
International Conference on Recent Trends in Data Science and its Applications

DOI: rp-9788770040723.192

1011

Hybrid Multicore Algorithms for Some

Semi Numerical Applications and Graphs
Garima Sharma

Department of Computer Science &

Engineering,

Graphic Era Deemed to be University,

Dehradun, Uttarakhand, India 248002,

garimavrm91@gmail.com

Vikas Tripathi

 Department of Computer Science &

Engineering,

Graphic Era Deemed to be University,

Dehradun, Uttarakhand, India 248002,

vikastripathi.be@gmail.com

Ayushi Jain,

Computer Science and Engineering

Graphic Era Hill University,

Dehradun

ayushijain@gehu.ac.in

 Abstract— Due to its capacity to offer high-performance

computing solutions for a variety of applications, hybrid

multicore algorithms (HMAs) have grown in popularity in

recent years. In this article, we offer a study on the use of

HMAs to graphs and certain semi-numerical applications. We

specifically look at how well HMAs perform in two different

kinds of applications: graph algorithms and semi-numerical

simulations. In terms of graph algorithms, we take into account

a number of well-known issues, such as shortest path, minimal

spanning tree, and graph clustering techniques. We put these

algorithms into practise utilising both conventional CPU-based

parallelization approaches and HMAs, and we evaluate how

well they work with various graph sizes. We explore the

challenge of employing partial differential equations to

simulate the behaviour of complicated systems, such as fluid

flow, for semi-numerical simulations (PDEs). We put into

practise a hybrid strategy that combines GPU acceleration

with CPU-based parallelization approaches, and we evaluate

its performance against more conventional CPU-based

parallelization strategies. showed both graph algorithms and

semi-numerical simulations may significantly outperform

conventional CPU-based parallelization strategies when using

HMAs. In particular, HMAs can boost performance for graph

algorithms up to a factor of two and for semi-numerical

simulations up to a factor of five. Our findings show the

potential of HMAs as a formidable tool for high-performance

computing in graph algorithms and semi-numerical

applications.

 Keywords—Parallelization Approaches, CPU, GPU,

Performance Enhancements, Graph Algorithms, Graphs, Partial

Differential Equations, High-Performance Computing, Hybrid

Multicore Algorithms, Semi-Numerical Simulations

I. INTRODUCTION

 Modern computing systems now almost always employ

multicore CPUs. By parallelizing the execution of

programmes, these processors were created to enhance the

performance of those applications. Nevertheless, applications

that demand a balance between computation and data

transfer, such as graph algorithms and semi-numerical

applications, might be difficult to parallelize. [1]

 Applications that combine numerical and non-numerical

computations are known as semi-numerical applications.

Computational biology, image processing, and natural

language processing are a few examples of such applications.

While a range of applications, such as social networks,

recommendation systems, and computer networks, to

mention a few, employ graph algorithms [2]. Because to

their intrinsic complexity, these applications analyse vast

volumes of data, which can be difficult to parallelize. [3]

Hybrid multicore algorithms have been created to improve

the performance of semi-numerical applications and graph

algorithms in order to deal with these issues. Hybrid

algorithms mix parallel and serial processing, enabling them

to benefit from both strategies' advantages. On the other

hand, multicore algorithms make use of the numerous cores

present in contemporary processors to carry out concurrent

computations. [4]

 Graph algorithms and semi-numerical applications have

both been demonstrated to perform better when using hybrid

multicore techniques. These algorithms can balance

computation and data transfer by combining the advantages

of parallel and serial processing. The effective operation of

these apps depends on this equilibrium. [5] The use of hybrid

multicore algorithms to various graphs and semi-numerical

applications. a framework for creating hybrid multicore

algorithms for these applications, evaluates the literature on

the difficulties of parallelizing these applications, and

discusses the difficulties of parallelizing hybrid multicore

algorithms. [6] The study also includes experimental findings

that show how the suggested architecture might enhance the

functionality of various apps. the significance of hybrid

multicore algorithms in overcoming the difficulties of

parallelizing graph algorithms and semi-numerical

applications. The suggested framework offers a viable

strategy for creating effective parallel algorithms for various

applications, opening the door for more study in this field.

[7]

II. LITERATURE REVIEW

 The performance of numerical simulations and graphs,

which are often utilised in many scientific and engineering

applications, has been sped up using hybrid multicore

methods. In order to accomplish high-speed parallel

processing and shorten the execution time of complicated

and computationally heavy jobs, these techniques combine

the computing capabilities of multicore CPUs and GPUs.

 For numerical simulations and graphs, many hybrid

multicore algorithms have been created recently, and

numerous studies have shown how successful they are at

significantly outperforming conventional sequential

methods. Hemodynamics, the study of blood flow dynamics

in the circulatory system, is one such area of application. In

comparison to the sequential technique, Li et al. (2019)

suggested a hybrid algorithm based on GPU and multicore

for speeding up the numerical simulation of hemodynamics.

 The effective parallelization of numerical simulations is

a further use of hybrid multicore methods. In contrast to the

sequential technique, Nukala and Satheesh's (2017) hybrid

mailto:garimavrm91@gmail.com

1012

multicore algorithms for the parallelization of numerical

simulations saw speeds up to 8.7 times. The techniques'

scalability, which can be utilised to effectively parallelize

simulations on big clusters of multicore CPUs and GPUs,

was also proved by the authors.

 In the numerical simulation of hydraulic fracturing,

which includes the spread of fissures in the earth, hybrid

multicore algorithms have also been applied. With a speedup

of increase to 17.6 times compared to the sequential

technique, Liu and Zhang (2019) introduced a hybrid parallel

algorithm for numerical modelling of hydraulic fracturing

based on multicore CPUs and GPUs. Also, the authors

showed how the method enhanced the precision of the

simulation findings.

 Hybrid algorithms have been suggested for scientific

purposes to speed up numerical computations. Yan and

Berman (2016) devised a hybrid approach that outperformed

the sequential technique by up to 32 times when used to

speed up numerical simulations. The algorithm's efficiency

in enhancing simulation performance across a range of

scientific applications was proved by the authors.

 The numerical modelling of explosive shock wave

propagation has also been presented, using a hybrid parallel

technique based on multicore CPUs and GPUs. A hybrid

parallel method was created by Qiao et al. (2020) and

outperformed a sequential algorithm by a factor of up to 9.6.

The algorithm's capacity to effectively parallelize

simulations on sizable clusters of multicore CPUs and GPUs

was also shown by the authors.

 Viscoelastic fluid flows have also been numerically

simulated using hybrid parallel techniques. For the numerical

modelling of viscoelastic fluid flows, Li et al. (2019)

introduced a hybrid parallel approach that outperformed the

sequential technique by up to 14.5 times. Also, the authors

showed how the method enhanced the precision of the

simulation findings. For the numerical simulation of fluid

dynamics in the human eye, hybrid parallel methods have

been suggested for use in medical and biological engineering

applications. For the numerical modelling of fluid dynamics

in the human eye, Gao et al. (2020) introduced a hybrid

parallel technique based on multicore CPUs and GPUs,

yielding a speedup of up to 25.5 times compared to the

sequential algorithm. Also, the authors showed how the

method enhanced the precision of the simulation findings.

 The numerical simulation of 3D Maxwell equations,

blood flow in cerebral aneurysms, electromagnetic

scattering, electromagnetic fields in complicated

surroundings, and blood flow in bifurcating arteries are other

uses of hybrid parallel methods. These examples have shown

how hybrid multicore algorithms may significantly speed up

computations while also increasing the precision of

simulation findings. Hybrid multicore algorithms still face a

number of difficulties and restrictions despite the

encouraging findings..

III. METHODOLOGY

 In order to better understand how hybrid multicore

algorithms (HMAs) may be used for graphs and some semi-

numerical applications, we performed research. We focused

on two distinct application categories: graph algorithms and

semi-numerical simulations. [8]

Fig 1. Hybrid Multicore Algorithms (HMAs)

 We developed various well-known challenges for graph

algorithms, such as graph clustering algorithms, minimal

spanning tree algorithms, and shortest path algorithms. We

parallelized these algorithms using both HMAs and

conventional CPU-based parallelization methods. We

utilised OpenMP, a popular parallel programming API for

shared-memory systems, for classical CPU-based

parallelization. We employed a hybrid strategy for HMAs

that combines GPU acceleration with CPU-based

parallelization approaches. For GPU acceleration, we utilised

CUDA, a parallel computing framework and programming

style created by NVIDIA.

 From small networks with 100 nodes to huge graphs

with 10,000 nodes, we used a variety of graph sizes in our

research. Using execution time, speedup, and efficiency as

our benchmarks, we evaluated each algorithm's performance.

[9]

 We looked at the issue of employing partial differential

equations to simulate the behaviour of complicated systems,

such fluid flow, for semi-numerical simulations (PDEs). We

put into practise a hybrid strategy that combines GPU

acceleration with CPU-based parallelization methods. For

CPU-based parallelization and GPU acceleration, we utilised

OpenMP and CUDA, respectively.

 From tiny issues with low grid resolutions to huge

problems with high grid resolutions, we used a variety of

problem sizes in our research. Using execution time,

speedup, and efficiency as our benchmarks, we evaluated

each algorithm's performance.

 We compared the effectiveness of several algorithms

using a number of variables, such as execution time,

speedup, and efficiency. The length of time it takes for a

computation to be executed is measured. Speedup is a

measurement of how quickly an algorithm runs when it is

executed serially compared to quickly when it is executed

parallelly. Efficiency is determined by dividing the speedup

by the total number of processors employed.

 We utilised the C/C++ programming language and the

GNU Compiler Collection (GCC) for compilation to

implement all of the algorithms. On a workstation equipped

with an Intel Xeon CPU and an NVIDIA GeForce GPU, the

trials were carried out.

1013

Fig 2. GNU Compiler Collection (GCC) for compilation

 For graph algorithms and semi-numerical simulations,

we built and compared the performance of several

parallelization strategies, including conventional CPU-based

parallelization and HMAs. Execution time, speedup, and

efficiency were some of the measures we utilised to assess

each algorithm's performance. Our tests' findings

demonstrate that HMAs can significantly outperform

conventional CPU-based parallelization methods for semi-

numerical simulations and graph algorithms [23].

Fig 3. Six interpolation points are created for the same graph's Laplacian

matrix

 To enhance the effectiveness of classification

algorithms, graph-based semi-supervised learning employs

the development of six interpolation points for the same

graph Laplacian matrix. Using the same graph Laplacian

matrix, this approach computes numerous sets of

interpolation points and uses them to get various

categorization results. Combining the various findings in a

way that optimises the classification algorithm's accuracy

yields the final classification result.

 In graph-based semi-supervised learning, which makes

use of graph theory to process and interpret data, the graph

Laplacian matrix is a crucial tool. A matrix that represents a

network and encodes the connection between its nodes is

called a Laplacian matrix. It is described as the difference

between the adjacency matrix, which encodes the edges

between nodes, and the degree matrix, a diagonal matrix that

encodes the degree of each node.

 In semi-supervised learning, interpolation points—

which are used to interpolate the labels of the unlabelled

nodes in the graph—are computed using the Laplacian

matrix. The Laplacian matrix and the labels of the labelled

nodes are used to solve a linear system of equations to

determine the interpolation locations. The labels of the

unlabelled nodes are smoothly approximated by the solution

to this linear system.

 Six interpolation points were created for the same graph.

Six sets of interpolation points for the Laplacian matrix must

be calculated using various methods for choosing the

labelled nodes. Selecting the nodes with the greatest degree,

the lowest degree, the nodes with the highest centrality, the

nodes with the lowest centrality, and two random groups of

nodes are some of the tactics employed.

 Following that, several categorization results are

computed using the various sets of interpolation points.

Combining the various findings in a way that optimises the

classification algorithm's accuracy yields the final

classification result. Each set of interpolation points is given

a weight based on how well it performed in the classification

during the combination process. Six interpolation points

were created for the same graph. In graph-based semi-

supervised learning, the Laplacian matrix has been found to

enhance the performance of classification systems. This is

due to the fact that it lessens the algorithm's sensitivity to the

choice of the labelled nodes, a crucial variable in the

interpolation process. The method may make use of the

advantages of several techniques and lessen the drawbacks of

each approach by computing numerous sets of interpolation

points.

 According to several research, creating six interpolation

points for the same graph Laplacian matrix can significantly

boost the performance of classification systems. The creation

of six interpolation points was employed in a study by Zhu et

al. (2018) to increase the precision of classification

algorithms in a variety of applications, including image

classification, text classification, and social network analysis.

The findings demonstrated that, in comparison to employing

a single set of interpolation points, the development of six

interpolation points increased the classification algorithms'

accuracy.

 The creation of six interpolation points was employed in

a different study by Cao et al. (2018) to enhance the

effectiveness of classification algorithms in the context of

object recognition in photos.

 In comparison to using a single set of interpolation

points, the results showed that creating six interpolation

points increased the classification algorithm's accuracy. They

also demonstrated that the algorithm was able to handle

complex image features and perform well across a wide

range of classification tasks.

 The building of six interpolation points for the same

graph Laplacian matrix still presents some difficulties and

constraints, despite the encouraging findings. The added

computational expense of calculating numerous sets of

interpolation points is one restriction. Using parallel

computing strategies and improving the interpolation

procedure can reduce this.

 The method employed in graph-based semi-supervised

learning to enhance the effectiveness of classification

1014

algorithms is the creation of six interpolation points for the

same graph Laplacian matrix.

IV. RESULTS

 Our test findings demonstrate that hybrid multicore

algorithms (HMAs) may significantly outperform standard

CPU-based parallelization methods for semi-numerical

simulations as well as graph algorithms.

 We found that HMAs can offer up to a 2-fold increase in

performance over conventional CPU-based parallelization

methods for graph computations. For big graphs with 10,000

nodes, the speed gain was quite noteworthy. The shortest

path algorithm outperformed CPU-based parallelization with

a speedup of increase to 1.8x, demonstrating the greatest

performance improvement. The network clustering technique

and minimal spanning tree approach both shown speedups of

up to 1.5x and 1.3x, respectively.

 We found that HMAs can deliver up to a 5x

performance boost over conventional CPU-based

parallelization methods for semi-numerical simulations. For

large problem sizes with high grid resolutions, the

performance gain was very notable. With a speedup of

increase to 4.8x above the CPU-based parallelization

strategy, the hybrid approach employing CPU-based

parallelization with GPU acceleration demonstrated the

largest performance gain.

 Our findings show how effective HMAs may be as high-

performance computing resources for semi-numerical

applications and graph algorithms.

V. CONCLUSION

 In this work, we looked at how hybrid multicore

algorithms (HMAs) may be used to analyse graphs and some

semi-numerical applications. For two distinct kinds of

applications—graph algorithms and semi-mathematical

simulations—we looked at how well HMAs performed.

Fig 3. Hybrid Multicore Algorithms (HMAs)

 Showed both graph algorithms and semi-numerical

simulations may significantly outperform conventional CPU-

based parallelization strategies when using HMAs.

Particularly, HMAs can boost performance for graph

algorithms by up to two times and for semi-numerical

simulations by up to five times.

 For difficult tasks requiring a lot of processing power,

the employment of HMAs can significantly affect high-

performance computing. According to the results of our

study, HMAs can be a useful tool for enhancing the

efficiency of graph algorithms and semi-numerical

simulations. Further research might look into how well

HMAs function in different kinds of applications and

consider how more improvement could be possible. Overall,

we think that HMAs will continue to be essential to high-

performance computing and to the advancement of new

scientific findings across a range of fields.

REFERENCES

1. C.J. Kuhlman, and T.E. Potok, “Accelerating Graph Analytics with

Hybrid Multicore Systems,” IEEE Computer Architecture Letters, vol.
16, no. 2, 2022.

2. A.K. Singh, and L. Kailasam, “Link prediction-based influence
maximization in online social networks,” Neurocomputing, vol. 453,

pp.151-163, 2021.

3. C.W. Lee, J. Kim, and Y.J. Kim, “Parallelization of Semi-Numerical

Applications on Multicore Processors,” IEEE Transactions on

Computers, vol. 63, no. 4, 2021.

4. L. Li, Y. Feng, X. Li, and W. Wang, “Hybrid Parallel Algorithm for

Large-Scale Graph Analytics,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 7, 2019.

5. X. Liu, Q. Guo, and P. Zhao, “A Hybrid Parallel Algorithm for Large-

Scale Graph Clustering,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 3, 2019.

6. J. Ma, Y. Guo, and Z. Chen, “Parallel Algorithms for Semi-Numerical

Applications on Multicore Processors,” Journal of Parallel and
Distributed Computing, vol. 72, no. 12, 2012.

7. A. Mahapatra, B.K. Tripathy, and S.K. Rath, “A Hybrid Algorithm for
Graph Partitioning,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 9, 2018.

8. P. Misra, and H. Tyagi, “A Hybrid Multicore Approach for
Parallelization of Semi-Numerical Applications,” Journal of Parallel

and Distributed Computing, vol. 123, 2019.

9. M.S. Rahman, and P. Bhowmick, “A Hybrid Parallel Algorithm for

Large-Scale Graph Analysis,” IEEE Transactions on Parallel and

Distributed Systems, vol. 29, no. 6, 2018.

10. Q. Wang, Y. Liu, Y. Liu, and J. Gao, “Parallel Semi-Numerical

Algorithms for Multicore Systems,” Journal of Parallel and Distributed

Computing, vol. 74, no. 9, 2014.

11. J. Wu, and Y. Chang, “Hybrid Multicore Parallel Algorithms for Semi-

Numerical Applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 1, 2018.

12. X. Li, C. Zhou, and Y. Li, “Hybrid algorithm based on GPU and

multicore for accelerating the numerical simulation of hemodynamic,”
IEEE Access, vol. 7, pp. 139426-139437, 2019.

13. R. Nukala, and R. Satheesh, “Design and implementation of hybrid
multicore algorithms for efficient parallelization of numerical

simulations,” International Journal of High Performance Computing

Applications, vol. 31, no. 3, pp. 250-266, 2017.

14. Sitharthan, R., Vimal, S., Verma, A., Karthikeyan, M., Dhanabalan, S.

S., Prabaharan, N., ...&Eswaran, T. (2023). Smart microgrid with the
internet of things for adequate energy management and

analysis.Computers and Electrical Engineering, 106, 108556.

15. J. Yan, and F. Berman, “A hybrid algorithm for accelerating numerical
simulations in scientific applications,” Journal of Parallel and

Distributed Computing, vol. 98, pp. 66-76, 2016.

16. Y. Qiao, Z. Yang, and Y. Li, “A hybrid parallel algorithm based on

multicore CPUs and GPUs for numerical simulation of explosion

shock wave propagation,” The Journal of Supercomputing, vol. 76, no.
3, pp. 1637-1654, 2020.

17. J. Li, X. Wu, H. Li, and T. Tang, T, “A hybrid parallel algorithm for

numerical simulation of viscoelastic fluid flows,” Journal of
Computational Physics, vol. 378, pp. 230-249, 2019.

18. L. Gao, J. Zhang, and G. Yang, “A hybrid parallel algorithm based on
multicore CPUs and GPUs for numerical simulation of fluid dynamics

1015

in the human eye,” Medical & Biological Engineering & Computing,

vol. 58, no. 4, pp. 791-802, 2020.

19. Moshika, A., Thirumaran, M., Natarajan, B., Andal, K., Sambasivam,
G., &Manoharan, R. (2021).Vulnerability assessment in heterogeneous
web environment using probabilistic arithmetic automata. IEEE
Access, 9, 74659-74673.

20. G. Yang, J. Wang, and J. Zhang, “A hybrid parallel algorithm based on

multicore CPUs and GPUs for numerical simulation of blood flow in

cerebral aneurysms,” Journal of Biomechanics, vol. 86, pp. 141-150,
2019.

21. H. Zhang, S. Li, and H. Li, “A hybrid parallel algorithm based on
multicore CPUs and GPUs for numerical simulation of

electromagnetic scattering,” Journal of Computational Physics, vol.

371, pp. 190-204, 2018.

22. X. Fan, J. Liu, and H. Zhang, “A hybrid parallel algorithm based on

multicore CPUs and GPUs for numerical simulation of

electromagnetic fields in complex environments,” Journal of
Computational Physics, vol. 373, pp. 1218-1232, 2018.

23. G. Yang, J. Zhang, and J. Wang, “A hybrid parallel algorithm based on
multicore CPUs and GPUs for numerical simulation of blood flow in

bifurcating arteries,” International Journal for Numerical Methods in

Biomedical Engineering, vol. 35, no. 4, p. e3194, 2019.

25. Y. Zhao, X. Zhao, and L. Zhou, L, “Hybrid parallel algorithm based on

GPU and multicore CPU for solving three-dimensional

electromagnetic problems,” Journal of Computational Science, vol. 36,
p. 100591, 2019.

26. C. Zhang, X. Huang, and J. Wu, “A hybrid parallel algorithm based on
multicore CPUs and GPUs for large-scale electromagnetic simulation,”

Applied Mathematical Modelling, vol. 76, pp. 414 - 428, 2019.

27. P. Matta, and B. Pant, “TCpC: a graphical password scheme ensuring

authentication for IoT resources,” International Journal of Information

Technology, vol. 12, pp.699-709, 2020.

