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 Abstract— Learning is a process, in this course of long run 
it is necessary to measure it’s performance on the major people 
discharging it. Because there is so much data available, using 
Deep Learning to anticipate what will happen in the future is 
becoming more and more common. The ability of deep 
learning to forecast students' academic performance is 
suggested by this study. At the end of the school day, students 
either pass or fail. When that happens, it's too late to save the 
students. To keep kids from failing, it is necessary to predict 
SAP in advance. When that happens, it's too late to save the 
students. To stop pupils from failing, it is necessary to 
anticipate their academic performance in advance. The study 
of data mining, machine learning, and statistics as they relate 
to information produced in educational contexts is known as 
education data mining (EDM).  It is all about enhancing 
learning outcomes by examining data gathered while we 
lecture. The main goal of this paper is to give an appropriate 
method of measuring student performance using FNN, DBN, 
ICGAN-DSVM, LSTM, and BLSTM. This process involves 
collection of datasets, that is gathered from students’ academic 
dataset which can be further enhanced by ICGAN that 
increases the data volume. It is discussed how the data were 
gathered, prepared, and developed. The models are built, 
trained and applied on the dataset. These results are compared 
to each other and are classified situationally to the 
requirement. 

 Keywords— Education Data Mining, FNN, DBN, ICGAN-
DSVM, LSTM, BLSTM 

I. INTRODUCTION 

  There lies a huge difference between learning, testing 
and deploying it in a real world. Performance of a student is 
based on these factors. These factors can be measured with 
various technologies such as machine learning, deep 
learning, etc. In the age of the information revolution, 
mathematics is one of the fundamental cornerstones for 
numerous subjects, as well as the backbone of scientific 
endeavor. A difficult activity that might assist students and 
teachers in monitoring student performance development is 
measuring student performance. Several strategies have 
been researched and compared to produce the optimum 
prediction model in an effort to improve the results of 
prediction. Learning is affected by various factors such as 
quantity of information, emotions, mistakes, novelty of the 
brain, learning styles, social learning, and teaching. 
Cognitive overload is the term used by brain scientists to 
describe the state in which a person's brain is overloaded  

 

 

with new information. Cognitive overload is caused by 
having too much new information, which eventually hinders  

learning. How might cognitive overload be lessened? There 
are primarily two methods. The first is the quantitative 
approach, in which you merely present less novel 
information. Before introducing new knowledge, you give 
students time to comprehend the majority of what they have 
learned. The other approach is qualitative, where you 
modify how you offer material to make it less intimidating. 
Research has shown that our emotions have an impact on 
every aspect of our lives, including how we remember 
information and how we interpret it. Kids, who are less 
mature, are especially at risk for this. 

  Students study a lot throughout the year and are tensed 
of proving it in an examination. Performance is measured 
based on testing, but this cannot prove an individual’s 
content learned and applied. Considering various intrinsic 
values apart from the above ones, such as data being 
gathered on knowledge gained, skill growth, values 
clarification, and performance level. For all educational 
institutions, raising educational standards and student 
performance is of vital importance. There has been an 
increase in interest from higher education providers and 
institutions to adopt machine learning techniques to 
understand students' behaviors, learning patterns, and drop-
out trends in education. However, educational analytics in 
learning has never been explored as is the case in the health 
sciences and chemistry. 

  Deep learning is chosen as a key for the following 
grounds. For more focused performance that is required to 
be similar to human activities, deep structures learning, also 
known as hierarchical learning, or Deep Learning (DL), first 
appeared in 2006. The capabilities of DL are strong in the 
areas of prediction, classification, identification, and 
detection. DL is more popular than other machine learning 
algorithms due to its ability to process both structured and 
unstructured data as well as manage large amounts of data. 
When it comes to prediction, DL has been used to a variety 
of issues, including the Intelligent Transport System and 
several economic and educational areas. Learning and 
higher education challenges have been addressed with DL in 
a number of studies in the realm of education. DL is 
effective for classifying, detecting, and identifying a lot of 
data in addition to prediction. Classifying, identifying, or 
detecting are examples of four DL tasks that can be 
combined and used interchangeably in a single study. 
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Numerous problems need to be solved in education, 
particularly higher education. Starting with the most basic 
model, the Feedforward Neural Network, ICGAN-DSVM is 
best supported for small datasets, five classes of machine 
learning algorithms, and the Deep Belief Network (DBN) 
framework for deep learning were executed and 
compared.II. RELATED WORK 

 Aya Nabil et al. [1] says that one of the significant 
research questions in the discipline of educational data 
mining is how to forecast the academic performance of 
students at a preliminary phase of a course (EDM). Subjects 
like "Data Structures" and "Programming" in undergraduate 
programs have significant failure and dropout rates because 
students struggle with a variety of issues. As a consequence, 
EDM is utilized to evaluate student data collected from 
different school environments in order to forecast the 
academic performance of students, which enables them to 
perform well in next courses. The primary objective of this 
study is to investigate the effectiveness of deep learning in 
the area of EDM, particularly in forecasting the academic 
performance of students and identifying students who are at 
danger of failing. Using the grades obtained in the courses 
written in the previous academic year, the K-nearest 
neighbor, decision tree, deep neural network (DNN), 
support vector classifier, logistic regression, gradient 
boosting and random forest were utilized in this paper to 
create models that would predict academic performance of 
students in future courses. Additionally, they compared 
ADASYN, SMOTE, SMOTE-ENN and ROS among other 
resampling techniques to address the issue of an unbalanced 
dataset. According to the experimental findings, the 
presented DNN model outperforms support vector 
classifiers, K-nearest neighbors, logistic regression and 
decision trees in predicting performance of students in the 
course of data structure and identifying students at threat of 
failing early in a semester. The result is obtained with an 
accuracy of 89%. 

  Mohammad Hafiz MohdYusof, et al. [2] proposed that 
the ideas of precision medicine have been adopted by 
precision education. It uses machine learning, algorithms, 
and techniques of data manipulation to make predictions, 
and will eventually be used to create customized school 
intervention plans. Numerous applications and themes in 
precision education research have been studied in this work. 
After that, a model was created using one of its techniques, 
deep learning in Malaysia. The purpose of the research is to 
forecast the performance of students in English. When the 
proposed deep learning model is tested for folder 
classification using three test datasets, it performs with 93% 
accuracy. 

  PhaukSokkhey, Takeo Okazaki [4] proposed that 
evaluating performance of students is a difficult undertaking 
that can assist both students and teachers in monitoring 
student performance development. One of the fundamental 
foundations of many topics, mathematics serves as the 
foundation for every scientific endeavor in the period of the 
tech revolution. Several strategies have been researched and 
compared to produce the optimum prediction system in an 
effort to enhance the results of prediction. In this article, 
they offered a comparative examination of machine learning 

(ML) algorithms, statistical analytic methods and a deep 
learning architecture for forecasting mathematics 
performance of students. The Deep Belief Network (DBN), 
a deep learning architecture, five classes of machine 
learning algorithms, and the statistical approach structural 
equation modelling (SEM) were used. The same properties 
from two datasets of varying sizes were employed. Random 
Forest (RF) was discovered to perform better than other 
models in predicting the performance of students across the 
three different datasets. 

  Kwok Tai Chui et al. [5] say that it's been established 
that supported learning has been extremely important in 
raising the quality of education. Tutoring in the classroom 
and at home offers pupils individualized support and 
constructive criticism of their learning. Predicting the 
performance of students, which shows their knowledge of 
the subjects, is of great interest. To provide a solid basis for 
upcoming courses and a profession, it is especially 
important for students to manage their core knowledge. This 
study proposes an enhanced conditional generative 
adversarial network-based deep support vector machine 
(ICGAN-DSVM) technique to forecast the performance of 
students in learning environments including classroom and 
home tutoring. Due to the nature of the student academic 
record, sample sizes are often small. Due to the academic 
dataset's limited sample size, ICGAN-DSVM offers two 
advantages: ICGAN increases the volume of data, while 
DSVM improves the accuracy of prediction through deep 
learning. The suggested ICGAN-DSVM produces 
specificity, sensitivity, and area under the receiver operating 
characteristic curve (AUC) of 0.968, 0.971, and 0.954, 
respectively, according to results from cross-validation of 
10-folds. Additionally, the results indicate that including 
both home and school tutoring in the model may enhance 
performance over using just home tutoring or just school 
tutoring alone. A comparison between ICGAN & DSVM 
and the conventional conditional generative adversarial 
network has been done to demonstrate the need for ICGAN 
and DSVM. Additionally, the suggested kernel design using 
heuristic-based multiple kernel learning (MKL) is contrasted 
with conventional kernels including radial basis function 
(RBF), linear, sigmoid and polynomial. Following the 
presentation of the forecast of performance of students with 
and without GAN, a comparison with DSVM and regular 
SVM is made. In terms of the performance metrics 
specificity, sensitivity, and AUC, the suggested ICGAN-
DSVM performs 8 to 29% better than comparable studies. 

  Yueh-huiVanesa Chiang, et al. [6] proposed that to 
forecast student performance in introductory computer 
programming classes, this paper utilized deep learning 
algorithms with Moodle logs. Particularly, this study would 
like to use prediction results to identify potential low-
performing students who may need assistance from teachers. 
The results suggested that deep learning models are 
promising to predict student performance and identify low-
performing students in the researched context. What the 
prediction results provided by the models can inform 
teachers in learning settings was also further discussed in 
this paper. 
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