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Abstract

Many modern production processes are nowadays equipped with cyber-
physical systems in order to capture, manage, and process large amounts of
sensor data including information about machines, processes, and products.
The proliferation of cyber-physical systems (CPS) and the advancement of
Internet of Things (IoT) technologies have led to an explosive digitization
of the industrial sector. Driven by the high-tech strategy of the federal
government in Germany, many manufacturers across all industry segments
are accelerating the adoption of cyber-physical system and IoT technologies
to gain actionable insight into their industrial production processes and finally
improve their processes by means of data-driven methodology. In this work,
we aim to give insights into our recent research regarding the domains of
Smart Data and Industrial Internet of Things (IIoT). To this end, we are
focusing on the EU projects MONSOON and COMPOSITION as examples
for the Public-Private Partnership (PPP) initiatives Factories of the Future
(FoF) and Sustainable Process Industry (SPIRE) and show how to approach
data analytics via scalable and agile analytic platforms. Along these analytic
platforms, we provide an overview of our recent Smart Data activities and
exemplify data-driven analysis of industrial production processes from the
process and manufacturing industries.
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6.1 Introduction

Many modern production processes are nowadays equipped with cyber-
physical systems in order to capture, manage, and process large amounts
of sensor data. These sensor data include information about machines, pro-
cesses, and products and are encountered in form of data streams. These data
streams from the production site are then frequently integrated into cloud-
based solutions by means of Internet of Things technologies in order to allow
comprehensive data-driven investigations and process optimizations.

The proliferation of cyber-physical systems and the advancement of IoT
technologies have led to an explosive digitization of the industrial sector.
Driven by the high-tech strategy of the federal government in Germany, many
manufacturers across all industry segments are accelerating the adoption of
cyber-physical systems and Internet of Things technologies in order to gain
actionable insight into industrial production processes and finally improve
these processes by means of data-driven methodology.

The IoT is one of the key enabler for intelligent manufacturing and
production. It facilitates the intelligent connectivity of smart embedded
devices in factories and shop floors. Endowing the manufacturing and pro-
duction site with technologies from the IoT, which is then also referred to as
the IIoT, has become a technical prerequisite for a sustainable and competitive
industrial production of the future.

Digitizing the industrial sector with cyber-physical systems, Internet of
Things technologies, cloud computing services, and Smart Data analytics
leads to the fourth industrial revolution, which is denoted as Industry 4.0. The
importance of strengthen the European industry to become more sustainable
and competitive is also taken into account by the European Commission.
Within the EU Framework Programme for Research and Innovation the two
Public-Private Partnership (PPP) initiatives Factories of the Future (FoF)
and Sustainable Process Industry (SPIRE) aim to (i) help EU manufacturing
enterprises to adapt to global competitive pressures by developing the neces-
sary key enabling technologies across a broad range of sectors and (ii) support
EU process industry in the development of novel technologies for improved
resource and energy efficiency.

Turning industrial Big Data into structured and useable knowledge is one
of the major data-centric challenges for enhancing production processes. Inte-
grating data from heterogeneous systems and gaining insight into voluminous
amounts of streaming sensor data with high variety and velocity requires
scalable methods and techniques. Structuring knowledge in a way that it can
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be used to manage and improve industrial production processes is one of the
objectives of Smart Data analytics. By improving Big Data to a higher degree
of quality, Smart Data analytics aims to understand the following aspects:

• Purpose: What problem to solve with the data?
• People: Who is involved?
• Processes: What are the surrounding processes?
• Platform: Which IT infrastructure is necessary for realization?

The aforementioned aspects are also referred to as the 4Ps of Smart Data.
They indicate the information to be gathered in addition to the sensor data
from the production site in order to get a more complete understanding
about the data and its surrounding entities. It is obvious that addressing the
4Ps within the Smart Data analytics process strongly relies on user-centered
methods since many of the required information need to be discovered from
non-documented data.

The Fraunhofer Institute for Applied Information Technology FIT has
been conducting research and development on user-friendly smart solutions
that blend seamlessly in business processes for about 30 years and has a
strong experience in digitization, Industry 4.0 projects and IoT solutions.
Having about 160 researchers with different scientific background, the Fraun-
hofer Institute for Applied Information Technology FIT is organized into five
research departments:

• The User-Centered Computing department develops IT systems and
technologies that focus on their users throughout their complete life
cycle. Current work focuses on usability engineering, web compliance,
and accessibility.

• The Cooperation Systems department develops and evaluates groupware
and community systems for virtual teams and organizations. Our work
on hardware and software of Mixed and Augmented Reality systems
focuses on support for cooperative planning tasks.

• The Life Science Informatics department designs and implements com-
plex biomedical information systems and creates novel software solu-
tions for manufacturers and users in health care, biotechnology, drug
research and social services. Focal areas are image-based navigation
systems, information-intensive optical instruments, visual information
analysis, multi-parametric molecular sensor technology and diagnostics
as well as bio-analogue analysis of changing images.

• The Risk Management and Decision Support department offers decision
and process support for application domains whose processes can be
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characterized by their high level of complexity as well as their weak
determination of process structures.

• The Fraunhofer Project Group Business & Information Systems Engi-
neering, located in Augsburg and Bayreuth, has proven expertise at
the interface of Financial Management, Information Management and
Business & Information Systems Engineering. The ability to com-
bine methodological know-how at the highest scientific level with a
customer-focused and solution-oriented way of working, is our distinc-
tive feature.

As part of User-Centered Computing department, the User-Centered Ubiqui-
tous Computing group develops systems providing effective personal assis-
tance that dynamically respond to user demands and at the same time adapt
to new work practices. The group is focusing on the application domains
Industry 4.0, Smart Cities and Energy Efficiency/Smart Grids and approach
novel applied solutions via methods from the domains User-Centered Design,
Internet of Things Platforms, and Smart Data.

In this chapter, we aim to give insights into our recent research into the
domains of Smart Data and Industrial Internet of Things. To this end, we are
focusing on the following EU projects:

• The MONSOON (MOdel based coNtrol framework for Site-wide
OptimizatiON of data-intensive processes) project aims to establish a
data-driven methodology to support the identification and exploitation
potentials by applying multi-scale model based predictive controls in
production processes. It offers an integrated real-time and dependable
infrastructure easing in improving the efficient use and re-use of raw
resources and energy across plant- and site-wide applications in hetero-
geneous and distributed production environments. EU funds it under
SPIRE (Sustainable Process Industry through Resource and Energy
Efficiency) research project that aims to develop an infrastructure in
support of the process industries.

• The COMPOSITION (Ecosystem for COllaborative Manufacturing
PrOceSses – Intra- and Interfactory Integration and AutomaTION)
project has two main goals: The first goal is to integrate data along the
value chain inside a factory into one integrated information management
system (IIMS) combining physical world, simulation, planning and fore-
casting data to enhance re-configurability, scalability and optimisation of
resources and processes inside the factory. The second goal is to create
a (semi-)automatic ecosystem, which extends the local IIMS concept to
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a holistic and collaborative system incorporating and inter-linking both
the Supply and the Value Chains. The COMPOSITION project is funded
under the Factories of the Future PPP.

In conjunction with both EU projects mentioned above, EXCELL is a twin-
ning project addressing Big Data applications for cyber-physical systems in
production and logistics Networks. The consortium of academics from Hun-
gary, Great Britain, Belgium and Germany expands the scientific activities
through central publications and active participation in scientific discourses.
Priority Research Fields (PRFs) define the topic areas in which the partners
work closely together to mutually train, support and empower each other
with their knowledge and expertise. PRFs are for example cyber-physical
systems and human system interaction, business-based Internet of Things and
services, as well as data mining and data interoperability.

In the remainder of this chapter, we will first describe our research
activities and results with respect to the EU project MONSOON, which is
an example for the process industry, in Section 6.2. Afterwards, we will
continue with the EU project COMPOSITION, which is an example for
the manufacturing/discrete industry, in Section 6.3. We finally conclude this
chapter in Section 6.4.

6.2 Process Industry

6.2.1 Introduction

The process industry is characterized by intense use of raw resources and
energy, and thus represents a significant share of European industry in terms
of energy, resources consumption and environment impact. In this area, even
a small optimization can lead to high absolute savings, both economic and
environmental. Predictive modelling techniques can be especially effective
in optimization of production processes. However, the application of these
techniques is not straightforward. Predictive models are built using the data
obtained from production processes. In many cases, process industries must
invest in the monitoring and data integration as well as in the development and
maintenance of the underlying infrastructure for data analytics. Many other
obstacles are also present, e.g., interoperability issues between software sys-
tems in production, difficulties in the physical monitoring of the production
parameters, problems with the real-time handling of the data, or difficulties
in defining relevant Key-Performance Indicators (KPIs) to support manage-
ment. Therefore, the deployment of such predictive functions in production
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with reasonable costs requires consolidation of the available resources into
shared cloud-based technologies. In the case of more flexible production
environments, approaches that are even more significant are possible, such
as the reinvention or redesign of the production processes. However, this
is not applicable to major, capital-intensive process industries. In this case,
the integration of innovations in the established production processes can
be fundamental in their transformation from resource-consuming production
into the “circular” model.

6.2.2 Reference Architecture

The high-level conceptual view of the reference architecture that is developed
within the scope of the project MONSOON is depicted in Figure 6.1.

The platform is able to inter operate with the heterogeneous existing
systems deployed in process industries at different layers of the SCADA
pyramid (Control, Supervision, Management, Enterprise). It includes sensors
or controllers (PLCs), SCADA (Supervision control and data acquisition),
Management Information Systems (MES) and Enterprise Resource Planning
(ERP). There are two main components of the architecture. The Real-time
Plant Operations Platform deployed on-site and supports data collection,
storage and interaction with the production systems respecting relevant con-
straints and satisfying data-intensive conditions. The Cross-Sectorial Data

Figure 6.1 MONSOON Reference Architecture.
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Lab supports the development of new dynamic model base multi-scale con-
trols. All the relevant data from the production site are transferred to the Data
Lab where it is stored and processed for optimization of production process.
To validate and demonstrate the results, two real environments are used within
the project: an aluminium plant in France and a plastic factory in Portugal.
We have identified two main use cases for both domains.

For the aluminium sector, we focused on production of the anodes (pos-
itive electrodes) used in aluminium extraction by electrolysis. The first use
case was targeted to predictive maintenance, where the main objective was to
anticipate the breakdowns and/or highlight equipment/process deviations that
affect the green anode final quality (e.g., anode density). The second use case
dealt with the predictive anode quality control, where the goal was to identify
bad anodes with a high level of confidence and scrap them to avoid sending
them to the electrolysis area.

For the plastic domain, the use cases are from the area of production of
coffee capsules, produced in large quantities. In this type of production, it is
important to produce the correct diameter and height of the coffee capsules
and to make sure that the holes at the bottom of the capsules are formed
properly. Moreover it is also expected to predict the failures of molding
machines and their stoppages based on the process parameters and sensor
measurements during molding processes. While the data analysis process
for the plastic domain is described in Section 6.2.6, we provide a short
description of main components of the MONSOON platform along with their
interfaces in the next sections.

6.2.3 Plant Operational Platform

The functional view of the architecture of the Plant Operations Platform is
presented in Figure 6.2. It acts as an advanced semantic factory service bus
and is in-charge of interacting with existing production systems deployed
in a plant. The Plant Platform IT infrastructure and its associated Real-
time Data Integration layer collect the operational raw data from the plant’s
systems necessary to the execution of the predictive functions. The acquired
operational raw data and associated relevant information is also routed to the
data lab where it is stored and used for analytics.

6.2.3.1 Real-time communication framework
It configures the dependable real-time communication infrastructure neces-
sary to support operations of prediction functions. The Monitoring Tools
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Figure 6.2 Functional View of Plant Operational Platform.

exploit and integrate existing solutions for real-time networking and QoS
management and perform continuous (passive/active) monitoring of plant-
wide process industry resources ensuring that communication-related mal-
functions are properly detected. The Operation Data Visualization Dash-
board provides a web user interface where operational managers can con-
figure various real-time visualizations of operational data and monitor the
deployed predictive functions. The visualized data can include operational
data from the plant environment or predictions from the predictive functions
executed in the Run-time Container.

6.2.3.2 Virtual process industries resources adapter
The main function of the Virtual Process Industries Resources Adapter
(VPIRA) is data integration, mediation and routing. The Connector allows the
integration of data from various SCADA, MES and ERP systems deployed on
the plant site. It ensures that all heterogeneous process industry resources and
systems are easily accessed and managed. The Abstractor is a distributed and
scalable data flow engine aiming for routing integrated data to multiple desti-
nations, e.g., run-time container or data lab. Routing of data from the source
to target connectors can be dynamic depending on the type of data or actual
content. The data flows can be re-configured in a flexible way, connecting
multiple sources to the multiple targets, overcoming any data heterogeneity
problems. Besides the flexible configuration interface, the Virtual Process
Industries Resources Adapter provide a flexible programming interface to
simply implement connectors or processors for new types of data sources
and formats.
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6.2.3.3 Run-time container
The Run-time Container executes the model based predictive functions and
life-cycle management functions within the overall plant infrastructure. It
ensures proper deployment and execution of predictive functions developed
by means of the data lab, hence it manages all aspects of predictive functions
life cycle. It is composed into four sub-components as described below:

• Data Orchestrator: coordinates the data flow between different com-
ponents, such as transmit input data, store prediction result, and pass
visualization result data to relevant components.

• Predictive Function: exports predictive function image from Function
Repository and instantiate the execution of predictive function that
perform real-time scoring of input operational data. It performs all
operations required for the pre-processing of raw data into inputs for
the specific predictive function and into process prediction output.

• Data Storage: stores the prediction results into a scalable database. The
prediction results are also sent to the Operational Platform systems and
the data lab for combining these real-time results with historical data
analysis.

• Visualization Dashboard: displays prediction results and generates feed-
back instructions or alerts towards plant’s systems to inform/warn the
site operators to adjust the process regulation parameters.

6.2.4 Cross Sectorial Data Lab Platform

The Data Lab provides a collaborative environment where high amounts of
data from multiple sites, and possibly from multitude of industry sectors,
are collected, stored and processed in a scalable way. It enables multidisci-
plinary collaboration of experts allowing teams to jointly model, develop and
evaluate distributed controls in rapid and cost-effective way. The Data Lab
eases the definition of predictive control and life cycle management functions,
allowing to work in a simulated environment or to exploit co-simulation by
mixing stored data with data flowing in real-time from the real systems.

The Data Lab thus supports data science and automation experts inter-
ested to optimization and scheduling aspects by providing the suitable
environment to mine, process, re-play production data. It allows modelling
of the whole production process across the SCADA layers including the
specification of the data dictionary of all inputs and outputs of the processing
steps and their relations to the overall KPIs. The semantic models capture
the site knowledge base for given application cases and used data analytics
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Figure 6.3 Functional View of Cross Sectorial Data Lab Platform.

methods allowing generalization of cases to existing good practices and
transfer of the knowledge by adaptation of cases to new environment/site. The
main outcome of the Data Lab is typically a single or multiple new predictive
functions and life cycle management controls ready to be deployed in the
Runtime Container of the Plant Operations Platform.

The components of the Cross Sectorial Data Lab are shown in Figure 6.3
and explained in the sections below.

6.2.4.1 Big data storage & analytics platform
The Big Data Storage and Analytics Platform provides resources and func-
tionalities for storage as well as batch and real-time processing of the
operational data from multiple site characterized as Big Data. The platform
combines and orchestrates existing technologies from the Big Data and Ana-
lytic landscape and sets a distributed and scalable run-time infrastructure for
the developed data analytics methods. It provides main integration interfaces
between the site Operational Platform and the cloud Data Lab platform and
the programming interfaces for the implementation of the data intensive
analytics methods. The Big Data Storage and Analytics Platform consist of
the following sub-components:

• Distributed Storage: provides a reliable, scalable file system with similar
interfaces and semantics to access data as local file systems.

• Distributed Database: provides a structured view of the data stored in
the platform using the standard SQL language, and supports standard
RDBMS programming interfaces such as JDBC for Java or ODBC for
Net platforms.
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• Distributed Data Processing Framework: allows the execution of appli-
cations in multiple nodes in order to retrieve, classify or transform
the arriving data. The framework provides Data Analytics APIs for
processing large datasets via parallel and distributed computations.

• Data Ingestion: implements an interface for real-time communication
between the Data Lab and Operation platforms. It also supports batch
uploading of the historical data between the Data Lab and Operation
platform.

• Security & Directory Service: provides user management and content
authorization capabilities for the platform services.

• Management & Monitoring: provides the management, monitoring and
provisioning of the platform services on the hosted environment.

6.2.4.2 Model development environment
The Model Development Environment provides tools and interfaces that
cover the whole life cycle of planning, implementation, testing, validation
and deployment of predictive functions and life-cycle management controls
into the plant production supporting simulation/co-simulation features.

• Development Tools: provide the main collaborative and interactive inter-
face for data engineers, data analysts and data scientists to execute and
interact with the data processing workflows running on the Data Lab
platform. Using the provided interface, data scientists can organize,
execute and share data, and code and visualize results without referring
to the internal details of the underlying Data Lab run-time infrastructure.
The interface is integrated in form of analytical “notebooks” where
different parts of the analysis are logically grouped and presented in
one document. These notebooks consist of code editors for data pro-
cessing scripts and SQL queries, and interactive tabular or graphical
presentations of the processed data.

• Semantic Modelling Framework: provides a common communication
language between domain experts, stakeholders and data scientists. A
collaborative web interface is provided for the creation and sharing of
semantic models in order to use the knowledge expressed in such models
for the optimization of the production processes in the Simulation and
Resource Optimization Framework.

• Simulation Toolkit: supports validation and deployment of predictive
functions in order to optimize overall KPIs defined for the production
process. The estimation of overall impacts can be used to test various
“what if” scenarios, or for the automatic discrete optimization of the
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production process by finding the optimal combination of predictive
functions for various process phases.

• Resource Optimization Toolkit: optimizes the production process based
on various indicators representing the performance of manufacturing
process of the plant leveraging process data and knowledge extracted
from analytics methods.

• Life-Cycle Management Plugin: serves as multi-disciplinary, transversal
tool to evaluate environmental performance of a given production pro-
cess for life-cycle environmental indicators, such as Global Warming
Potential and Total Energy Requirement.

6.2.4.3 Function repository
The Function Repository provides a storage for predictive functions together
with all settings required for the deployment of predictive functions, where
they are available for production deployment or for the simulations and
overall optimization of the production processes. The predictive functions
are packaged as container images so that entire predictive function pipeline
(including pre-processing and task specific evaluation) can be implemented
within a virtualized container.

6.2.5 Deployment

The Data Lab Platform promises to combine and orchestrate existing tech-
nologies and open source frameworks from the Big Data landscape to estab-
lish a distributed and scalable run-time infrastructure for the data analytics
methods. We present in Figure 6.4 the mapping of the platform components

Figure 6.4 Components Mapping to Open-source Technologies.
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to existing and emerging open source technologies selected and used during
the initial deployment.

The initial deployment was performed with multiple virtual machines on
an in-house physical infrastructure. It turned out that the overall deployment
time and configuration management is the most critical aspect in realizing
and operationalizing such a platform. It would be optimal to devise a uniform
deployment strategy taking into account different deployment options for
the platform such as on-premises, cloud/external provider or hybrid. It has
also been learned that different demonstrative and use-case scenarios in
both aluminium and plastic domains pose different infrastructure and data
requirements. Hence, it is useful to define different deployment pipelines or
modes for the platform where the right set of platform services are deployed
and orchestrated accordingly instead of full stack deployment. Towards this
goal, the Big Data Storage and Analytics Platform has been containerized to
adapt a common deployment ground with the objective of easing the usage
of common platform technologies and make integration with other services
or applications easy. The containerization based on Docker framework is
depicted in Figure 6.5.

Figure 6.5 Containerization of Big Data Storage and Analytics Platform.
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Figure 6.6 Deployment view of Plant Operational Platform.

The deployment of the Site Operational Platform with open source
technologies mainly for Virtual Process Industries Resources Adaptor and
Run-time Container is finally illustrated in Figure 6.6. It shows how predictive
functions can be applied in factorial settings.

6.2.6 Data Analysis

Data analysis in process industries mainly aims to reduce the wastage of time,
resource and energy during production processes. This can be achieved by
several means: avoiding equipment stoppages, maintaining optimum config-
urations, early detection of a chain of events causing an anomaly etc. Data
analysis is simplified by the components of the Cross Sectorial Data Lab
which provides a single platform for data fetching, accessing and artefact
development. The data collected from the plastic molding machines are stored
in the Big Data Storage & Analytic Platform. These data are used by the data
scientists and the process experts for exploratory analysis in order to gain
initial insights. The collaborative interface provided by the platform is used
simultaneously by the process expert and the data scientists. The findings
from the exploratory analysis is used as the basis for modelling the process
leading to the development of predictive functions. These functions are stored
in the Function Repository which are deployed later in factory premises for
real-time predictions. Although this process is generic enough to be applied
in any kind of industrial environment, we shall limit our discussion to the
plastic industry.
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The objective of data analysis in the plastic industry is to anticipate
the breakdowns and/or highlight equipment/process deviation that impacts
the injection molding process and therefore to improve the quality of the
produced coffee capsules. In general, there are two areas where waste parts
can occur in plastic injection molding process: the molding tool and the
molding process. During the long-term production of the coffee capsules,
parameters of the injection molding process can slightly change due to
various changes of the environment (temperature and humidity in the factory,
deviations in the energy supply system, heating of oil temperature, deviations
in the quality of the plastic granules, wearing of machine parts). The aim is to
monitor technical parameters of the molding machine and raise an alarm if the
deviation is increasing over the defined values. These long-term changes can
also cause the stoppage of molding machines. Which in turn causes reduction
of produced capsules. In addition, few of the initial cycles after restart are
wasted during the calibration process producing defective capsules.

6.2.6.1 Data description
Two kinds of data have been collected in the first year from GLN site during
the production of coffee capsules. The first data set is collected automatically
from a Euromap63 interface recorded on molding machines and the second
data set is collected during the experiments conducted by a process expert
during their visit to the production site.

The first data set is unlabeled and contains sensor measurements of
several coffee capsule production cycles. Each cycle lasts almost 7 seconds,
except if it causes a breakdown. The data set has a total of 88 attributes
representing temperatures, time taken for different stages, pressure, cylinder
positions etc. All data were directly monitored by the injection molding
machine and stored there. Of them, only 12 (heating belt temperatures,
maximum cycle pressure, coolant temperatures, residual melt cushion, plasti-
fication time) are proposed as useful, and, particularly, their ranges/deviations
over intervals instead of their values themselves are suggested to serve as
explanatory variables.

The second data set [1] is manually labelled and comprises information
about 250 production cycles of coffee capsules from the injection molding
machine and their quality information. It contains 36 attributes reflecting the
machine’s internal sensor measurements for each cycle. These measurements
include values about the internal states, e.g. temperature and pressure values,
as well as timings about the different phases within each cycle. In addition, we
also take into account quality information for each cycle, i.e., the number of
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non-defect coffee capsules which changes throughout individual production
cycles. The quality of each capsule is inspected by the domain expert in
different aspects. i.e. the capsules have permissible range of height and base
diameter. Also each capsule should have uniform thickness and should not
have holes. If any of these expectations are not met, the capsule is considered
to be defective. If the number of produced high quality coffee capsules is
larger than a predefined threshold, we label the corresponding cycle with
high.quality, and otherwise we assign the label low.quality. The decision
about the quality labels was made by domain experts.

Exploratory analysis is performed on the unlabeled data in order to dis-
cover hidden insights. On the other hand, basic machine learning algorithms
are applied to the labelled data to classify the cycles based on their quality. In
the upcoming subsections we discuss these two different approaches on these
data sets.

6.2.6.2 Preliminary trend analysis of unlabeled data
The main aim of the preliminary analysis of is to get some initial overall
insights that might be interesting for the process experts to be further ana-
lyzed. The first step was to understand the attributes and their correlations.
This was followed by visual exploration of data with manual inspection
followed by clustering the data to find significant relation between different
cycles. Considering the huge amount of data generated by sensors, clustering
usually takes lots of time. One strategy is to use the computation powers of
the Data Lab clusters to perform these operations faster. If the algorithms for
exploratory data analysis are deployed in the Data Lab, domain experts and
data scientists can use the results simultaneously to get actionable insights.

One of the insight was repeating set of parameters in the data. This
was found by using matrix profiles. A pattern obtained by applying matrix
profiles is the decrease in plastification time and at the same time, increase
in cycle time. Plastic domain expert cross checked these patterns and found
out that this happens whenever there is an equipment stoppage due to lack
of lubrication. Though the characteristics of these incidents are known, early
prediction of the possible stoppage has not been found out with data analysis.
The corresponding patterns are shown in Figure 6.7.

Preliminary trend analysis helps us to extract the knowledge hidden in
voluminous unlabelled data sets. This process can be automated to get the
best results in minimum time. In addition, in the MONSOON project we
include many stakeholders such as process experts, machine supervisors and
ground workers to actively contribute to the production process optimization.
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Figure 6.7 Increase in cycle time and decrease in plastification at the same time. The same
pattern has repeated multiple times in the unlabelled set of plastic data. CycCycTim is cycle
time and CycPlstTim is plastification time.

This is achieved with the help of a centralized Big Data analytics platform.
On deploying the knowledge discovery algorithms in the Big Data analytics
platform, the stakeholders can give live feedbacks. The data scientists further
use these feedbacks for deriving conclusions. This is an ongoing work as part
of the project.

6.2.6.3 Machine learning for labelled data
The goal of the machine learning process is to classify the injection molding
cycles to high and low-quality cycles. As discussed earlier, the cycles are
labelled as high.quality or low.quality based on the number of defective
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capsules produced in a cycle beyond a threshold defined by the process
expert.

The initial dataset is pre-processed as follows. The labelled data is first
centred and scaled. Later, the number of attributes is reduced by excluding
the ones with near zero variance. Principal Component Analysis is applied
to the remaining attributes to get the projection of data in reduced number of
dimensions.

Basic classification algorithms, namely, k-Nearest Neighbour, Naı̈ve
Bayes, Classification and Regression Trees (CART), Random Forests and
Support vector Machines (SVM) are investigated on the pre-processed data.
SVM is investigated both with linear and RBF kernels. The performance of
the models are measured in terms of balanced accuracy, precision, recall and
F1 scores. K-fold cross validation is used to evaluate the performance. The
number of folds is set to 5 and the number of repetitions is set to 100. We
used 80% of the dataset is for training and 20% for testing. This investigation
is performed via the CARET package in the programming language R. The
results of our performance evaluation are summarized in Table 6.1.

From the table above, we see that all predictive models reach an accu-
racy of minimum 63%. The highest accuracy is achieved by the k-Nearest
Neighbour classifier predicting the correct quality labels for more than 69%
of the data.

Albeit these results were satisfying, these algorithms cannot be deployed
straight away as the data used for this performance evaluation has been
manually labelled by the experts. In the situations where the capsules are
produced in millions per day, it is wiser to use the automatically labelled
data for training the models and deploy them afterwards. One approach is
to use the decision of the visual inspection systems in order to label the
data. But this is not trivial since there is no one to one mapping between
the optical inspection systems data and the actual cycle data. This is because
multiple capsules belonging to different cycles and machines are passed to

Table 6.1 Classification results of different predictive models
Balanced Accuracy Precision Recall F1 score

k-NN 0.697 0.638 0.686 0.657
Naı̈ve Bayes 0.643 0.604 0.563 0.578
CART 0.637 0.595 0.566 0.573
Random Forest 0.653 0.619 0.570 0.589
SVM (linear) 0.632 0.626 0.488 0.540
SVM (RBF) 0.663 0.643 0.563 0.594
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the automatic visual inspection system at once making it harder to identify
individual cycles belonging to a particular machine.

6.2.7 Summary

In this section, we have presented our recent research activities within
the scope of the EU project MONSOON: As an example for the process
industry, we have described the overall reference architecture facilitating
cross-sectorial data analytics. As part of our ongoing work, we have also
highlighted the analysis of sensor data arising from the plastic industry sector.
In the following section, we will focus on the manufacturing industry.

6.3 Manufacturing/Discrete Industry

6.3.1 Introduction

As an example for the manufacturing industry, we focus on the EU project
COMPOSITION. This project addresses the requirements of modern produc-
tion processes, which stress the need of greater agility and flexibility leading
to faster production cycles, increased productivity, less waste and more
sustainable production. At the factory level, decisions need to be supported
by detailed knowledge about the production process and its interplay with
external entities. Unfortunately, historical and live data that generates this
knowledge is becoming more and more distributed and few solutions are
available that can easily tackle the implied challenges. Moreover, factories
are becoming less isolated in the productive tissue of nations and several sup-
pliers and third-party service providers need to be contacted and coordinated
to implement decisions taken at the factory level.

In such a worldwide and dynamic environment, the ability of automatiz-
ing the preliminary coordination and negotiation activities involved in setting
up supply chains for specific needs, in an open marketplace-like fashion,
could greatly improve the ability of factories to quickly react to external
challenges and driving forces.

6.3.2 Intra-factory Interoperability Layer Part of the
COMPOSITION Architecture

In this chapter, we will address the COMPOSITION architecture in the
data analytics context. The intra-factory interoperability layer has two main
goals: the first one is to provide an infrastructure to combine distributed
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Figure 6.8 Intra-factory interoperability layer components and dependencies.

data in the integrated information management system and to do data ana-
lytics, the second one is to ensure the conformity between communications
among interconnected components. Figure 6.8 shows the relevant part of the
architecture.

The components of the architecture are introduced and described in the
following:

• The BMS is provided by a project development stakeholder and is the
translation layer providing shop floor connectivity from sensors to the
COMPOSITION system. Raw data storage is added for offline debug
purposes.

• The Middleware is the main recipient in which the interoperability of
single components act.

• LinkSmart is a well-known middleware solution per se and is customized
to satisfy the requirements of the COMPOSITION project. LinkSmart
comprises the following components:

◦ The Service Catalog works as service index and provides security
information for service intercommunication.

◦ The Event Aggregator parses messages to ensure homogeneity in
data streams.

◦ Keycloak is a virtual layer that ensures authorization and authen-
tication. Like all security related measures, it is deployed by the
Security Framework.
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◦ The broker-based intra-factory communication system manages all
internal communication.

• The Big Data Analytics component provides Complex Event Processing
(CEP) capabilities for the data provided by the intra-factory integration
layer

• The Hidden Storage is an optional storage not accessible from the
outside in which aggregated data are stored for debug purposes,
i.e. re-bootstrapping already trained artificial neural networks belonging
to the Deep Learning Toolkit and to the Dynamic Reasoning Engine.

• The Visual Analytics component is the reporting interface of the
Decision Support System and Simulation and Forecasting Toolkit.

• The Dynamic Reasoning Engine is part of the Simulation and
Forecasting Toolkit.

• The Decision Support System uses process models to guide the
production process.

Having a fist overview of the components of the COMPOSITION project and
their dependencies, we continue with describing our approach to smart data
analysis in the following section.

6.3.3 The Complex-Event Machine Learning methodology

Manufacturing in assembly lines consist of a set of hundreds, thousands or
millions of small discrete steps aligned in a production process. Automatized
production processes or production lines thereby produce for each of those
steps small bits of data in form of events. Although the events possess
valuable information, this information loses its value over time. Additionally,
the data in the events usually are meaningless if they are not contextualized,
either by other events, sensor data or process context. To extract most value
of the data, it must be processed as it is produced, to be more precise
in real-time and on demand. Therefore, in case of Big Data Analyses we
propose the usage of Complex-Event Processing for the data management
coming from the production facilities. In this manner, the data is processed in
the moment when it is produced, extracting the maximum value, reducing
latency, providing reactivity, giving it context and avoiding the need of
archiving unnecessary data.

The Complex-Event Processing service is provided by the LinkSmartr

Learning Agent (LA). The LA is a Stream Mining service that provides the
utilities to manage real-time data for several purposes. On the one hand, the
LA provides a set of tools to collect, annotate, filter, aggregate, or cache
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the real-time data incoming from the production facilities. This set of tools
facilitates the possibility to build applications on top of real-time data. On
the other hand, the LA provides a set of APIs to manage the real-time data
lifecycle for continuous learning. Moreover, the LA can process the live
data to provide complex analysis creating real-time results for alerting or
informing about important conditions in the factory, that may be not be seen at
first glance. Finally, the LA allows the possibility to adapt to the productions
needs during the production process.

The Complex-Event Machine Learning (CEML) [2] is a framework
that combines Complex-Event Processing (CEP) [3] and Machine Learning
(ML) [4] applied to the IoT. This means that the framework was developed
to be deployed everywhere, from the edge of the network to the cloud.
Furthermore, the framework can manage itself and works autonomously. The
following section briefly describes the different aspects that CEML covers.
The framework must automate the learning process and the deployment
management. This process can be broken down in different phases: (1) the
data must be collected from different sensors, either from the same device or
in a local network. (2) The data must be pre-processed for attribute extraction.
(3) The learning process takes place. (4) The learning must be evaluated.
(5) When the evaluation shows that the model is ready, the deployment must
take place. Finally, all these phases happen continuously and repetitively,
while the environment constantly changes. Therefore, the model and the
deployment must adapt as well.

6.3.3.1 Learning agents architecture
We utilize LinkSmartr LA following a modular architecture with loosely
coupled modules responsible for different tasks. Figure 6.9 illustrates the
architecture of the LA. The data and commands come via communication
protocols implemented by Connectors (Figure 6.9 shows two example imple-
mentations, REST and MQTT). The connectors transfer the information to
the Feeders, which process the data accordingly to the API logic. This logic
depends on whether it is an insertion of new raw data, request of simple data
processing (statement) or a machine learning request (CEML request). The
data is inserted into the execution environment (in this case EsperEngine1),
while the data processing requests are deployed in the same engine for the

1Esper is an open-source Java-based software product for Complex event processing (CEP)
and Event stream processing (ESP) that analyzes series of events for deriving conclusions
from them. See http://www.espertech.com/
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Figure 6.9 LinkSmartr Learning Service Architecture sketch.

processing of the raw data. The CEML request has a more complex behaviour.
Each CEML request is managed by its own CEMLManager, which contains
and coordinates the model(s), evaluator for each model, and several state-
ments. Finally, all output of any process (Statement) in the execution pipeline
(EsperEngine) is captured or managed by a Handler. If the process should be
prepared and sent through a communication protocol, then it will be handled
by a Complex-Event Handler: An Asynchronous Handler, if the protocol
is asynchronous (e.g. MQTT); or Synchronous Handler, if the protocol is
synchronous (e.g. HTTP).

6.3.3.2 Data propagation phase
Data in the IoT is produced in several places, protocols, formats, and devices.
Although this article does not address the problem of data heterogeneity in
detail, the learning agents require a mechanism to acquire and manage the
heterogeneity of the data. The mechanism must be scalable and, at the same
time, the protocol should handle the asynchronous nature of IoT. Finally, the
protocol must provide tools to handle the pub/sub characteristics of the CEP
engines. Therefore, we have chosen MQTT2, a well-established Client Server
publish/subscribe messaging transport protocol. The topic based message
protocol provides a mechanism to manage the data heterogeneity by making
a relation between topics and payloads. It allows deployments in several
architectures, OS, and hardware platforms; basic constraints at the edge of the

2MQTT is a machine-to-machine (M2M)/“Internet of Things” connectivity protocol.
Source http://mqtt.org/
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network. The protocol is payload agnostic and as such allows for maximum
flexibility to support several types of payloads.

6.3.3.3 Data pre-processing (munging) phase
Usually ML is tied to stored datasets, which incurs several drawbacks. Firstly,
the learning can take place only with persistent data. Secondly, usually
the models generated are based on historical data, not current data. Both
constrains, in the IoT, have direct consequences. It is neither feasible nor
profitable to store all data. In addition, embedded devices do not have much
storage capacity, which makes it impossible to use ML algorithms on them.
Furthermore, IoT deployments are commonly exposed to ever-changing
environments.

Using historical data for off-line learning could cause outdated models
to learn old patterns rather than current ones, producing drifted models.
Although some IoT platforms like COMPOSITION support storage of histor-
ical data, it may be too time and space consuming to create large enough times
series. Therefore, there is also a need for non-persistence manipulation tools.
This is precisely what the CEP engine provides in the CEML framework. This
means, the CEP engine decides which data and how the data is manipulated
using predefined CEP statements deployed in the engine. Each statement can
be seen as a topic, to which each learning model is subscribed. Any update of
the subscribers provides a sample to be learnt in the learning phase.

6.3.3.4 Learning phase
There is no pre-selection of algorithms in the framework. They are selected
by the restrictions imposed by the problem domain. For example, in
extreme constrained devices, algorithms such as Algorithm Output Granu-
larity (AOG) [5] may be the right choice. In other cases where the model
changes quickly, one-shot algorithms may be the best fit. Artificial Neural
Networks are good for complex problems but only with stable phenomena.
This means that the algorithm selection should be made case-by-case. Our
framework provides mechanisms for the management and deployment of the
learning models, and the process of how the model is fed with samples. In
general, the process is based on incremental learning [6] albeit with online
and non-persistent data. The process can be summarized as follows: the
samples, without the target provided in the last phase, are used to generate
a prediction. The prediction will then be sent to the next phase. Thereafter,
the sample is applied to update the model. Thus, all updates are used for the
learning process.
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6.3.3.5 Continuous validation phase
This section describes how the validation of the learning models is done
inside the CEML. This phase does not influence the learning process nor
validate the CEML framework itself.

ML model validation is a challenging topic in real-time environments
and the evaluation for distributed environments or embedded devices is not
addressed extensively in the literature, which is why we think it needs further
research. There are two addressed strategies. Either we holdout an evaluation
dataset by taking a control subset for given time-frame (time window), or we
use Predictive Sequential, also known as Prequential [7], in which we assess
each sequential prediction against the observation. The following section
describes the continuous validation we applied for a classification problem,
even though it can be applied for other cases as well.

Instead of accumulating a sample for validation, we analyse the predic-
tions made before the learning takes place. All predictions are assessed each
time an update arrives. The assessment is an entry for the confusion matrix
[8], which is accumulated in an accumulated confusion matrix. The matrix
contains the accumulation of all assessed predictions done before. In other
words, the matrix does not describe the current validation state of the model,
but instead the trajectory of it. Using this matrix, the accumulated validation
metrics (e.g. Accuracy, Precision, Sensitivity, etc.) are being calculated. This
methodology does have some drawbacks and advantages, explained more
extensively in [9].

6.3.3.6 Deployment phase
The continuous validation opens the possibility for making an assessment of
the status of the model each time a new update arrives, e.g. if it is accrued or
not. Using this information, the CEML framework has the capability to decide
if the model should or should not be deployed into the system at any time. If
the model is behaving well, then it should be deployed, otherwise it should
be removed from the deployment. The decision is made by user-provided
thresholds w.r.t. evaluation metrics. If a threshold is reached, the CEML
inserts the model into the CEP engine and starts processing the streams using
the model. Otherwise, if the model do not reach the threshold, it is removed
from the CEP engine.

6.3.3.7 Assessment
In [6] 13 issues for learning in the IoT where left open. The CEML framework
addresses 10 out of the 13 challenges as follows:
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• Handling the continuous flow of data streams: This is done by the stream
statements inside the CEP engine using continuous streams for learning
an evaluating.

• Unbounded memory requirements: The use of CEP engines in stream
windows allows the intelligent usage of the memory as is needed,
dropping it otherwise.

• Transferring data mining results over a wireless network with limited
bandwidth: This is partially handled. MQTT is a reliable low-bandwidth
lightweight protocol developed for satellite monitoring of pipelines.
Nevertheless, this paper does not address the physical layer.

• Modelling changes of mining results over time: The CEML is a contin-
uous automatic learning mechanism. The learning models will adjust as
they learn.

• Interactive mining environment to satisfy user requirements: The IoT
Learning agent provide an REST API. Thus, update the learning request
is possible, as well as, obtaining live or on-demand updates.

• Integration between data-stream management systems and ubiquitous
data-stream mining approaches: The CEML provides a REST API for
managing each kind of request independently. Thus, the learning request
can be managed as a whole, including the involved streams. Besides, the
streams can be managed individually as single stream statement. Addi-
tionally, the MQTT API provides a multi-cast API so that in distributed
multi-agent deployment, the agents can be managed as one, as groups,
or as one entity.

• The relationship between the proposed techniques and the needs of real-
world applications: Legal, ethical and technical reasons are part of the
motivation. E.g. the storage constrains or the legal constraints in the
health domain.

• Data pre-processing in the stream-mining process: This is handled in the
pre-processing phase of the CEML.

• The technological issue of mining data streams: The implementa-
tion presented here shows that the system behaves in a real-time
environment.

• The formalization of real-time accuracy evaluation: This is addressed by
the Double-Tumble-Window Evaluation.

In addition to the Complex-Event Machine Learning approach based on the
open-source IoT platform LinkSmart, we also describe another approach
carried out in the scope of the project COMPOSITION in the next section.
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6.3.4 Unsupervised Anomaly Detection in Production Lines

In addition to the previously introduced framework, which primarily allows
for an exploitation of supervised machine learning algorithms, this chapter
focuses on an alternative unsupervised approach that was also implemented in
the scope of the project COMPOSITION. This method was used as a further
extension to optimize the detection of machine errors in production lines at
early stages.

In the last couple of years, the importance of cyber-physical systems
in order to optimize industry processes, has led to a significant increase of
sensorized production environments. Data collected in this context allows
for new intelligent solutions to e.g. support decision processes or to enable
predictive maintenance.

One problem related to the latter case is the detection of anomalies in the
behaviour of machines without any kind of predefined ground truth. This fact
is further complicated, if a reconfiguration of machine parameters is done
on-the-fly, due to varying requirements of multiple items processed by the
same production line. As a consequence, a change of adjustable parameters
in most cases directly leads to divergent measurements, even though those
observations should not be regarded as anomalies.

In the scope of the project COMPOSITION, the task of detecting anoma-
lies for predictive maintenance within historical sensor data from a real
reflow oven was investigated. While the oven is used for soldering surface
mount electronic components to printed circuit boards based on continuously
changing recipes, one related problem was the unsupervised recognition of
potential misbehaviours of the oven resulting from erroneous components.
The utilized data set comprises information about the heat and power con-
sumption of individual fans. Apart from additional machine parameters like a
predefined heat value for each section of the oven, it contains time-annotated
sensor observations and process information recorded over a period of more
than seven years.

As one solution for this problem, we will present our approach
named Generic Anomaly Detection for Production Lines, short GADPL.
The hereafter-presented description of GADPL is based on the stage-wise
implementation of the algorithm. After an initial clustering of similar input
parameters and a consecutive segmentation, we will discuss the repre-
sentation of individual segments and the corresponding measurement of
dissimilarity.
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6.3.4.1 Configuration clustering
In many companies, as well as in the case of the project COMPOSITION, a
single production line is often used to produce multiple items according to
different requirements. Those requirements are in general defined by varying
machine configurations consisting of one or more adjustable parameters,
which are changed ‘on-the-fly’ during runtime. For a detection of deviations
with respect to some default behaviour of a machine, this fact raises the
problem of invalid comparisons between sensor measurements of dissimilar
configurations. If a measurement or an interval of measurements is identified
as an anomaly, it should only be considered as such, if this observation is
related to the same configuration as observations representing the default
behaviour. Therefore in advance to all subsequent steps, at first all sensor
measurements have to be clustered according to their associated configura-
tion. For the sake of simplicity, we are only discussing the process within a
single cluster in the following subsections, although one has to keep in mind
that each step is done in parallel for all clusters.

6.3.4.2 Segmentation
As a result of the configuration-based clustering, the data is already seg-
mented coarsely. However, since this approach describes unsupervised
anomaly detection, the idea of a further segmentation is to create some kind
of ground truth, which reflects the default behaviour of a machine. In this
section, we will see how the segmentation is utilized to implement this idea.
In an initial step, a maximum segmentation length is defined, in order to
specify the time horizon, after which an anomaly can be detected. Assuming
a sampling rate of 5 mins per sensor, the maximum length of a segment
would consequently be (60 × 24)/5 = 288 to describe the behaviour on
a daily basis. Although a decrease of the segment length implies a decrease
of response time, it also increases the computational complexity and makes
the detection more sensitive to invalid sensor measurements. In this context,
it needs to be mentioned that in this stage segments are also spitted, if they
are not continuous with respect to time as a result of missing values. Another
fact that has to be considered is the transition time of configuration changes.
While the input parameters associated with a configuration change directly,
the observations might adapt more slowly and therefore blur the expressive-
ness of the new segment. To prevent this from happening, the transition part
of all segments, which have been created due to configuration changes, is
truncated. If segments become smaller than a predefined threshold, they can
be ignored in the upcoming phases.
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6.3.4.3 Feature extraction
Having a set of segments for each configuration, the next step is to determine
the characteristics of all segments. While the literature presents multiple
approaches to describe the behaviour of time series, we will focus on
common statistical features extracted from each segment. Nonetheless, the
choice of features is not fixed, which is why any feature suitable for the
individual application scenario can be used. One example for rather complex
features could be the result of a kernel fitting in the context of Gaussian
processes, accepting a decrease in performance. Since the goal is to capture
comparable characteristics of a segment, we compute different real-valued
features and combine them in a vectorised representation. In the case of
the project COMPOSITION, we used the mean to describe the average
level, the variance as a measure of fluctuation and the lower and upper
quartiles as a coarse distribution-binning of values. Due to the expressive-
ness of features being dependent from the actual data, one possible way
to optimize the selection of features is the Principal Component Analysis.
Simply using a large number of features to best possibly cover the variety
of characteristics might have a negative influence on the measurement of
dissimilarity. The reason for this is the partial consideration of irrelevant
features within distance computations. Moreover, since thresholds could be
regarded as a more intuitive solution compared to additionally extracted
features, this replacement would lead to a significant decrease in the number
of recognized anomalies. Apart from the sensitivity to outliers, the reason is
a neglect of the inherent behaviour of a time series. As an example, consider
the measurements of an acoustic sensor attached to a motor that recently
is sending fluctuating measurements, yet within the predefined tolerance.
Although the recorded values are still considered as valid, the fluctuation with
respect to the volume could already indicate a nearly defect motor. Finally,
one initially needs to evaluate appropriate thresholds for any parameter of
each configuration.

6.3.4.4 Dissimilarity measurement
So far, we have discussed the exploitation of inherent information, extracted
from segmented time series. The final step of GADPL is to measure the
level of dissimilarity for all obtained representatives. Since no ground truth
is available to define the default behaviour for a specific configuration, the
algorithm uses an approximation based on the given data. One problem in
this regard is the variability of a default behaviour, consisting of more than
one pattern. Therefore, a naive approach as choosing the most occurring
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representative, would already fail for a time series consisting of two equally
appearing patterns captured by different segments, where consequently half
of the data would be detected as anomalous behaviour.

As one potential solution GADPL instead uses the mean over a specified
size of nearest neighbours, depicting the most similar behaviour according
to each segment. The idea is that even though there might multiple distinct
characteristics in the data, at least a predefined number of elements represent
the same behaviour compared to the processed item. Otherwise, this item
will even have a high average dissimilarity with respect to the most similar
observations and can therefore be classified as anomaly.

Here, for the vectorised feature representations, any suitable distance
function is applicable. In the context of the project COMPOSITION we
decided to use the Euclidean distance for a uniform distribution of weights,
applied to normalized feature values. To further increase the performance of
nearest neighbour queries, we exploited the R*-tree as a high-dimensional
index structure. Given the dissimilarity for each individual representative
together with a predefined anomaly threshold, GADPL finally emits potential
candidates having an anomalous behaviour.

The application of GADPL is illustrated in Figure 6.10. The upper part
shows the segmentation of time annotated power consumption data in per-
cent. The lower part illustrates the result of the dissimilarity measurement,
where the red rectangle indicates classified anomalies.

Figure 6.10 Example application of GADPL.
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6.3.5 Summary

In this section, we have presented our recent research activities within the
scope of the EU project COMPOSITION. As an example for the manufac-
turing industry, we have briefly described the COMPOSITION architecture
along with one of its main components: the open-source IoT platform
Link-Smart. As part of our ongoing work, we have also described our
corresponding research activities regarding the analysis of sensor data from
manufacturing industry.

6.4 Summary and Conclusions

In this work, we have given insights into our recent research activities with
regard to the domains of Smart Data and Industrial Internet of Things. To this
end, we have focused on the EU projects MONSOON and COMPOSITION
as examples for the Public-Private Partnership (PPP) initiatives Factories
of the Future (FoF) and Sustainable Process Industry (SPIRE). We have
shown two different but conceptually similar architectures for scalable and
agile data analytics. In addition, we have provided an overview of our
recent Smart Data activities and have exemplified ongoing data-driven anal-
ysis of industrial production processes from the process and manufacturing
industries.

We conclude that data-driven investigations, either applied in process
industry or manufacturing industry, require a solid platform for handling
data analytics at scale. The proposed architecture of the Cross Sectorial
Data Lab in combination with the open-source IoT platform LinkSmart
seem to be promising developments, which are applicable to any industrial
sector.
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