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Abstract

Malware detection is fundamental to safe and secure computing systems,
from the cloud to Internet of Things (IoT) devices and Operational Tech-
nology (OT) systems. Malware detection is a process that inputs software
samples, extracts their static and dynamic features and classifies them as
malware or benign exploiting a range of Machine Learning (ML) algorithms
and Deep Neural Networks (DNNs). The need for significant amounts of
training data to obtain effective and efficient detection models is limited
by the absence of sufficient benchmark datasets and by the intellectual
property and privacy constraints that do not allow for data sharing among
organizations.

In our work, we present an effective Federated Learning (FL) solution for
malware detection, which achieves high accuracy in malware detection with
a detection model that is developed in a distributed fashion among members
of a federation that are not required to exchange source data. We consider
a federation of Edge or near-Edge devices that are deployed as security
providers for their organizational networks. Each device trains its own neural
network (NN) model with its own data; local models are combined in a
global, aggregated NN model exploiting cross-silo FL, and the global model
is distributed to the federation members. We evaluate the FL solution with the
EMBER dataset and demonstrate that our approach reaches accuracy above
93%, which is the accuracy of the non-federated centralized NN model. Our
work demonstrates that our FL solution is effective and efficient achieving
high accuracy without need to exchange source data, i.e. respecting privacy,
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while it scales well with the size of the federation. Importantly, the approach
demonstrates that organizations are highly motivated to participate in the fed-
eration because they achieve significantly higher malware detection accuracy
than the one they would achieve by exploiting only their own training data.

Keywords: federated learning, malware detection, deep learning.

4.1 Introduction and Background

Malware detection is a process where software samples are analysed, features
are extracted from them and classified -as malware or benign- based on
the extracted features. The typical process is shown in Figure 4.1 which
presents the operational structure of Sisyfos [1], a representative malware
and analysis platform which we use as our target pilot platform. For analysis
of a sample, Sisyfos processes the sample and extracts two categories of
features, static and dynamic, employing static and dynamic analysis tools,
respectively. Static features are extracted without executing the sample [2].
Dynamic features are also extracted because malware is often obfuscated,
limiting static analysis [3]; dynamic features are extracted through sample
execution in a virtual environment (sandbox) [4]. All features, static and
dynamic, are logged in a feature database. Sisyfos’ classifying engine uses
the logged features of a sample to classify it as malware or benign, employing
several classifiers including ML algorithms and neural networks. Sisyfos’
classifying engine approach is analogous to all modern classifiers that employ
ML algorithms, e.g. gradient boosting, random forests and support vector
machines [5, 6], and, increasingly, DNNs [7, 8].

Effective employment of ML methods is limited by the well-known
problem of data availability for training and developing effective models.
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Figure 4.1 Sisyfos architecture: a malware analysis and detection system.

Dynamic Analysi

Y




4.2 Federated Learning and Related Work 75

In malware classification, effective and efficient detection models require
significant amounts of training data. Although such amounts of data could
be collected and made available through data sharing among organizations,
there are intellectual property and privacy concerns and constraints that forbid
or limit such exchanges. Federated Learning (FL) is a promising method
for building effective and efficient detection models in a distributed fashion,
using data of different organizations, because it does not require the exchange
of source data [9].

FL is employed in two main configurations, cross-device and cross-silo.
In cross-device configurations a large number of members (clients) with
limited data samples each are coordinating in developing a model. Cross-silo
configurations have significantly less members (clients), each with a large
population of data samples. FL has been employed for malware detection in
cross-device environments, focusing on IoT and Android devices [18, 19, 20].
However, FL in cross-silo configurations has not been explored. Our work
focuses on cross-silo FL, considering the requirements of applications and
services such as Edge or near-Edge devices and their coordination and
collaboration in hierarchies that are being developed internationally.

In this paper, we present cross-silo FL-based malware detection, where
the detection model is constructed exploiting horizontal FL and employing a
NN. Considering an analysis approach analogous to the one in Sisyfos, we
measure the performance in malware detection and evaluate its dependence
on several parameters, such as number of clients, repetitions of aggregation
steps, dataset size and the percentage of common training data. Our results
demonstrate that FL. enables high accuracy in malware detection for all
members of the federation, irrespective of the size of their own training
dataset. This demonstrates an important advantage of FL in malware detec-
tion: members of the federation with small training datasets would never
achieve independently the high accuracy which they achieve through their
participation in the federation.

The paper is organized as follows. Section 1.2 presents an overview of FLL
and the current state-of-the-art in its employment in malware detection. Sec-
tion 1.3 presents our cross-silo FL system architecture. Section 1.4 presents
our evaluation results and demonstrates the effectiveness of our approach.

4.2 Federated Learning and Related Work

Federated Learning is an emerging machine learning approach that enables
the training of Al models in a decentralized manner. Participating clients
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collaborate to train ML algorithms under the coordination of a central server,
without sharing their private datasets with other parties [10].

To train a federated model a central server distributes to the participating
clients an initial model and the training parameters. Then the following steps
take place:

1. each participant trains the received model using their private dataset,
producing a local model and then sends it to the server;

2. the server aggregates all local models into a global one;

3. the global model is distributed to all clients.

Figure 4.2 illustrates this process which can be repeated for multiple
learning steps and stopped when a designated criterion is met.
FL is considered in two different configurations, in general [10]:

e Cross-device: clients are computing systems with limited computing
capabilities, varying device availability and small datasets, e.g. IoT
devices or smartphones.

e Cross-silo: clients are computing systems with high computational
power, high reliability and large datasets (data silos), such as centralized
and enterprise systems (typically 2-100).

In traditional centralized machine learning environments, a device or an
organization must train a model on its own self-collected data. In practice,
these devices or organizations may not have access to sufficiently large data
sets and the computing capabilities necessary to train an effective model.
Additionally, data privacy concerns and intellectual property rights limit
collaboration between parties. FL. addresses these challenges by enabling
collaboration between multiple parties to jointly train effective ML models
with large, diverse datasets collected from all members of the federation
[11]. As the produced models are the only information shared among fed-
eration members, local data never leave the participating devices enabling
data owners to keep their data private. Importantly, FL. scales well because
additional members can contribute to model training without any burden to
other members and with reduced data traffic among them.

FL is employed in several operations of cybersecurity such as attack
detection, anomaly detection, trust management, authentication and other IoT
related tasks [12, 13, 14, 15]. FL is also effective in malicious URL and
Denial-of-Service (DoS) attacks detection [16, 17].

In malware detection, research in FL. employment is mainly focused on
cross-device FL where federation members (clients) are smartphones [18, 19]
or IoT devices [20], while limited effort has been spent on malware detection
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Figure 4.2 Federated Learning configuration.

using cross-silo FL configurations. In our work, we propose a cross-silo FL-
based malware detection method, where federation members are different
Edge or near-Edge devices deployed to provide security to different organi-
zational networks. The devices collect large amounts of data and have higher
computational capabilities relatively to the devices considered in cross-device
configurations.

State-of-the-art malware detection approaches employ neural networks
architectures to train models for sample classification as either malicious or
benign [8, 9]. In our system, we employ a similar neural network [21] that can
effectively learn to detect malware from the training data, while being able to
fit in Edge or near-Edge devices. Some preliminary results of this work were
presented in [26].

4.3 Architecture

Our proposed architecture consists of a FL cross-silo configuration as shown
in Figure 4.3. Multiple participating members, indicated as clients, collabo-
ratively train a global malware detection model, and a server is responsible
for all communications as well as the aggregation of the global model. Each
client owns and trains with some large amount of local private data which it
does not share with the other clients nor the server.
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In training, each client uses the same feed forward neural network, i.e. the
same architecture and training parameters, an increasingly popular method
for malware detection [8, 9]. Specifically, we employ a neural network
deployed in [21]. We adopt its architecture because it is versatile, widely
adopted and can be fitted in devices with limited computing power such as
near-edge or edge devices. The model consists of 3 linear layers and a dropout
layer. The output layer performs binary classification using a SoftMax layer,
classifying a sample as either malicious or benign. We adapt the model in [21]
to accommodate our different dataset: EMBER v2 [22] instead of EMBER
vl. EMBER v2 is an update on the original EMBER dataset and contains
2381 input features instead of the 2351 used in [21]. The dataset is discussed
in more detail in Section 1.4.1.

Our detection system, operates in two modes: (a) training, where multiple
clients are using FL to collaboratively train the detection model and (b)
detection, where each participating client uses the produced global model
to detect malware.

In training mode, the FL-based training process takes place in multiple
steps. In each step the following process occurs: (i) each client trains a local
model using its own private data, (ii) each client sends the produced local
model to the server, (iii) the server aggregates all local models, producing a
global model and (iv) the server distributes the global model to all clients.
Then, the clients can use the global model to measure the model’s perfor-
mance against their private datasets. The process can be repeated for multiple
steps to improve the model’s performance further, until a satisfactory model
is achieved, considering the time and processing constraints of the clients or
until no further accuracy improvement is achieved.

After training is complete, in detection mode, all participating clients
have received a copy of the final global model from the server. Each client
can use this model to detect malware in their own systems and networks,
independently from all other clients. Finally, the clients can return to training
mode to refresh and retrain their model with new data.

4.4 Experiments

We evaluate the performance of cross-silo FL measuring the malware detec-
tion accuracy on a benchmark dataset containing features from malware and
benign files. To further explore the effectiveness of FL, we consider multiple
FL training setups measuring how the detection rate is affected by the number
of learning steps, the number of participating clients and the commonality in
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the participating clients’ datasets. Furthermore, to demonstrate the benefits
of FL for the participants, we also train a centralized model of the same
architecture and parameters and evaluate its performance different training
dataset sizes. To conduct the experiments, we employ flower [23], a pop-
ular FLL framework, for training the federated models, in conjunction with
Pytorch [24].

4.4.1 Dataset

In all our experiments we use the EMBER v2 dataset [22], a publicly available
benchmark dataset, which contains features extracted from both malware
and benign samples using static analysis. We use EMBER because there
are no widely available standard datasets; this is a well-known problem in
cybersecurity research. Although it does not distribute the sample binary files,
due to privacy concerns, EMBER is common choice in malware detection and
analysis because of three factors: (i) its sufficient size, (ii) its set of features
and (iii) it contains features of malware and benign samples.

EMBER v2 contains 2381 features per sample, extracted using static
analysis from 1.1 million Windows Portable Executables (PE). More specif-
ically for training, the dataset contains 600.000 samples labelled as either
benign or malicious (300.000 benign and 300.000 malicious), and 300.000
unlabelled samples. The dataset also contains 200.000 samples labelled as
either benign or malicious (100.000 benign and 100.000 malicious) to be
used as a dedicated benchmark testing set. In our experiments we only use
labelled samples, 600.000 for training the neural networks and 200.000 for
testing the produced models.

4.4.2 Evaluation results

In the first experiment we consider a FL setup where 2 participating clients
train a common model for 10 learning steps using the entire dataset. Thus,
each client trains each local model with 300.000 data samples. We measure
the accuracy, precision. recall and f1 score of the model on the test set for each
step. Table 4.1 summarizes the results of the experiment. For comparison we
also train a centralized model on the full dataset, 600.000 data samples and
we measure an accuracy of 0,9338 on the test set.

Figure 4.3 plots the accuracy of the FL. model for multiple learning steps.
The orange line denotes the accuracy of the centralized model as reference
trained with the entire EMBER dataset of 600K samples. The results show
that the accuracy of FL increases with the increasing number of training loops
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Table 4.1 Accuracy on test set of FL. model with 2 clients for multiple learning steps.

Number of steps Accuracy Precision Recall F1 Score
1 0,8711 0,8419 0,9137 0,8763
2 09111 0,9012 0,9236 0,9123
3 0,9176 0,9066 0,9312 0,9187
4 0,9194 0,9091 0,9321 0,9205
5 0,9211 0,911 0,9335 0,9221
6 0,9232 0,9123 0,9365 0,9242
7 0,9242 0,9143 0,9361 0,9251
8 0,9261 0,9183 0,9355 0,9268
9 0,9247 0,9143 0,9373 0,9257
10 0,9251 0,9157 0,9365 0,926

Accuracy on test set
«= «= Best centralized learning accuracy
0.97
0.95

0.93

0.91

Accuracy

0.89
0.87

0.85
1 2 3 4 5 6 7 8 9 10

Learning Steps

Figure 4.3 Federated Learning model performance for variable training loops.

and importantly reaches the performance of the centralized model and is on
par with the results presented in [21]. Additionally, we observe that we make
most of the accuracy gains in the first 2 FL training steps for this dataset.
Thus, in subsequent experiments we train all FL. models for 2 training steps.

Next, we evaluate whether the number of participants influences the
accuracy of the produced model. We use the entirety of the EMBER dataset
(600.000 samples) and keep the same total dataset size for all experiments,
distributing it equally among the participating clients in every case (i.e. for 2
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participating clients, each clients holds 300.000 samples and for 5 partic-
ipating clients, each clients holds 120.000 samples). We run experiments
for 2,5,10,15 and 20 participants and measure the accuracy of the produced
models on the test set. Table 4.2 summarizes the results of the experiments
for 2 learning steps.

Table 4.2 Accuracy on test set of FL model for different number of clients for 2 learning

steps.

Number of clients Accuracy Precision Recall F1 Score
2 0,9103 0,9015 0,9212 09112
5 0,9201 0,9156 0,9255 0,9205
10 0,9144 0,9091 0,921 0,915
15 0,9139 0,9089 0,92 0,9144
20 0,9175 0,913 0,9221 0,9175

Figure 4.4 plots the accuracy of the FLL model for different number
of clients. The orange line denotes the accuracy of the centralized model
as reference trained with the entire EMBER dataset of 600K samples.
We observe accuracy is effectively independent of the number of clients,
suggesting that the malware detection system can scale to more and more
participants without accuracy losses.
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0.95

0.93

0.91

Accuracy

0.89

0.87

0.85

Accuracy on test set

== «= Best centralized learning accuracy

2 5 10 15 20
Number of clients

Figure 4.4 Federated Learning model accuracy for different number of clients.
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Next, we consider a case where different organizations or different
devices in the same organization that participate in a FL setup, have common
data samples in their private data. As attackers and malware authors use the
same malware samples to infect multiple targets and as organizations process
a large amount of malware on daily basis it seems a likely scenario that partic-
ipants will have some degree of commonality in their private datasets. Thus,
we evaluate whether the presence of overlapping samples in the participants’
training sets influences the accuracy of the produced FL model. We consider
different dataset overlap percentages between the participants for 2 and 10
participating clients. Tables 4.3 and 4.4 present the results of the experiments
for 2 and 10 participants respectively for 2 FL training steps.

Table 4.3 Accuracy on test set of FL models for different dataset overlaps for 2 clients.

2 Clients
Overlap percentage Accuracy Precision Recall F1 Score
0 09111 0,9012 0,9236 0,9123
5 0,9166 0,9139 0,92 0,9169
10 0,9045 0,9039 0,9054 0,9046
15 0,9129 0,9057 0,9218 0,9137
20 09114 0,902 0,9231 0,9124
25 0,918 09117 0,9256 0,9186
30 0,9125 0,9063 0,9201 0,9131
35 0,9124 0,9098 0,9157 0,9128
40 0,9173 0,9127 0,9228 0,9178
45 0,9319 0,9267 0,9378 0,9322
50 0,9262 0,9197 0,934 0,9268

Table 4.4 Accuracy on test set of FL models for different dataset overlaps for 10 clients.

10 Clients
Overlap percentage Accuracy Precision Recall F1 Score

0 0,9144 0,9091 0,921 0,915

5 0,9162 0,9108 0,9229 0,9168
10 0,9154 0,9086 0,9238 0,9161
15 0,9167 0,9096 0,9255 0,9175
20 0,9171 0,9121 0,9233 0,9176
25 0,9169 0,909 0,9267 0,9177
30 09171 09114 0,9242 0,9177
35 09178 0,9138 0,9227 0,9182
40 0,9146 0,9059 0,9254 0,9155
45 0,9179 0,9093 0,9285 0,9188

50 0,9174 09114 0,9247 0,918
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Figure 4.5 Federated model accuracy for different dataset overlaps.

Figure 4.5 plots the accuracy on the test set of the FL. models produced
as a function of the overlap (common subset) of the clients’ training data, i.e.
x=5 indicates 5% common data in the client datasets. The blue and green lines
depict the accuracy of the models trained by 2 and 10 clients respectively. The
orange line denotes the accuracy of the centralized model as reference trained
with the entire EMBER dataset of 600K samples. As we observe in both
setups, accuracy seems to be effectively independent of the common samples
present in the participants’ private data even in the extreme case of a 50%
overlap, meaning that the produced models do not overfit on the common
data.

Finally, to showcase the benefits of FL for organizations, we consider a
scenario where a single organization or device is not participating in a FL
setup but instead trains its own centralized model using its own private data.
We consider organizations of different sizes that have different training data
availability. We train a centralized model (no federation present) of the same
architecture and parameters as in the previous FL setups with different dataset
sizes. Table 4.5 summarizes the results.
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Table 4.5 Accuracy on test set of centralized models for different dataset sizes.

Number of samples Accuracy Precision Recall F1 Score
5000 0,8443 0,8299 0,8662 0,8477
10000 0,8482 0,8428 0,8828 0,8623
50000 0,8949 0,8791 0,9156 0,897
100000 0,9126 0,904 0,9232 0,9135
600000 0,9338 0,9271 0,9417 0,9343

Figure 4.6 plots the accuracy for the centralized (non-federated) system
as a function of the dataset size. The blue line denotes the best FL accu-
racy we measured in our experiments for reference. The results indicate
that a data set size of 600K is necessary in the centralized (non-federated)
case for achieving high accuracy that reaches above 93% and matches the
accuracy of the FL system. This result is the reference accuracy towards
which we evaluate the performance of the federated system cases. Impor-
tantly, when considering Figure 4.3 as well, the plot demonstrates the benefit
of FL for small organizations and near-edge devices with limited data
availability that do not have access to large datasets to train centralized
models. We also note that even that even organizations and devices that

Accuracy on test set

== «= Best federated accuracy
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Figure 4.6 Centralized learning model’s performance for different dataset sizes.
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have access to large datasets can benefit from FL, as a model generated
with contributions from multiple participants is trained on a potentially more
diverse dataset with malware and benign samples coming from different
networks.

4.5 Conclusions

Federated learning constitutes an effective and efficient machine learning
technology of classification in malware detection. It provides significant
advantages over centralized machine learning solutions, because it enables
distributed building of effective malware detection models without source
data exchange among members of a federation. We demonstrate that with the
adoption of NNs for model training, members of a federation achieve high
malware detection accuracy, exceeding, in cases, the accuracy achieved with
centralized machine learning methods. Importantly, all members of the feder-
ation achieve this accuracy, which would be unattainable if they were limited
to training using only their own local data. This advantage also provides a
motivation for organizations to participate in federations. In addition to the
performance and privacy advantages, federated learning scales well to large
federations, due to the low data exchange, and accommodates systems and
devices with limited processing power, because the employed NNs of the
clients can be efficiently executed even in low-power computational environ-
ments. In our work, we considered a centralized aggregating server and Edge
or near-Edge devices that provide security in their respective local networks
as the federation participants. When considering real word deployments of
such setups, additional design parameters should be taken into account.
Firstly, the Edge devices should have the computational power and memory
to fit and train the chosen NN. In our implementation we specifically used a
small model that solves the malware detection task adequately, while requir-
ing low computational power and small memory footprint. Additionally, as
discussed in Section 1.3, during training all devices should be available for
training and a reliable network connection should be present between each
participant and the server. After the training is complete, during inference,
no such limitations are present. Finally, the power consumption, latency costs
and network communications overhead should be explored; we leave that as
future work.
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