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 Abstract—During these modern days everything revolves 
around technology, thus everything is getting digitized. From 
teenagers to working age groups use technology, so it is 
important for computers to classify digits based on 
handwriting. Many of them have different handwriting which 
sometimes cannot be identified by humans themselves, so what 
we have to do is by using machine learning we could make the 
computer read with an accuracy of 95%. This will surely 
benefit the process of storing old documents without retyping 
everything as it will consume a lot of time, instead they can 
take a picture of the documents and upload into the system 
which will in turn go through it and show it in text form. On 
this topic we have done our share of research, and also we have 
implemented it practically. All types of handwritten documents 
can be read with a high percentage of accuracy, which makes 
many people's lives easier. The project is still in its 
development and early stages, but once it reaches its 
destination it could be very useful. 

 Keywords— Artificial Intelligence, MNIST Dataset, 
convolutional  Neural Networks, digital reading, Machine 
Learning, Deep learning 

I. INTRODUCTION 

 MNIST digit classification using a machine learning 
algorithm for handwritten digit recognition has a great 
importance in recognition of the optical character , not only 
that this digit classification can also be used in theories as a 
test case and not only that they can also be used for machine 
learning algorithms. The digits that are handwritten are first 
preprocessed, which includes both normalization and 
segmentation So that it  is possible to compare recognition 
results on some common basis and reduce their work for the 
researchers.Not only machines but even humans have a 
problem reading few types of handwriting as they are 
unique and different but nowadays everyone are opting for 
the digital technology.Retyping all the handwritten 
documents manually into the computer is a very difficult 
and tiring job .Artificial intelligence computer vision 
techniques had made it very easy  because of which 
everything can be digitized and not only that, it will also 
make it easy for the teachers as students answer script can 
be corrected directly with the help of machines, just by 
uploading the scripts and marks. Also can be easily updated 
in the computer with ease .That is why conventional neural 
networks was developed so as to read whatever  type of  

\ 

 

handwriting more than 95% accuracy.This type we can see 
in google lens that is currently used by many people .This  

 

also can be implemented in account and finance department 
for both private and public sectors in which they can upload 
a number of querie. This will be of tremendous benefit to us 
as it reduces the chance of human error and also can reduce 
time consumption and make our lives easier .So it reduces 
human error and also saves time. One more thing is that it  
as the main method in schools are paper and pen mode there 
will be many documents from which they are supposed to be 
digitized every year and manually doing that will take them 
forever so the best method would be to upload it and that 
should be digitized by the help of AI which will make their 
work easier . Our final goal is to make as much as accuracy 
while predicting handwritten dataset with the help of 
Convolutional Neural Network and machine learning. One 
of the most essential data sets for evaluating the 
effectiveness of the convolutional neural networks and 
learning algorithms is indeed the MNIST handwritten 
character recognition classification data set. Learning 
algorithms such as k-nearest neighbors (KNN), random 
forests, svm (SVM), and simple neural network models may 
easily achieve 97%-98% accuracy on a test set of 10,000 
photographs when using 1 million photos as the training set. 
Convolutional neural networks (CNN) improve this 
accuracy to over 99% with fewer than 100 misclassified 
photographs in the test set. The last 100 photographs are 
becoming more difficult to correctly identify. More complex 
models, careful tuning of hyperparameters such as learning 
rate and batch size, regularization methods like batch 
normalization anddropout, and so on. augmenting of 
training data are required to enhance accuracy after 99%. 
We obtain a model capable of achieving extremely high 
precision on the MNIST test set without the requirement for 
sophisticated structural elements or learning approaches. 
One of the most frequent model designs is a collection of 
convolution layers followed by a completely linked layer at 
the end. We employ fundamental data augmentation 
strategies such as translation and rotation. We train three 
different models with comparable architectures and use 
majority vote to choose the best model.The final forecast 
The designs of the three models are identical, but the kernel 
sizes with in convolution layers change.Experiments 
demonstrate that merging images with various kernel sizes 
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classification - LDA.-. Majority Voting takes into account 
classifier combinations. Experiments were done out on a 
dataset of printed numbers with multiple fonts and sizes. 
This approach has only been assessed for printed databases; 
it has yet to be analyzed and reviewed for handwritten digit 
databases. 

 Few people suggested a novel hybrid classification 
strategy for identifying printed numerals in their paper .To 
extract features, object region perimeter assessment, Fourier 
Descriptors, and a Chained code-based approach were 
utilised. A unique curve tracking Chain code based 
approach (CTCC) was introduced to recover curve 
knowledge from digit photos. Few multi layer and Dynamic 
programming  employing a back propagation approach were 
used to achieve recognition (MLP-BP). The accuracy was 
increased to 99%. Although confined to printed digits, the 
proposed methodologies were simple, with higher 
identification accuracy and decreased time complexity. 

 Gattal et al. studied the use of several statistical and 
structural factors in the detection of solitary handwritten 
digits, a classic pattern recognition challenge. By merging 
multiple representations of non-normalized handwritten 
numbers, the authors attempted to enhance identification 
rates. 

 Some of these characteristics include statistical 
information, moments, feature and projection-based 
characteristics, and features derived from the contour and 
skeleton of the digits Some of these characteristics are taken 
from the whole picture of the digit, while others are 
retrieved from various sections of the image after the image 
has been subjected to uniform grid sampling. One-against-
all SVM is used for classification. Experiments on the CVL 
Single Digit Database yielded high recognition rates similar 
to state-of-the-art approaches in this field. 

 Alkhateeb and Alseid  introduced a Handwritten Arabic 
digits multi-class classification approach utilizing Dynamic 
Bayesian Network (DBN), with technological details 
provided in 3 parts: pre-processing, feature extraction, and 
categorization. The digits are first pre-processed and their 
sizes are standardized. Then, using the discrete cosine 
transform (DCT) coefficients technique, features are 
reconstructed from each normalized digit, and even a set of 
additional handwritten characteristics are added. digits are 
provided. Finally, theseTo develop a deep neural network 
for classification, attributes are employed. The proposed 
method was successfully evaluated on a Handwritten arabic 
digit database (AD Base), which had 70k digits produced by 
700 different authors, as well as the results were 
encouraging and promising. 

 El et al. compared the efficiency To capture 
discriminative characteristics of handwritten digits, four 
feature extraction techniques based here on Discrete Cosine 
Transform (DCT) were developed. Upper left corner (ULC) 
DCT coefficients, zigzag DCT coefficients, and block-based 
DCT ULC coefficients and block-based DCT zigzag 
coefficients are the techniques. To assess the performance. 
The parameters of the each DCT variation are used as data 
input for the Svm Classifier. Their objective was to identify 
the optimum feature extraction strategy for enhancing 
classification accuracy while speeding up learning 

algorithms. The data demonstrated that perhaps the block-
based DCT zigzag extraction of features performed well in 
terms of accuracy in classification and reduction rate. 
outperforms its competitors. 

 Babu et al.  introduced a novel solution to off-line 
handwritten digit detection based on structural 
characteristics that eliminates the need for thinning and size 
normalization techniques. For digit identification, they 
employ four distinct kinds of structural features: number of 
openings, water tanks in four directions, optimum profile 
distance in 4 directions, and fill-hole density. To identify 
minimal distances, a Euclidean minimum distance criteria is 
utilized, and a k nearest neighbor classifier is used to 
categorize the digits. The MNIST database is used to train 
and test the system. A total of 5000 numerical pictures are 
evaluated to validate the suggested approach, with a high 
identification rate. 

 Singh and Lai [9] proposed a method for digit 
recognition based on a single layer neural network classifier 
and Principal Component Analysis (PCA). The created 
model minimizes the characteristics in order to decrease 
computing needs while accurately classifying the digit into 
ten groups (0 to 9). The developed system is a backward 
propagation (BP) neural network that has been trained and 
tested on the MNIST dataset of handwritten digits. On the 
MNIST 10K test dataset, the suggested approach achieved 
good accuracy. They took into account not just accuracy, 
but also training time, recognition time, and memory needs 
for the whole process. 

 They have also discovered the digits that the system 
misclassified. 

IV. ALGORITHM 

 The CNN is a learning technique which is deep and  
where it automatically classifies input  . The past few years 
CNN has been good at classifying images and also it is 
being used in many domains like healthcare and academic 
domain . One of the most reliable algorithm was indicated 
that it was CNN which is good at automated prediction from 
start to end. CNN also extracts very important features from 
the given input that makes it easy for us.Data entry 
professionals devote hundreds of hours to typing 
handwritten data into computers. It is a very time-
consuming activity that also necessitates a high level of 
precision and fast typing due to the large number of entries 
that must be input.Various organizations spend tons of 
money transferring their documents from one format to 
another.Deep learning and machine learning are critical 
components of computer technology and artificial 
intelligence. Deep learning can minimize human effort in 
identifying, learning, predicting, and many other areas. As a 
result, we developed a Convolutional Neural Network 
System capable of automatically converting handwritten 
pictures to digital format with a 93% accuracy. 
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