable and flexible interconnect-based dataflow architecture for Edge

from all IGBs, (2) Phase B represents data reuse, (3) Phase C represents data
loading from row IGBs, and (4) Phase D represents computation in NPE
array. The results in this section are obtained through hardware emulation.

100000000
10000000
1000000 I
m]
£ 100000
>
Q
T
10000
o I
—_
1000 . u
100 I I
10
£3 ¥ ¥3 ER ¥8
o = o = o = o = o =
zx 2% zE 25 2
| — |~ I |~ |~
| L o) -l
Sz ooz gz Je Qe
5 8 s 8 g 8
o o o
LeNet5
W IGB Access (ifmap) W Data reuse (ifmap)
W IGB Access | lter) Data Reuse overlap
B Psum overlap W L2_access
B RISC-V

Latency (ns)

12000000
10000000
8000000
6000000
4000000
2000000
0 |
WORK EYERISS v2
Mobilenet v2
= conv_1 = conv_2
W conv_3 conv_4
W conv_5 B conv_B
W conv_7 B conv_8
W conv_5 B EYERISS v2

Figure 3.4 Breakdown of latency (ns). For the proposed architecture, the convolution layer
includes memory accesses and computations. WORK = This Work, RV32 = RISC-V CPU.

Table 3.3 Different execution phases in the proposed architecture

Execution NPE AINoC IGB IGB 0GB NGC
Phase array row column

A X X X X X

B X X X

C X X X X

D X X X X

3.6 Experiments and Results 69

10000

1GB Access (ifmap) M Data reuse (ifmap) #IGB Access (Iter) © Data Reuse overlap M Psum overlap
1000 I

100

o I O
-
0.1

conv_1l conv_2 conv_3 fc_1 fc_2 conv_1l conv_2 conv_3 conv_4 conv_5 conv_6 conv_7 conv_8 conv_9

Energy (uJ)

LeNetS MobileNetv2

Figure 3.5 Energy consumption (uJ) of the proposed architecture

Using Table 3.3, energy consumption for each execution phase for
the proposed architecture is computed. Figure 3.5 shows the total energy
consumption of the proposed architecture per convolution layer. It can be
observed that a significant energy saving is achieved because following input
data loading into the NPEs, which have direct connections with IGBs, the
proposed architecture applies data reuse by sending the loaded input data to
target NPEs in the array. Notably, a significant energy saving can be observed
during the loading of ifmap data because IGBs are not accessed during this
phase (Phase B). Due to different design flows i.e., Eyeriss v2 is ASIC and
the proposed architecture is FPGA, it is not a fair comparison between the
two architectures, and also due to the unavailability of design flow scripts
for RISCV CPU [2], we concluded to exclude the energy consumption
comparisons for both architectures with the proposed architecture.

3.6.2.4 Energy efficiency

The proposed architecture can reach up to 2498 MOPS/W on an FPGA
target for fc_1 of LeNet5 because of a single row with a large number of
columns configuration, i.e., 1 x84 (Figure 3.6). However, conv_2 of LeNet5
and conv_9 of MobileNetV2 have the lowest energy efficiency because in
these layers there is less scope for optimized computation due to a low ratio

70 A scalable and flexible interconnect-based dataflow architecture for Edge

3000
1 MAC = 2 clack cycles
2500

2000

1500

MOPS/W

1000

500

fc_1 I—

conv_1 I—
conv_3 I
conv_5 [

.] I I i

7 iy i { g I iy | =i 1 “ ™ b 2

> > > K2) > > > > > >

[= f=4 f= [= [= [= c c

<] <] o <] <] o © <] <]

(&} Q (=) (%] (&) (%) o Q Qo
LeNet5 MobileNetv2

Figure 3.6 Energy efficiency (MOPS/W) of the proposed architecture

between ifmaps size and filter size (conv_2, LeNet5) or single row with few
number of columns (conv_9, MobileNetV2).

3.7 Conclusion

This work presented a new flexible and scalable interconnect-based
dataflow architecture, which can leverage data reuse and overlap between
communication and computation to accelerate CNNs. We evaluated the
proposed architecture results using LeNet5 and MobileNetV2 to show its
adaptability to different types of DNNs. We then compared the latency
results with state-of-the-art architectures. The proposed architecture is imple-
mented (place and route) onto the Versal ACAP VCKI190 kit featuring
XCVC19022VSVA2197 FPGA partition. The experimental results show that
the proposed architecture can speedup LeNet5 convolution layers by up to
71.2x in latency performance w.r.t. a RISC-V-based CPU and also speedup
MobileNetV2 convolution layers by up to 2.07x in latency performance
w.r.t. Eyeriss v2. We plan, in the future, to continue implementing optimi-
sation techniques in the proposed architecture to better its energy efficiency
and make the most of the underlying AINoC for accelerating complete
Convolution Neural Networks execution.

References 71

Acknowledgements

This work was conducted within the scope of the European NEUROKIT2E
project, funded by the European Union’s Horizon Europe research and
innovation program, under grant agreement number 101112268.

References

[1] A. Parashar et al., “SCNN: An Accelerator for Compressed-Sparse
Convolutional Neural Networks,” in arXiv. 2017 https://doi.org/10.4
8550/ARXIV.1708.04485

[2] A. Pullini et al., “Mr. Wolf: An Energy-Precision Scalable Parallel Ultra
Low Power SoC for [oT Edge Processing,” in IEEE JSSC, 2019, vol. 54,
7, pp- 1970-1981. https://doi.org/10.1109/JSSC.2019.2912307

[3] C. Farabet et al., “NeuFlow: A runtime reconfigurable dataflow pro-
cessor for vision,” in CVPR WORKSHOPS. IEEE, USA, 2011, pp.
109-116. https://doi.org/10.1109/CVPRW.2011.5981829

[4] D. Bhatt et al., “CNN Variants for Computer Vision: History, Archi-
tecture, Application, Challenges, and Future Scope,” in Electronics:
Ambient Assistive Methodologies/Frameworks for Internet of Medical
Things, 2021, vol. 10, https://doi.org/10.3390/electronics10202470

[5] E. S. Shin et al., i Round-robin Arbiter Design and Generation,” in
Proceedings of the 15" ISSS. Japan, 2002, pp. 243-248. https://doi.
org/10.1145/581199.581253

[6] G. Sapijaszko et al., “An Overview of Recent Convolutional Neural
Network Algorithms for Image Recognition,” in 615* MWSCAS. 2018.
Canada. https://doi.org/10.1109/MWSCAS.2018.8623911

[7] H. Kwon et al., “MAERI: Enabling Flexible Dataflow Mapping over
DNN Accelerators via Reconfigurable Interconnects,” in ACM SIG-
PLAN Notices. Vol. 53. 2018. pp. 461-475. https://doi.org/10.1145/
3296957.3173176

[8] H. Krichene et al., “Analysis of on-chip communication proper-
ties in accelerator architectures for Deep Neural Networks,” in 15"
IEEE/ACM NOCS. USA, 2021. pp. 9-14. https://doi.org/10.1145/
3479876.3481588

[9] H. Krichene et al., “AINoC: New Interconnect for Future Deep Neural
Network Accelerators,” in DASIP, 2023. pp 55-69.

[10] K. Sankaralingam et al., “Distributed Micro-architectural Protocols in
the TRIPS Prototype Processor,” in 39" MICRO’06. USA. 2006. https:
//doi.org/10.1109/MICRO.2006.19

72 A scalable and flexible interconnect-based dataflow architecture for Edge

[11] L. M. Ni et al. 1993. “A survey of wormhole routing techniques in direct
networks,” in IEEE Trans. Computer. 1993, Vol. 26, pp. 62-76. https:
//doi.org/10.1109/2.191995

[12] M. Sandler et al. 2018. “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” in CVPR, 2018, USA, pp. 4510-4520. https://doi.org/10
.1109/CVPR.2018.00474

[13] T. Chen et al., “DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning,” in Proceedings of the 19"
ASPLOS, USA, 2014, pp. 269-284. https://doi.org/10.1145/2541940.
2541967

[14] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in
47" Annual IEEE/ACM MICRO, UK, 2014, pp. 609-622. https://doi.
org/10.1109/MICRO.2014.58

[15] Y. H. Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks,” in ACM/IEEE 43"¢
ISCA, Korea (South), 2016, pp. 367-379. https://doi.org/10.1109/1S
CA.2016.40

[16] Y. H. Chen et al., “Eyeriss v2: A Flexible Accelerator for Emerging
Deep Neural Networks on Mobile Devices,” in IEEE JETCAS, 2019,
vol. 9, pp. 292-308. https://doi.org/10.1109/JETCAS.2019.2910232

[17] Y. T. Chen et al., “Tile-Based Architecture Exploration for Convolu-
tional Accelerators in Deep Neural Networks,” in IEEE 3"¢ AICAS,
USA, 2021, pp. 1-4. https://doi.org/10.1109/AICAS51828.2021.94
58540

[18] Y. Lecun et al., “Gradient-based learning applied to document recog-
nition,” in Proceedings of the IEEE, 1998, vol. 86, pp. 2278-2324.
https://doi.org/10.1109/5.726791

[19] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in ACM/IEEE 42nd ISCA, USA, 2015, pp. 92-104. https:
//doi.org/10.1145/2749469.2750389

[20] Xilinx. “User Guide UG1366” (v1.1). https://docs.xilinx.com/t/en-US/
ug1366-vck190-eval-bd.

