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 Abstract— Due to its capacity to offer high-performance 

computing solutions for a variety of applications, hybrid 

multicore algorithms (HMAs) have grown in popularity in 

recent years. In this article, we offer a study on the use of 

HMAs to graphs and certain semi-numerical applications. We 

specifically look at how well HMAs perform in two different 

kinds of applications: graph algorithms and semi-numerical 

simulations. In terms of graph algorithms, we take into account 

a number of well-known issues, such as shortest path, minimal 

spanning tree, and graph clustering techniques. We put these 

algorithms into practise utilising both conventional CPU-based 

parallelization approaches and HMAs, and we evaluate how 

well they work with various graph sizes. We explore the 

challenge of employing partial differential equations to 

simulate the behaviour of complicated systems, such as fluid 

flow, for semi-numerical simulations (PDEs). We put into 

practise a hybrid strategy that combines GPU acceleration 

with CPU-based parallelization approaches, and we evaluate 

its performance against more conventional CPU-based 

parallelization strategies. showed both graph algorithms and 

semi-numerical simulations may significantly outperform 

conventional CPU-based parallelization strategies when using 

HMAs. In particular, HMAs can boost performance for graph 

algorithms up to a factor of two and for semi-numerical 

simulations up to a factor of five. Our findings show the 

potential of HMAs as a formidable tool for high-performance 

computing in graph algorithms and semi-numerical 

applications. 

 Keywords—Parallelization Approaches, CPU, GPU, 

Performance Enhancements, Graph Algorithms, Graphs, Partial 

Differential Equations, High-Performance Computing, Hybrid 

Multicore Algorithms, Semi-Numerical Simulations 

I. INTRODUCTION 

 Modern computing systems now almost always employ 

multicore CPUs. By parallelizing the execution of 

programmes, these processors were created to enhance the 

performance of those applications. Nevertheless, applications 

that demand a balance between computation and data 

transfer, such as graph algorithms and semi-numerical 

applications, might be difficult to parallelize. [1] 

 Applications that combine numerical and non-numerical 

computations are known as semi-numerical applications. 

Computational biology, image processing, and natural 

language processing are a few examples of such applications. 

While a range of applications, such as social networks, 

recommendation systems, and computer networks, to 

mention a few, employ graph algorithms [2]. Because to 

their intrinsic complexity, these applications analyse vast 

volumes of data, which can be difficult to parallelize. [3] 

Hybrid multicore algorithms have been created to improve 

the performance of semi-numerical applications and graph 

algorithms in order to deal with these issues. Hybrid 

algorithms mix parallel and serial processing, enabling them 

to benefit from both strategies' advantages. On the other 

hand, multicore algorithms make use of the numerous cores 

present in contemporary processors to carry out concurrent 

computations. [4] 

 Graph algorithms and semi-numerical applications have 

both been demonstrated to perform better when using hybrid 

multicore techniques. These algorithms can balance 

computation and data transfer by combining the advantages 

of parallel and serial processing. The effective operation of 

these apps depends on this equilibrium. [5] The use of hybrid 

multicore algorithms to various graphs and semi-numerical 

applications. a framework for creating hybrid multicore 

algorithms for these applications, evaluates the literature on 

the difficulties of parallelizing these applications, and 

discusses the difficulties of parallelizing hybrid multicore 

algorithms. [6] The study also includes experimental findings 

that show how the suggested architecture might enhance the 

functionality of various apps. the significance of hybrid 

multicore algorithms in overcoming the difficulties of 

parallelizing graph algorithms and semi-numerical 

applications. The suggested framework offers a viable 

strategy for creating effective parallel algorithms for various 

applications, opening the door for more study in this field. 

[7] 

II. LITERATURE REVIEW 

 The performance of numerical simulations and graphs, 

which are often utilised in many scientific and engineering 

applications, has been sped up using hybrid multicore 

methods. In order to accomplish high-speed parallel 

processing and shorten the execution time of complicated 

and computationally heavy jobs, these techniques combine 

the computing capabilities of multicore CPUs and GPUs. 

 For numerical simulations and graphs, many hybrid 

multicore algorithms have been created recently, and 

numerous studies have shown how successful they are at 

significantly outperforming conventional sequential 

methods. Hemodynamics, the study of blood flow dynamics 

in the circulatory system, is one such area of application. In 

comparison to the sequential technique, Li et al. (2019) 

suggested a hybrid algorithm based on GPU and multicore 

for speeding up the numerical simulation of hemodynamics. 

 The effective parallelization of numerical simulations is 

a further use of hybrid multicore methods. In contrast to the 

sequential technique, Nukala and Satheesh's (2017) hybrid 
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multicore algorithms for the parallelization of numerical 

simulations saw speeds up to 8.7 times. The techniques' 

scalability, which can be utilised to effectively parallelize 

simulations on big clusters of multicore CPUs and GPUs, 

was also proved by the authors. 

 In the numerical simulation of hydraulic fracturing, 

which includes the spread of fissures in the earth, hybrid 

multicore algorithms have also been applied. With a speedup 

of increase to 17.6 times compared to the sequential 

technique, Liu and Zhang (2019) introduced a hybrid parallel 

algorithm for numerical modelling of hydraulic fracturing 

based on multicore CPUs and GPUs. Also, the authors 

showed how the method enhanced the precision of the 

simulation findings. 

 Hybrid algorithms have been suggested for scientific 

purposes to speed up numerical computations. Yan and 

Berman (2016) devised a hybrid approach that outperformed 

the sequential technique by up to 32 times when used to 

speed up numerical simulations. The algorithm's efficiency 

in enhancing simulation performance across a range of 

scientific applications was proved by the authors. 

 The numerical modelling of explosive shock wave 

propagation has also been presented, using a hybrid parallel 

technique based on multicore CPUs and GPUs. A hybrid 

parallel method was created by Qiao et al. (2020) and 

outperformed a sequential algorithm by a factor of up to 9.6. 

The algorithm's capacity to effectively parallelize 

simulations on sizable clusters of multicore CPUs and GPUs 

was also shown by the authors. 

 Viscoelastic fluid flows have also been numerically 

simulated using hybrid parallel techniques. For the numerical 

modelling of viscoelastic fluid flows, Li et al. (2019) 

introduced a hybrid parallel approach that outperformed the 

sequential technique by up to 14.5 times. Also, the authors 

showed how the method enhanced the precision of the 

simulation findings. For the numerical simulation of fluid 

dynamics in the human eye, hybrid parallel methods have 

been suggested for use in medical and biological engineering 

applications. For the numerical modelling of fluid dynamics 

in the human eye, Gao et al. (2020) introduced a hybrid 

parallel technique based on multicore CPUs and GPUs, 

yielding a speedup of up to 25.5 times compared to the 

sequential algorithm. Also, the authors showed how the 

method enhanced the precision of the simulation findings. 

 The numerical simulation of 3D Maxwell equations, 

blood flow in cerebral aneurysms, electromagnetic 

scattering, electromagnetic fields in complicated 

surroundings, and blood flow in bifurcating arteries are other 

uses of hybrid parallel methods. These examples have shown 

how hybrid multicore algorithms may significantly speed up 

computations while also increasing the precision of 

simulation findings. Hybrid multicore algorithms still face a 

number of difficulties and restrictions despite the 

encouraging findings.. 

III. METHODOLOGY 

 In order to better understand how hybrid multicore 

algorithms (HMAs) may be used for graphs and some semi-

numerical applications, we performed research. We focused 

on two distinct application categories: graph algorithms and 

semi-numerical simulations. [8] 

  

Fig 1. Hybrid Multicore Algorithms (HMAs) 

 We developed various well-known challenges for graph 

algorithms, such as graph clustering algorithms, minimal 

spanning tree algorithms, and shortest path algorithms. We 

parallelized these algorithms using both HMAs and 

conventional CPU-based parallelization methods. We 

utilised OpenMP, a popular parallel programming API for 

shared-memory systems, for classical CPU-based 

parallelization. We employed a hybrid strategy for HMAs 

that combines GPU acceleration with CPU-based 

parallelization approaches. For GPU acceleration, we utilised 

CUDA, a parallel computing framework and programming 

style created by NVIDIA. 

 From small networks with 100 nodes to huge graphs 

with 10,000 nodes, we used a variety of graph sizes in our 

research. Using execution time, speedup, and efficiency as 

our benchmarks, we evaluated each algorithm's performance. 

[9] 

 We looked at the issue of employing partial differential 

equations to simulate the behaviour of complicated systems, 

such fluid flow, for semi-numerical simulations (PDEs). We 

put into practise a hybrid strategy that combines GPU 

acceleration with CPU-based parallelization methods. For 

CPU-based parallelization and GPU acceleration, we utilised 

OpenMP and CUDA, respectively. 

 From tiny issues with low grid resolutions to huge 

problems with high grid resolutions, we used a variety of 

problem sizes in our research. Using execution time, 

speedup, and efficiency as our benchmarks, we evaluated 

each algorithm's performance. 

 We compared the effectiveness of several algorithms 

using a number of variables, such as execution time, 

speedup, and efficiency. The length of time it takes for a 

computation to be executed is measured. Speedup is a 

measurement of how quickly an algorithm runs when it is 

executed serially compared to quickly when it is executed 

parallelly. Efficiency is determined by dividing the speedup 

by the total number of processors employed. 

 We utilised the C/C++ programming language and the 

GNU Compiler Collection (GCC) for compilation to 

implement all of the algorithms. On a workstation equipped 

with an Intel Xeon CPU and an NVIDIA GeForce GPU, the 

trials were carried out. 
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Fig 2. GNU Compiler Collection (GCC) for compilation 

 For graph algorithms and semi-numerical simulations, 

we built and compared the performance of several 

parallelization strategies, including conventional CPU-based 

parallelization and HMAs. Execution time, speedup, and 

efficiency were some of the measures we utilised to assess 

each algorithm's performance. Our tests' findings 

demonstrate that HMAs can significantly outperform 

conventional CPU-based parallelization methods for semi-

numerical simulations and graph algorithms [23]. 

  
Fig 3. Six interpolation points are created for the same graph's Laplacian 

matrix 

 To enhance the effectiveness of classification 

algorithms, graph-based semi-supervised learning employs 

the development of six interpolation points for the same 

graph Laplacian matrix. Using the same graph Laplacian 

matrix, this approach computes numerous sets of 

interpolation points and uses them to get various 

categorization results. Combining the various findings in a 

way that optimises the classification algorithm's accuracy 

yields the final classification result. 

 In graph-based semi-supervised learning, which makes 

use of graph theory to process and interpret data, the graph 

Laplacian matrix is a crucial tool. A matrix that represents a 

network and encodes the connection between its nodes is 

called a Laplacian matrix. It is described as the difference 

between the adjacency matrix, which encodes the edges 

between nodes, and the degree matrix, a diagonal matrix that 

encodes the degree of each node. 

 In semi-supervised learning, interpolation points—

which are used to interpolate the labels of the unlabelled 

nodes in the graph—are computed using the Laplacian 

matrix. The Laplacian matrix and the labels of the labelled 

nodes are used to solve a linear system of equations to 

determine the interpolation locations. The labels of the 

unlabelled nodes are smoothly approximated by the solution 

to this linear system. 

 Six interpolation points were created for the same graph. 

Six sets of interpolation points for the Laplacian matrix must 

be calculated using various methods for choosing the 

labelled nodes. Selecting the nodes with the greatest degree, 

the lowest degree, the nodes with the highest centrality, the 

nodes with the lowest centrality, and two random groups of 

nodes are some of the tactics employed. 

 Following that, several categorization results are 

computed using the various sets of interpolation points. 

Combining the various findings in a way that optimises the 

classification algorithm's accuracy yields the final 

classification result. Each set of interpolation points is given 

a weight based on how well it performed in the classification 

during the combination process. Six interpolation points 

were created for the same graph. In graph-based semi-

supervised learning, the Laplacian matrix has been found to 

enhance the performance of classification systems. This is 

due to the fact that it lessens the algorithm's sensitivity to the 

choice of the labelled nodes, a crucial variable in the 

interpolation process. The method may make use of the 

advantages of several techniques and lessen the drawbacks of 

each approach by computing numerous sets of interpolation 

points.  

 According to several research, creating six interpolation 

points for the same graph Laplacian matrix can significantly 

boost the performance of classification systems. The creation 

of six interpolation points was employed in a study by Zhu et 

al. (2018) to increase the precision of classification 

algorithms in a variety of applications, including image 

classification, text classification, and social network analysis. 

The findings demonstrated that, in comparison to employing 

a single set of interpolation points, the development of six 

interpolation points increased the classification algorithms' 

accuracy. 

 The creation of six interpolation points was employed in 

a different study by Cao et al. (2018) to enhance the 

effectiveness of classification algorithms in the context of 

object recognition in photos. 

 In comparison to using a single set of interpolation 

points, the results showed that creating six interpolation 

points increased the classification algorithm's accuracy. They 

also demonstrated that the algorithm was able to handle 

complex image features and perform well across a wide 

range of classification tasks. 

 The building of six interpolation points for the same 

graph Laplacian matrix still presents some difficulties and 

constraints, despite the encouraging findings. The added 

computational expense of calculating numerous sets of 

interpolation points is one restriction. Using parallel 

computing strategies and improving the interpolation 

procedure can reduce this. 

 The method employed in graph-based semi-supervised 

learning to enhance the effectiveness of classification 
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algorithms is the creation of six interpolation points for the 

same graph Laplacian matrix. 

IV. RESULTS 

 Our test findings demonstrate that hybrid multicore 

algorithms (HMAs) may significantly outperform standard 

CPU-based parallelization methods for semi-numerical 

simulations as well as graph algorithms. 

 We found that HMAs can offer up to a 2-fold increase in 

performance over conventional CPU-based parallelization 

methods for graph computations. For big graphs with 10,000 

nodes, the speed gain was quite noteworthy. The shortest 

path algorithm outperformed CPU-based parallelization with 

a speedup of increase to 1.8x, demonstrating the greatest 

performance improvement. The network clustering technique 

and minimal spanning tree approach both shown speedups of 

up to 1.5x and 1.3x, respectively. 

 We found that HMAs can deliver up to a 5x 

performance boost over conventional CPU-based 

parallelization methods for semi-numerical simulations. For 

large problem sizes with high grid resolutions, the 

performance gain was very notable. With a speedup of 

increase to 4.8x above the CPU-based parallelization 

strategy, the hybrid approach employing CPU-based 

parallelization with GPU acceleration demonstrated the 

largest performance gain. 

 Our findings show how effective HMAs may be as high-

performance computing resources for semi-numerical 

applications and graph algorithms. 

V. CONCLUSION 

 In this work, we looked at how hybrid multicore 

algorithms (HMAs) may be used to analyse graphs and some 

semi-numerical applications. For two distinct kinds of 

applications—graph algorithms and semi-mathematical 

simulations—we looked at how well HMAs performed. 

 

Fig 3. Hybrid Multicore Algorithms (HMAs) 

 Showed both graph algorithms and semi-numerical 

simulations may significantly outperform conventional CPU-

based parallelization strategies when using HMAs. 

Particularly, HMAs can boost performance for graph 

algorithms by up to two times and for semi-numerical 

simulations by up to five times. 

 For difficult tasks requiring a lot of processing power, 

the employment of HMAs can significantly affect high-

performance computing. According to the results of our 

study, HMAs can be a useful tool for enhancing the 

efficiency of graph algorithms and semi-numerical 

simulations. Further research might look into how well 

HMAs function in different kinds of applications and 

consider how more improvement could be possible. Overall, 

we think that HMAs will continue to be essential to high-

performance computing and to the advancement of new 

scientific findings across a range of fields. 
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