
International Conference on Recent Trends in Data Science and its Applications

DOI: rp-9788770040723.141

731

Audio Summarization in Real Time for Podcasts
S. Jeeva

Assistant Professor.

Department of Data Science and Business

Systems,

SRM Institute of Science andTechnology,

Kattankulathur, Chennai, India

jeevas@srmist.edu.in

GudlaSaiSujan

UG Student, B.Tech.

Department of Data Science and Business

Systems,

SRM Institute of Science andTechnology,

Kattankulathur, Chennai, India

Gs8426@srmist.edu.in

ArutlaSiddharth Reddy

UG Student, B.Tech.

Department of Data Science and Business

Systems,

SRM Institute of Science andTechnology,

Kattankulathur, Chennai, India

ar7613@srmist.edu.in

 Abstract—The COVID-19 pandemic has led to a

significant shift towards online work for various activities such

as education, job interviews, healthcare consultations, and

company meetings. This has resulted in the widespread use of

online meeting software applications like Google Meet and

Microsoft Teams. The practical applications of this topic are of

great importance and relevance in the current scenario.This

paper presents a comprehensive approach to generating text

summaries from both text and voice audio files. In the first

scenario, the audio files are converted to text format using

Python tools, while in the latter scenario, text summarization is

performed using modules from Natural Language Processing.

Specifically, the SpaCy Python framework is utilized for

English data functions. The significant sentences identified

during the text extraction process are used in the

summarization approach. The weight assigned to each word is

based on the number of times it appears in the text file. By

starting with the main audio recording, this method is utilized

to generate summaries, Using the main audio recording as a

starting point, this method is used to create summaries.

 Overall, this approach provides a useful solution for

extracting important information from both text and voice

audio files. By leveraging advanced techniques such as Natural

Language Processing and text extraction, the summarization

process is able to identify key points and reduce the overall

amount of information without sacrificing important details.

The result is a concise and accurate summary that can be

quickly and easily read, making it an ideal solution for busy

professionals who need to process large amounts of

information efficiently.

 Keywords: Deep learning, python speech recognition, of TF-

IDF, SpaCy, Natural language processing.

I. INTRODUCTION

 Over the last two decades, the popularity of multimedia

applications like gaming, virtual and augmented reality (VR

and AR), teleconferencing, and entertainment has led to a

surge in demand for immersive communication

technologies. The proliferation of mobile multimedia and

ubiquitous computing has played a crucial part in the

development of these technologies. Spatial audio research is

currently a key focus in this field, as it offers essential

resources for capturing, processing, and reproducing spatial

sound, which is essential for creating three-dimensional

(3D) immersive user experiences.

 Spatial audio, a research field that requires

collaboration among specialists in areas such as audio

engineering, acoustics, computer science, and applied

psychoacoustics, aims to replicate or create new acoustic

environments by utilizing suitable sound recording,

processing, and reproduction techniques. Maintaining the

precision of not only the audio content but also the spatial

features of the sound scene, which depend on the physical

positions of sound sources and acoustic characteristics of the

environment, is crucial in achieving this objective.

 The methods and techniques used in spatial audio can

be divided into three stages: capture, processing, and

reproduction. The first stage involves recording the sound

scene, while the second stage involves modifying the

recorded spatial information or extracting additional

information that was not captured. The final stage involves

reproducing the processed sound scene, resulting in a

realistic auditory experience.

 Summarization is the process of making data easier and

quicker to comprehend while preserving the language's

grammar and meaning. Optical character recognition

(OCR), on the other hand, involves identifying text from

digitized documents or images. When a PDF file is uploaded

to our tool, it is first converted into an image array using the

pdf2image Python module, which is a wrapper around the

pdftoppm and pdftocairo command line tools. The OCR

receives a list of images, and each image is converted to

digitized text using a combination of model recognition and

feature detection techniques. The OCR then returns the

extracted text in a string format.

 With the rise of Internet platforms like YouTube, there

is an increasing need for multimedia summarization. The

goal of automatic summarization is to produce a concise and

informative version of the original content. In this article,

we focus specifically on audio summarization, which

involves creating a summary of an audio signal. There are

three methods for generating an audio summary: using only

audio functions, extracting text from the audio signal, and

using textual methods to guide the summarization process.

A hybrid approach that combines the first two methods is

also possible.

 There are advantages and disadvantages to each

approach for audio summarization. Relying solely on audio

features to create a summary is independent of transcription,

but it can be problematic since the summary is based only

on how things are said. Conversely, using textual methods

to guide the summarization process can leverage the

information in the text, resulting in more informative

summaries. However, transcripts may not always be

available. Combining audio functions and textual methods

can enhance the quality of the summary, but both

approaches also have their drawbacks.

 The field of voice recognition is a multidisciplinary

area of study that involves the use of various technologies to

recognize and interpret spoken language, ultimately

converting it into text format. This field involves the

application of different fields such as computer science,

mailto:rajkumar2@srmist.edu.in
mailto:ar7613@srmist.edu.in

International Conference on Recent Trends in Data Science and its Applications

DOI: rp-9788770040723.141

732

signal processing, linguistics, and artificial intelligence. The

process of voice recognition involves the use of speech

recognition algorithms that analyze and interpret speech

signals, breaking down the audio into small components

such as phonemes, words, and sentences.When a user

downloads an audio file, it is first pre-processed for

transcription. There are three ways to create an audio

summary: using only audio functions, extracting text from

the audio signal, and a hybrid approach that combines both

methods. Each approach has its own advantages and

disadvantages. Using only audio features provides

independence from transcription, but may not capture the

intended meaning accurately. On the other hand, leading the

summary with textual methods may produce more

informative summaries, but transcripts may not always be

available. Finally, combining audio functions and textual

methods may improve the summary's quality, but it also has

its drawbacks.

II. LITERATURE REVIEW

 Previous research has focused on the classification,

while data augmentation has been utilized in various other

applications to enhance model accuracy. A summary of the

existing literature in these domains is provided in this

section.

 [1] The problem of automatic summarization can be

tackled in various ways. These solutions include

unsupervised techniques, as well as graph-based approaches

that employ ranking to organize input text in a graph.

Additionally, neural methods exist which are discussed in

more detail in the subsequent paragraph and employ graph

traversal algorithms.

 [2] Next, we explore studies related to summarizing

extensive texts and scholarly articles, which are the

dominant types of lengthy documents in the field of

summarization. Lastly, we provide an overview of datasets

used for summarization tasks, with a specific emphasis on

datasets for summarizing academic articles

 [3] Despite the significant increase in audiovisual data

in the last decade, there is a lack of dedicated tools and

software programs for audio summarization. While various

studies have explored modules used in constructing audio

summarizers, none have focused on developing and

optimizing systems specifically for audio summaries.

 [4] Graph-based models, which are commonly used in

extractive summarization, utilize many inter-sentence and

query-sentence interactions. LexRank assigns scores to each

sentence in a graph of sentence similarity. Manifold ranking,

applied by Wan and Xiao, The system utilizes connections

between sentences, documents, and queries to facilitate

processing. We model these relationships, along with token-

level graph connections, and then aggregate them to create

distributed sentence representations, with the exception of

cross-document relationships.

 [5] Graph-based models are widely used in extractive

summarization and involve several interactions between

sentences and queries. For instance, LexRank assigns scores

to sentences and generates a similarity graph. Similarly, in

manifold ranking,The system utilizes connections between

sentences, documents, and queries to facilitate processingare

considered. We also use a graph at the token level to model

the above relationships, which is then combined to produce

distributed sentence representations, except for cross-

document relationships.

 [6] As audio/visual data consumption increases, audio

file management needs to become more advanced. A new

technique, known as divide-and-conquer, is being explored

to effectively summarize lengthy audio messages or snippets

and extract important information. The method consists of

three modules, namely Speech-to-Text Conversion, Text

Summarization, and Text-to-Speech Conversion. The output

of each module, except for Speech-to-Text Conversion, is

used as input for the next module in the sequence. The audio

file acts as input for the first module, while the last module

converts the summarized text generated by the Text

Summarization module into an audio file. A web application

with a user interface created with Flask is used to facilitate

the model's interaction with users.

 [7] The current datasets for query-focused

summarization are too small to be effective for training

data-driven algorithms. However, manually constructing

such a corpus is a time-consuming and resource-intensive

process. To address this issue, researchers have proposed an

approach to extract and summarize document sentences,

which allows for a better match between the large model

and the small benchmarks. Experiments conducted on three

DUC benchmarks indicate that a pre-trained WikiRaf model

has already achieved acceptable performance levels.

Furthermore, with specific benchmark dataset optimization

and data augmentation, the model outperforms strong

comparison systems.

 [8] With the growing amount of video content

available, an automatic video summary can provide

significant time-saving and learning benefits. It is becoming

increasingly important to correctly navigate through the

large amount of user-generated videos available. Video

summary has the potential to extract informative frames

from a film, and is therefore seen as a useful method for

maximizing the information content. By leveraging text

summarization and video mapping algorithms, it is possible

to retrieve key video elements from subtitles and use them

to generate a summary of the movie's content.

 [9] The advent of the internet and social media

platforms has led to an abundance of data in various

formats, including text, audio, and video. However, it can be

challenging for users to obtain an accurate overview or

extract crucial information from these files. Users often seek

a summary of the most pertinent information that can be

quickly gleaned from the source files. To this end, automatic

text summarization (ATS) is the only viable method for

summarizing a single document or multiple documents to

extract essential information. Unfortunately, current ATS

systems often produce inadequate summaries and require

significant time and resources to process large documents

due to incorrect encoding.

 [10] Video data is composed of two modalities, namely

audio and vision. Multimodal learning, particularly

audiovisual learning, has gained traction in recent years due

International Conference on Recent Trends in Data Science and its Applications

DOI: rp-9788770040723.141

733

to its potential to enhance the performance of various

computer vision tasks. However, existing video

summarization methods mainly rely on visual information

and do not utilize the audio modality. In this study,

researchers suggest that incorporating audio information can

aid in the comprehension of visual content and structure,

ultimately improving the summarization process.

III. EXISTING SYSTEM

 The current system has limited capabilities as it can

only detect emotions in response to an audio input. It relies

on a Python speech recognition library that may not be

compatible with all inputs due to its dependencies.

Furthermore, the system is incapable of analyzing a large

dataset of audio files as it has not been trained on such data.

IV. PROPOSED SYSTEM AND ARCHITECTURE

 The proposed real-time system analyzes audio inputs,

extracts important keywords, and summarizes them into a

shorter format. It is designed for audio books and podcasts,

and can handle large inputs with good accuracy and

efficiency. Our plan is to build a web application using

Streamlit, a free and open-source framework for

constructing Python apps with minimal lines of code. The

app will prompt users to provide the podcast ID and

generate a transcripted summary of the podcast. The

proposed system is basically shown in the following

flowchart in Figure 1.

Fig. 1. Flowchart of the proposed system

V. IMPLEMENTATION

A. Getting the PODCAST from the listennoteapi

 A method will be developed to retrieve podcast data

based on the ID provided by the user as input.

 In this section, we will be utilizing the Listen Notes API

to extract the URL of the target podcast's episode. Listen

Notes is a comprehensive online search engine and database

for podcasts, providing access to podcast data through their

API and enabling the creation of new applications and

services based on it.

● Firstly, we need to create an account and subscribe to

the free plan to access the data and utilize the Listen

Notes API. The free plan allows a maximum of 300

requests per month, which is usually enough for

personal projects.

● To proceed, we should visit the Listen Notes podcast

page, choose the specific episode we want, and then

click on the "Use API to get this episode" option.

● Afterwards, we can switch the language code to Python

and choose 'requests' from the available options list,

which will allow us to use the library in the future.

● After copying the code, ensure to paste it into your

notebook or script.

 Firstly, we use a GET request to access the Listen Notes

Podcast API endpoint to retrieve the required information.

The result is saved as a JSON object, containing the episode

URL, which will be used later. Additionally, we import a

JSON file named secrets.json, which is similar to a

dictionary, containing key-value pairs. This file holds the

API keys for both AssemblyAI and Listen Notes, and

logging into your accounts is required to access them.

B. Transcription and summarization of the podcast

 After reading the dataset, images will be

preprocessed.in following steps,In this upcoming section,

we will make use of a POST request instead of the previous

GET request. Specifically, we will send a request to the

transcript endpoint of the AssemblyAI API to request

transcription. Uploading the audio URL to Assembly AI

requires the use of the post method. Setting the auto chapter

value to True is necessary in order to receive both the

transcription and summary. If we set the auto chapter value

to False, we would only be able to receive the transcription.

Once this step is completed, we will store the ID of the

transcription response.

Retrieve Transcription and Summary:

 In the final step, we can retrieve the transcription and

summary by sending a GET request to AssemblyAI. It may

take several requests until the status of the response is

completed. After that, we store the results in two separate

files: a txt file for the transcription and a JSON file for the

summary.

Transcription:

Converting an audio file into a text file is known as audio

transcription, which can be applied to various situations

such as interviews, academic studies, music video clips, and

conference recordings. The AssemblyAI API will be utilized

to transcribe the data fetched from the Listen Notes API and

provide the transcription data.

Real-Time Streaming Transcription:

 The Real-Time Streaming WebSocket API provides

clients with text transcriptions in just a few hundred

milliseconds through a streaming process. In cases where

there is an error, the API will consistently return a JSON

response.

Summarization:

 Audio summaries are concise versions of audiobooks

that effectively capture the key ideas and themes of longer

works in a more accessible format. They provide a

comprehensive overview of the author's content, style, and

spirit. To retrieve the data that has been transcribed and

International Conference on Recent Trends in Data Science and its Applications

DOI: rp-9788770040723.141

734

summarized from the podcast, we will use the AssemblyAI

API, which will be employed to transmit the data.

C. Web App

 Our goal is to develop a web application using Streamlit

that requests the user to enter a podcast ID and then

provides a summarized transcription of the podcast.

Streamlit is a Python framework that enables the creation of

applications with minimal code. We begin by importing

Python libraries and defining functions that replicate the

aforementioned actions. Additionally, we provide a zipped

package containing both the transcription and summary

files. To start, we utilize st.markdown to display the

application's main title. We create a left panel sidebar using

the st.sidebar function to allow the user to input the episode

ID, which is then followed by clicking the "Submit" button.

Once clicked, the application will transcribe and summarize

the audio of the episode. After a few minutes, the outcomes

will appear on the website. If the user wishes to download

the results, a "Download" button is available to compress

the transcription and summary into a single file. The system

automatically generates both the local URL and the Network

URL, allowing the user to select either link to obtain the

desired result. As a result, we now have a wonderful app

that can transcribe and summarize your favourite podcast!

VI. RESULTS

Fig. 2. Result

Fig. 3. Result

VII. CONCLUSION

 This project aims to demonstrate the proof-of-concept

and provide a direction for future development of a fully

automated method for summarizing podcast speech. Due to

the complexity of this task, there is considerable room for

improvement. Podcasts typically require active attention

from listeners for extended periods of time, unlike listening

to music. The primary input for processing is an audio file

containing human speech, which may be recorded live or

pre-recorded. However, subjective elements such as the

speaker's style, humor, or production quality can be

challenging to discern from a text description. The

generated summaries contain clear and understandable audio

information.

VIII. RECOMMENDATION

 While our predictions achieved a high accuracy of

99.6%, it is important to note that no model can be

completely perfect. One limitation of this model is that it

may not accurately identify species that it has not been

trained on, although it will still make a prediction that

closely matches the correct type. Nonetheless, this model

has potential for further improvement through the collection

and analysis of more data, ultimately leading to a real-time

audio summarization system.

REFERENCES

[1] A. Vartakavi, A. Garg, and Z. Rafii, "Audio Summarization for

Podcasts" 29th European Signal Processing Conference (EUSIPCO),
2021.

[2] Pazhani. A, A. J., Gunasekaran, P., Shanmuganathan, V., Lim, S.,

Madasamy, K., Manoharan, R., &Verma, A. (2022).Peer–Peer
Communication Using Novel Slice Handover Algorithm for 5G

Wireless Networks.Journal of Sensor and Actuator Networks, 11(4),

82.

[3] M. H. Su, C. H. Wu, and H. T. Cheng “Two-stage transformer-based

approach for variable-length abstractive summarization in the

IEEE/ACM Transactions on Audio,” Speech, and Language

Processing, 2020.

[4] A. Gidiotis and G. Tsoumakas,“A divide-and-conquer method for
summarizing long documents,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 2020.

[5] R. K. Yadav, R. Bharti, R. Nagar, and S. Kumar, "A Model For

Recapitulating Audio Messages Using Machine Learning," 2020

International Conference for Emerging Technology (INCET).

[6] "Transforming Wikipedia Into Augmented Data for Query-Focused

Summarization," IEEE/ACM Transactions on Audio, Speech, and

Language Processing in 2022, and discusses a method for using
Wikipedia as a source of augmented data for query-focused

summarization.

[7] "Analysis of Real Time Video Summarization using Subtitles," 2021

International Conference on Industrial Electronics Research and

Applications (ICIERA).

[8] Dhanabalan, S. S., Sitharthan, R., Madurakavi, K., Thirumurugan, A.,

Rajesh, M., Avaninathan, S. R., & Carrasco, M. F. (2022). Flexible
compact system for wearable health monitoring

applications.Computers and Electrical Engineering, 102, 108130.

