
2
ALIGNED Use Cases – Data and Software

Engineering Challenges

Arkadiusz Marciniak and Patrycja Filipowicz

Adam Mickiewicz University, Poland

2.1 Introduction

The ALIGNED project developed an aligned methodology for parallel soft-
ware and data engineering of Web-scale information systems with Linked
Data as a unifying technical foundation for system specification and process
and tool integration. This methodology (see Chapter 3) is based on a meta-
model describing the complete software and data life cycles, domain models,
and design intentions. This metamodel specifies tools to produce software
development models, including transformations that generate or configure
software applications as well as data development models, incorporating
data quality and integrity constraints, data curation workflows, and data
transformations.

Software and data engineering are different disciplines, with different
practices and processes. Significant differences between these fields mean
that a single prescriptive approach could not work. Instead, the project has
identified a matrix of synchronisation points between different stages of the
software and data life cycles. Each point represents a key area where software
and data engineers may need to interact and define formats and processes for
working together. This approach is flexible enough to accommodate many
different workflows, while still identifying key areas where alignment of the
two life cycles can lead to significant savings in effort. The approach adopted
endeavoured to make it possible to improve the overall quality, productivity,
and agility in a variety of different use cases. In order to achieve these
objectives, the project sought to develop Linked Data schemata for alignment
that enabled the software engineering life cycle of data-intensive systems to
be integrated with the data engineering life cycle, by identifying common

21



22 ALIGNED Use Cases – Data and Software Engineering Challenges

phases and signalling between the parallel processes and tools to support
alignment at higher levels.

The decision to adopt data-model-driven approaches in the project had
far-reaching consequences. In particular, it required that every step in the
process be directly driven by the model, rather than independently config-
ured. Harvested datatypes also could not be consumed directly, but through
a model, which dictated the shape and structure that the data must take.
Accordingly, a model-driven approach led to the creation of explicit models
at each stage of the development process.

MDE describes a development process in which the components of the
final software artefact are derived – either manually or automatically – from
models that typically form part or all the specifications or requirements of the
system. The software needs to be written in such a way that it understands
the modelling language and is capable of handling updates to the model. Such
software can be reused in different applications within a similar domain, min-
imising the time spent on the implementation phase, and capturing common
repeating patterns that would otherwise have to be repeated in each cycle
of an iterative development. In the MDE world, it is required that the data
model is provided in the form of the ontologies available at a well-known
URL, which is typically achieved by providing a metadata registry.

In order to achieve the postulated goals, a number of tools from both
domains were developed and used in order to make the advocated integration
of both life cycles efficient, particularly in relation to challenges posed
by the different use cases. These comprise Booster, the Model Catalogue,
RDFUnit, Repair Framework and Notification (RF), Ontology Repair and
Enrichment (ORE), Dacura, the PoolParty Confluence/JIRA Data Extrac-
tor (CJDE), External Link Validation (ELV), and the Unified Governance
Plugins.1 Similarly, a set of open, public ontologies and vocabularies were
adopted and used wherever possible by all tools to support integration (for
details, see Chapter 4). These include foundational schemas, such as RDF,
RDFS, and OWL, and common widely used standards such as PROV and
SKOS. Where ontologies did not exist to cover the advocated integration
needs, new models were created and made publicly available (RVO, RUT,
DataID). This collection of common, project-wide ontologies gave the ability

1Shah, Seyyed M., James Welsh, Jim Davies, and Jeremy Gibbons. 2017. In Mahmood,
Z (ed.), Software Project Management for Distributed Computing: Life-Cycle Methods for
Developing Scalable and Reliable Tools, 367–385. Springer: Cham.



2.1 Introduction 23

to exchange rich, structured information covering the most significant entities
within research focus.

The ultimate objective of the project, however, was to produce tools,
methods, and standards, which lead to real improvements in productivity,
quality, and agility of different types of data. The rapidly increasing size and
complexity of Web and Big Data often makes their management virtually
impossible, where even specialists struggle to harness them. Hence, five
use cases representing different domains from legal to health and complex
archaeological and historical datasets were chosen to adopt a broad bottom-
up approach to system development and integration. Accordingly, the project
tackled problems in a wide range of areas with the intention to show how the
latest semantic technologies can help create means of managing and using
these datasets. The selection of uses cases was also driven by a need of testing
interoperability between the tools, particularly those who support both data
and software engineering that were developed in the project. The chosen use
cases were: (i) Seshat: Global History Databank, (ii) PoolParty Enterprise
Application Demonstrator System, (iii) DBpedia, (iv) Jurion and Jurion IPG,
and (v) Health Data Management.

Each use case is a large-scale, real-world project with large user commu-
nities and complex sets of data. The project’s research has thus had a practical
focus, which has seen the application of innovative tools and solutions in
real life. The use cases represent diverse domains, both commercial and
non-commercial, which have their own requirements and data characteristics.
They also represent a significantly different level of advancements in both the
data and software engineering tools and procedures. Each use case has its own
problems with quality, agility, and productivity. The project has built tools
and processes that improve software and data engineering for each of these
use cases. Every tool appears in more than one use case, and every use case
involves tools developed by different partners. In each case, trial platforms
were constructed in multiple phases, which integrate research outputs from
multiple work packages and partners, served to offer the greatest potential for
real improvements to the existing processes employed within these use cases.

The objectives of this chapter are thus threefold: (1) to present the five
case studies used in the ALIGNED project, (2) to analyse the major chal-
lenges identified by these use cases in the data engineering life cycle as well
as present their proposed solutions, and (3) to analyse the major challenges
identified by the use cases in the software life cycle and propose solutions to
these challenges.



24 ALIGNED Use Cases – Data and Software Engineering Challenges

2.2 The ALIGNED Use Cases

2.2.1 Seshat: Global History Databank

The Seshat: Global History Databank2 is an international initiative of human-
ities and social science scholars to build an open repository of expert-
curated historical time-series data.3 The Seshat project began by selecting
a sample of 30 areas from around the world. For each area, all soci-
eties that had controlled it throughout history were recorded. This made
it possible to answer a wide range of questions about each of them –
describing its population, technology, religion, infrastructure, and so on.
The Seshat has been designed to test theories about the evolution of social
complexity, from the point of view of historians and anthropologists.4

The databank extracts data from a combination of databases, Linked Data
sources, websites, academic publications, and human experts. Figure 2.1
shows the initial sample of 30 geographical areas chosen for the databank.

A special code book defined the full list of questions, and researchers
added data to the system by creating a copy of the code book page for
each society and adding data points using a special syntax that encoded
uncertainty, disagreement, and temporal scope, along with comments and
citations in relation to domain-specific provenance information. In the initial
stages of the Seshat project, a wiki was used to collect the data. The system
amassed over 200,000 data points on hundreds of civilisations, but whilst the
unstructured wiki data store allowed great flexibility at the start of the project,

2http://seshatdatabank.info
3Turchin, Peter, Thomas E. Currie, Kevin C. Feeney, Pieter Franois, Daniel Hoyer,

J.G. Manning, Arkadiusz Marciniak, Daniel Mullins, Alessio Palmisano, Peter Peregrine,
Edward A.L. Turner and Harvey Whitehouse Harvey. Seshat, The Global History Databank,
Cliodynamics. The Journal of Quantitative History and Cultural Evolution 6(1), pp. 77–107.

4Turchin, Peter, Thomas E. Currie, Harvey Whitehouse, Pieter Franois, Kevin Feeney,
Daniel Mullins, Daniel Hoyer, Christina Collins, Stephanie Grohmann, Patrick Savage, Gavin
Mendel-Gleason, Edward Turner, Agathe Dupeyron, Enrico Cioni, Jenny Reddish, Jill Levine,
Greine Jordan, Eva Brandl, Alice Williams, Rudolf Cesaretti, Marta Krueger, Alessandro Cec-
carelli, Joe Figliulo-Rosswurm, Po-Ju Tuan, Peter Peregrine, Arkadiusz Marciniak, Johannes
Preiser-Kapeller, Nikolay Kradin, Andrey Korotayev, Alessio Palmisano, David Baker, Julye
Bidmead, Peter Bol, David Christian, Connie Cook, Alan Covey, Gary Feinman, Árni Danı́el
Júlı́usson, Axel Kristinsson, John Miksic, Ruth Mostern, Cameron Petrie, Peter Rudiak-Gould,
Barend ter Haar, Vesna Wallace, Victor Mair, Liye Xie, John Baines, Elizabeth Bridges,
Joseph Manning, Bruce Lockhart, Amy Bogaard and Charles Spencer. Single dimension of
complexity in human societies. Proceedings of the National Academy of Sciences, 115 (2)
E144-E151; DOI:10.1073/pnas.1708800115.



2.2 The ALIGNED Use Cases 25

Figure 2.1 Seshat World Sample 30.

it did not scale to the number of contributors, data users, data points, or the
complexity of the data.

Seshat also evolved to encompass new areas that were not originally
anticipated. In particular, this involved recording societies from the prehis-
toric past, which required a collection of archaeological data. It soon became
obvious that many Seshat variables were unsuitable for capturing this part
of human past. There was also a lack of relevant proxies that would allow
translation of archaeological evidence into coding templates. Accordingly,
the Archaeological Seshat code book was designed and developed in order to
fill in the gap, and the data were collected independently.

A wiki-based approach, used in Seshat for the data collection task, posed
numerous problems, in particular for the verification of data correctness, and
the extraction of data in usable forms. As the dataset grew and the focus
moved from collection to integration and analysis, several other significant
problems emerged. The fundamental problem is that a wiki is designed for
human presentation and editing of data. To a machine, it is semi-structured,
lacks any type information, and the meaning of the elements depends on their
context within a jumble of HTML. Without any support for validation, errors
proliferated.

The limitations of the wiki also impacted agility. As the Seshat code
book was rapidly evolving, any changes needed to be manually copied to
all existing data pages. This was a costly and error-prone task. There was
also no easy way to express spatial data through the wiki, so these data were
stored in a separate geographic information system (GIS). The wiki-based
system offered no support for publication. Furthermore, while the scraping



26 ALIGNED Use Cases – Data and Software Engineering Challenges

tool could extract raw datapoints, important citations and comments were
encoded in totally unstructured HTML.

Productivity suffered as increasing resources had to be devoted to curation
and cleaning. Some of the corrections were not copied back to the wiki and
spreadsheets became the authoritative source for some sections of the data.
Moreover, there was no way of incorporating third-party data into Seshat
dataset.

2.2.2 PoolParty Enterprise Application Demonstrator System

The PoolParty Semantic Suite5 is the SWC’s platform for enterprise infor-
mation integration based on Linked Data principles. The PoolParty semantic
technology suite comprises a number of tools based on the extraction, cura-
tion, and management of linked open datasets. These tools are split into three
categories: data portals and collaboration platforms, tools for knowledge
engineering and graph management, and functionality for content enrichment
and data integration. Any data is transformed into RDF graphs and can be
queried with SPARQL (SPARQL Protocol and RDF Query Language). Since
it was created, the product has evolved to include entity extraction from
unstructured information. PoolParty’s API provides a rich set of methods for
text mining and entity extraction. Figure 2.2 shows the tools of the PoolParty
Application Suite.

Figure 2.2 PoolParty Application Suite.

5http://www.poolparty.biz



2.2 The ALIGNED Use Cases 27

As a loosely coupled collection of tools, additional functionality has been
enabled through the integration of third-party tools. An example of this is the
use of Atlassian Confluence (a team collaboration tool), Atlassian Jira (a tool
for issue tracking and project management), and Media Sonar (a Web-mining
tool), for a general-purpose requirements engineering system. However, the
systems concerned are typically document-oriented and require extensive
human interaction in order to link their data to development tasks recorded in
PoolParty against standard ontologies. The system lacks the required integra-
tion and alignment of data management issues with the software development
life cycle, so that each supports the other.

2.2.3 DBpedia

DBpedia6 publishes authoritative RDF-based datasets that are used as a com-
mon point of reference for interlinking and enriching most of the structured
data on the Web today. It relies on an automated data extraction framework
to generate open RDF data from Wikipedia documents, published in the form
of file dumps, Linked Data, and SPARQL hosting on the Linked Data Stack.
This structured information resembles an open knowledge graph, which is
a kind of database, which stores knowledge in a machine-readable form and
provides a means for information to be collected, organised, shared, searched,
and utilised. DBpedia passes all published data through RDFUnit, validating
it against an up-to-date version of the DBpedia ontology. The validated
outputs generate consistent data termed DBpedia+, whereas the wider, more
exhaustive data are published as the standard DBpedia datasets.

To create high-quality data, a validation method for DBpedia instance
data has to provide sufficient metadata to distinguish between three different
possible sources of a violation: (i) the Wikipedia editor (entering erroneous
values), (ii) incorrect mappings between source and DBpedia ontology, and
(iii) a software issue in the DBpedia Extraction Framework. Accordingly,
RDFUnit provides the necessary metadata for any violation found and creates
links between a software issue and the violating instance. The resulting viola-
tions and associated metadata provide the exact coordinates of a violation, the
grounds for this violation, and the possible source. Thus, violations recorded
in such a manner are used as a feedback medium, relating possible mistakes to
Wikipedia editors, to the mapping community, or to software developers. In
addition to validating the resulting instance data, DBpedia started to validate

6http://wiki.dbpedia.org



28 ALIGNED Use Cases – Data and Software Engineering Challenges

the mappings between DBpedia ontology and the Wikimedia data sources on
a regular basis with RDFUnit. Thus, most of the mapping-related violations
can be caught before ever starting the data extraction, preventing possible
reruns of whole extraction steps and increasing productivity.

The DBpedia Links repository maintains linksets between DBpedia and
other LOD datasets. A system for maintenance, updates, and quality checks,
which validates various aspects of the link submission, is in place and is
integrated with common continuous integration services, such as Travis CI.
It offers a way to publish linksets between DBpedia and any given dataset,
which are published alongside the DBpedia dataset files.

The major productivity issues identified for DBpedia involve code
maintenance, release management, ontology editing, release documentation
creation, and dealing with user queries. Further complications involved
dealing with the increasing number of published datasets that tend to increase
over time when incorporating new extraction methods and algorithms.

To ensure quality regarding the extraction workflow, DBpedia extended
the Extraction Framework to produce metadata for any extraction process,
extensive logging of progress and exceptions, as well as high-level summaries
of extractions. These efforts support extensive monitoring, metadata propaga-
tion and logging (on both the triple and dataset level), and the deployment of
ETL frameworks and Workflow Management Systems to further decrease the
time needed for extraction and to automate this process completely. Figure 2.3
shows this pipeline.

Figure 2.3 DBpedia Extraction Pipeline.



2.2 The ALIGNED Use Cases 29

The greatest need for agility in DBpedia is the ability to rapidly respond
to changes in source datasets like Wikipedia. These may involve, among
others, the introduction of new pages that represent new concepts and the
introduction of new infobox templates that represent additional instance data
in DBpedia and changes in infobox structures. Adapting to those changes
in a (semi-) automated way will prevent the loss of data (due to changes to
Wikipedia templates) and incorporate new instance data automatically.

2.2.4 Jurion and Jurion IPG

The Wolters Kluwer7 use case within ALIGNED is twofold. On the one
hand, the project worked with a legal research database application called
Jurion (www.jurion.de) from Wolters Kluwer Germany. In this use case,
it mainly focussed on addressing data quality issues. Second, the project
re-engineered the IPG system from Wolters Kluwer Poland, which is a
commercial intelligence system, based on huge amounts of data in a relational
database system.

Jurion merges and interlinks over one million documents of content and
data from diverse sources such as national and European legislation and court
judgements, extensive internally authored content and local customer data, as
well as social media and Web data (e.g., from DBpedia). In collecting and
managing this data, all stages of the Data Life cycle are present – extraction,
storage, authoring, interlinking, enrichment, quality analysis, repair, and pub-
lication. Wolters Kluwer concentrated mainly on the enhancement of data
quality and repair processes. Based on the requirements, it started to work
on data transformation issues and the improvement of data quality processes
in PoolParty in parallel to some tasks within the PoolParty use case. Based
on large amounts of XML data, governed by a DTD, continuous transforma-
tion from XML to RDF, based on XSLT scripts, needs to take place. This
process is complicated and error-prone, especially when it comes to schema
changes. The second major data quality challenge is around domain thesauri
and controlled vocabularies. Very often, these data are initially created and
stored in XLS files and when it comes to a systematic usage of more
powerful tools like PoolParty, the import process of this data needs to be
optimised, so that errors and inconsistencies can be detected very early in the
process.

7www.wolterskluwer.com



30 ALIGNED Use Cases – Data and Software Engineering Challenges

The Jurion IPG system is a commercial intelligence system, providing
a means for business contractors to perform due-diligence queries, serving
historical data about companies and their relationships with other compa-
nies, responsible individuals, and business documents. It has been developed
by Wolters Kluwer Poland and it contains data on 450,000 companies,
1.1 million people, and 3.5 million documents. The existing data are currently
stored in a relational format. The complexity of the system stems from huge
amounts of daily processed data originating from pdf sources and their main-
tenance through a proprietary, obsolete CMS. In order to remain a reliable
provider of credibility and financial information for over five million entities,
the integrity and consistency of the data is of vital importance, and increas-
ingly hard to manage at scale. Business value of the system is dependent on
the maintenance and evolution of a large, semantically consistent dataset. The
overall goal is to ensure the quality of the system used to enter and maintain
the data and to improve the value by linking to external datasets. The major
requirements involve deploying new tools to find problems in the existing
data, improving the integrity of data submitted in the future as well as help
increasing the scope of the data by enabling the linking of data stored within
the system to external related datasets. Figure 2.4 shows the JURION IPG
workflow.

Figure 2.4 Jurion IPG.



2.2 The ALIGNED Use Cases 31

2.2.5 Health Data Management

The Health Research Data use case involved four separate projects related to
health research data in the United Kingdom:

• the Health Data Finder8 – an online tool for discovering national
healthcare datasets commissioned from the National Institute for Health
Research (NIHR). They primarily contain routine hospital data for
audit and economic reasons, but may be made available to researchers
in academia and industry with appropriate governance approval. The
datasets are maintained by a number of separate organisations, and so
data users wishing to discover data and request access may have to make
a number of requests, often with inconsistent results.

• the NIHR Health Informatics Collaborative9 – routine clinical data in
five therapeutic areas provided by the largest teaching and research hos-
pital trusts. These include critical care, ovarian cancer, acute coronary
syndromes, hepatitis, and renal transplantation. Each trust maintains
data to differing standards and semantics, and rather than unifying data
to a lowest common denominator, sites are asked to build their own data
warehouses for a federated data store. Users of the data can make a
request to the hospitals, and data can be linked and unified on a per-usage
basis, taking into account the research purpose.

• the UK 100,000 Genomes Project10 – a UK Government project aimed
at sequencing whole genomes from National Health Service patients.
It is focussed on rare diseases, major types of cancer, and infectious
diseases. The patients give consent for the genome data to be linked to
information about their medical condition and health data. The ultimate
goal of the project is to improve knowledge of the causes, treatment, and
care of these diseases.

• the construction of a data warehouse for Oxford University Hospitals
Foundation Trust11 – this is a detailed asset register for the hospi-
tal, detailing field-level metadata about databases and spreadsheets of
patient data around the hospital, as well as describing dataflows and
message-passing between systems, and specifications for audit and
research datasets.

8http://www.hdf.nihr.ac.uk
9https://www.nihr.ac.uk/about-us/how-we-are-managed/our-structure/infrastructure/health-

informatics-collaborative.htm
10https://www.genomicsengland.co.uk/the-100000-genomes-project
11http://www.ouh.nhs.uk



32 ALIGNED Use Cases – Data and Software Engineering Challenges

In all four applications, reuse of existing data without detailed documen-
tation causes major problems, particularly in relation to poorly developed
semantics. Furthermore, linkage between datasets may be inaccurate, trans-
formation of data into different formats may be incorrect, and interpretation
of statistical results is error-prone. In the Health Data Finder, such data reuse
is minimal. Researchers do not know what data may be available to them,
different providers may return inconsistent results on data governance, and
data must be re-interpreted each time, which may result in costly errors. In
similar projects preceding the Health Informatics Collaborative and 100,000
Genomes projects, collecting comparable data from multiple hospitals has
proven difficult. Precise specifications have been hard to produce, mecha-
nisms for data capture and transfer have been manually programmed, often
by non-technical domain experts, and inconsistencies have resulted in data
that is often incomplete, incomparable, or completely unusable.

The quality and accuracy of data documentation is difficult to maintain
during an iterative process. In all the health data research projects, datasets are
continually evolving and data specifications are continually being improved.
Without careful version management and automation, it is very easy for the
documentation to get left behind. Similarly, software artefacts must keep
pace with the changes in requirements: changes to the data or the software
specifications must invoke updates to the XML schema, database schema, or
Case Report Forms. Manual coding slows the iteration process, which in turn
can result in outdated or inaccurate specifications.

Furthermore, domain experts find it difficult to provide documentation
or simple modelling because of the technicalities involved. XML schema
and Case Report Forms require specialist technical knowledge. Implement-
ing efficient database structures requires a lot of repetitive work such as
implementation of a domain class will involve a familiar pattern of tables,
association tables, keys, and indexes. Such work is time-consuming and error-
prone, yet ripe for automation. Data scientists looking to reuse health data
currently spend a lot of time searching for usable datasets, often requiring
long periods of interaction where inventories and documentation are not
available online. Applying for governance, asking technical questions, and
retrieving data in a suitable format often require further time and energy.
Interpretation and curation of the data is a typically manual task, which may
be repeated and reproduced by every scientist receiving a data extract.



2.3 The ALIGNED Use Cases and Data Life Cycle 33

2.3 The ALIGNED Use Cases and Data Life Cycle.
Major Challenges and Offered Solutions

The LOD life cycle consists of eight stages for data engineering.12 These
are: (i) extract – taking information in unstructured form or conforming to
other structured or semi-structured formalisms and mapping it to the RDF
data model, (ii) storage and querying – retrieving and persisting information
in triple form to be included as part of the dataset; (iii) manual revision/
authoring – processes for manual creation, modification, and extension of
the structured data; (iv) interlinking/fusion – creating and maintaining links
between datasets; (v) classification/enrichment – creating and maintaining
links between data, and models of data (which themselves may be linked and
part of the dataset); (vi) quality analysis – testing for data completeness and
correctness; (vii) evolution/repair – correcting invalid data resulting from a
quality analysis phase, via either manual or automated processes; and finally,
(viii) search/browse/exploration – making data artefacts available to domain
experts or to users beyond the original authors.

Different stages of data engineering in the ALIGNED project have been
identified primarily for building tool support and integrated frameworks as
well as encouraging compatibility of independent tools within a particu-
lar framework. Feedback from one phase is to be fed into another. For
example, the models linked during the classification or enrichment stage
will determine the scope of the quality analysis stage, or any errors found
during quality analysis may need to be resolved in the evolution/repair
phase.

As the dataset grew and the focus moved from collection to analysis,
several significant problems with agility, quality, and productivity emerged.
First, the fundamental problem was that a wiki is designed for human
presentation and not machine-readable. Second, the limitations of the wiki
impacted agility: manual data harvesting has been very time-consuming.
Finally, productivity suffered as increasing resources had to be devoted to
curation and cleaning.

In each use case, ALIGNED technologies are being used in slightly
different ways. In case of Seshat, these tools are automatically generated
from the Seshat ontology. These comprise the Model Mapping Tool, Real-
time Instance Data Validation, and curation workflows, all deployed as
Dacura services. Dacura is a data curation platform developed by Trinity

12Shah et al. 2017: 370.



34 ALIGNED Use Cases – Data and Software Engineering Challenges

College Dublin, which incorporates several techniques. The adopted solutions
improved the process of data collection.

The model catalogue tool is used in the analysis phase of model-driven
software engineering to explore and gather metadata related to the system
under construction. It is also used in its search browse and phase life cycle.
In the project, it is primarily the Model Catalogue that is used along with
components of Semantic Booster, both developed by Software Engineering
at Oxford University. In the data engineering context, tools generated by
Booster can be used to provide a well-defined API as well as to search and
gather data into the data store. Booster-generated systems provide, create,
read, update, and delete functionality for data in a data store, as well as
implement any user-specified action, which can then be accessed as triples
via an API (Shah et al. 2017: 381).

In the Jurion use case, an enhanced data quality and repair pipeline was
established with the help of RDFUnit and PoolParty, so that data life cycle
process was suffering from less data errors and schema inconsistencies and
the overall process was accelerated, especially when data or schema changed
over time.

In the Jurion IPG use case, the Model Catalogue is used to provide
accurate descriptions of data fields, including those from linked external data
sources. Such descriptions can aid correct data entry and permit additional
reuse of data within the organisation. The Model Catalogue also aims at
serving as a provider of models to the generated tools and as an environment
where new versions of the data model can be created and evolved. Dacura
was instantiated as an alternative approach, covering the overall process from
model storing, mapping, and a complete automatic generation of the final
future data schema, accompanied by automatic data testing with RDFUnit.

In the NIHR Health Data Finder, the Model Catalogue is the central
resource, holding the master copy of models and documentation. In the
NIHR Health Informatics Collaborative, each site hosts its own instance of
the Model Catalogue, documenting their own data landscape including a
data warehouse, source patient record systems, research systems, and local
data flows. A central installation of the catalogue contains the shared data
specifications, along with local variations, and relevant national specification.
Local catalogue installations can automatically import the latest version of the
central models, and the central catalogue is used to generate XML schema for
use by all partners. In the UK 100,000 Genomes Project, the architecture of
the pilot is of particular interest: information is provided by the hospitals in
the form of XML, matching a schema generated by the Model Catalogue, or



2.3 The ALIGNED Use Cases and Data Life Cycle 35

manually through online Case Report Forms, hosted in a system called Open-
Clinica. Information is extracted via an ETL (extract, transform, load) process
from OpenClinica, combined with a shredded form of XML, and stored in a
matching relational database, generated by a component of Semantic Booster.
Finally, the architecture of the OUH data warehouse follows a similar pattern.
Almost 100 local databases and data specifications are modelled within the
catalogue, along with the design for the main data warehouse. The catalogue
is used to document field-level metadata, summary metadata, and dataflows,
and this information is to be used in the construction of research data extracts
and for generating hospital auditing and service improvement metrics.

One of the major steps in data engineering life cycle was the development
of new approaches to data validation. In particular, it comprised a new tool
developed for the PoolParty semantic suite. The process involved importing
RDF data in PoolParty and using the integrated validation checks to identify
problems, which are reported to the user as constraint checks. The user is
then given options to repair the data consistency. After fixing the inconsis-
tencies, the user can then import the data without the risk of application
failure.

RDFUnit is integrated in PoolParty RDF Validation for performing con-
straint checks. The checks are defined as RDFUnit test cases using RDF.
These test cases can also be run by RDFUnit independently of PoolParty
on external data. For each of the constraint checks, there is an RDFUnit
test case, which is based on a SHACL constraint or a SPARQL query that
identifies resources that cause violations. They together formed the basis for
the Data Quality Framework and the Automated Data Testing and Verification
Framework.

In most cases, constraint violations only become apparent after the import
has been done. In the worst case, this may even cause issues displaying
the data or errors displayed to the user. In other cases, issues could pass
through unnoticed or may only become apparent at a later stage. This means
that users interpret data issues as software issues and report those as bugs
in the SWC support space. Import validation has the potential to provide
major improvements of productivity and data quality in the data development
life cycle. The prototype import validation implemented in PoolParty using
RDFUnit enabled the users to get direct user feedback on violations of data
constraints. The feature provides direct feedback on data consistency con-
straint violation before data are imported. Being able to detect violations of
consistency constraints on data import increases data quality, since problems
are not imported into the system in the first place. The import validation



36 ALIGNED Use Cases – Data and Software Engineering Challenges

features provide increased agility, empowering users to import data without
quality issues. That means, users can react to issues themselves and fix the
data before it gets imported. This improves the connection between the data
development and the software development life cycle.

Notification can improve the usability of the PoolParty software, actively
providing notifications to users based on activity in projects. Currently,
staying informed about activities in projects can only be achieved by review-
ing the project history regularly. The ORE tool suggests new ontology
axioms (enrichment) and recommends semi-automatic fixes (for resolving
violations).

Another important contribution of the ALIGNED project was in the
domain of search, browsing, and exploration. Of particular importance is
Dacura, which is in a position to produce data quality tolerance requirements
to constrain the data to be harvested.13 The CJDE tool is also responsible for
extracting relevant requirement information and hence, tickets and creates
RDF data.

The Dacura approval queue allows also dataset administrators to mon-
itor added data for quality and completeness. Administrators can approve,
deny, publish, and unpublish the Linked Data objects submitted by Seshat
researchers. From a Dacura point of view, it is possible to import large
volumes of IPG data into a structured, rich semantic format according to
a predefined model that is amenable to statistical analysis and offers auto-
mated quality control. Dacura ensures consistency requirements and allows
users to monitor newly added data with respect to quality and completeness
conditions according to defined constraints.

The Unified Views tool allows data to be imported via SPARQL from
third-party datasets; in this case, DBpedia is used as a source of data. The
Unified Views tool also allows the establishment of processing workflows to
automate the importation of such data.

2.4 The ALIGNED Use Cases and Software Life Cycle.
Major Challenges and Offered Solutions

The LOD life cycle consists of five stages for software engineering, includ-
ing: (i) planning – assessment of the feasibility of software to fulfil the
requirements of the user; (ii) analysis – identifying potential problems;

13Shah et al. 2017: 381.



2.4 The ALIGNED Use Cases and Software Life Cycle 37

(iii) design – specification of software intended to achieve the specified goals,
including recognition of necessary components and existing constraints;
(iv) implementation – installation of the software on user machines; and
finally, (v) maintenance – controlling and checking the performance of the
software.

The simplest form of the software development is the waterfall model. It is
assumed that each element in the life cycle is completed in an unproblematic
fashion and there is no need to refer to the previous stage in implementing the
process. However, the major problem with this model is that the execution of
one phase of design may influence the previous stage. This is particularly
apparent in the verification stage when issues in implementation and verifi-
cation will require further effort in design, which means that design may be
said to be unfinished until verification is complete. This may also hold true
in the case of planning and specification while the process of producing a
clear, precise specification may uncover ambiguities or inconsistencies in the
requirements provided.

The integration of both life cycles is only possible when the data engineer-
ing systems, such as Dacura, provide several services to software engineers,
developing software that utilises the data curated by the system. These
include reliable access to data models, change notifications, and the automatic
production of simpler formats, which are more familiar to traditional Web
developers. For example, a GeoJSON stream is automatically made available
describing all the features in the dataset that have a geographical location
associated with them.

The data model developed by the Semantic Web community was made
available to software engineers by providing a metadata registry. The Model
Catalogue discussed above is such a registry. It can also be defined as a toolkit
for creating and managing data models. The Model Catalogue tool was used
to help develop and manage the ontologies used by the system – it supports
OWL models and provides a RESTful API to support easy integration with
third-party tools and incorporation into complex workflows. It was also
integrated into the Eclipse Modelling Framework, allowing existing tools
to more easily use the catalogue for development. Plugin capabilities were
added, facilitating the extension of the catalogue to allow it to interact with
more data sources. Semantic reasoning and search were also added, allowing
the more efficient reuse of ontologies and concepts. The Model Catalogue
was used for Seshat, Jurion IPG and Health Data use cases. In case of Seshat,
the Model Catalogue tool allowed the creation of complex ontology to capture
the complex historical data the project is collecting.



38 ALIGNED Use Cases – Data and Software Engineering Challenges

The Unified Views tool is an ETL tool for RDF data developed as part
of the PoolParty semantic suite. It was used to manage the integration of
datasets from third-party datasets. The development artefacts are imported
into the triple store using a UnifiedViews pipeline. This pipeline runs daily to
keep the data up to the date. The pipeline also calculates similarities between
the issues and requirements. This solution was adopted to Seshat, PoolParty,
DBpedia, Jurion, and Jurion IPG. In the latter use case, it was used to ensure
that the results of the validation processes carried out by Dacura and Semantic
Booster be evaluated, manage this mapping and transformation, and save the
transformed data to a triple store.

As regards the design phase in software engineering life cycle, the evi-
dence for this benefit can be seen particularly strongly in the automated
harvesting and curation interface generation tools developed in the project.
This is particularly evident in case of Dacura that informs the software
engineering analysis phase by defining what data is to be harvested (Shah
et al. 2017: 381). The Dacura Linked Data Model Mapping Service tool
creates rich ontological models from semi-structured HTML and automates
harvesting of data conforming to this model and was heavily tested within the
Jurion IPG use case.

For the implementation phase, the University of Leipzig developed a set
of tools around RDFUnit and DataID, which together formed the basis for
the Data Quality Framework and the Automated Data Testing and Verifica-
tion Framework. Dacura makes it possible to define statistical data quality
measures to be met to support software engineering and suggest UI refine-
ments to eliminate errors. Repair Framework and Notification tool is used in
both implementation and maintenance phase as the defined data constraints
influence the implementation of algorithms and as taxonomies are changes,
the constraints need to be satisfied.14

Semantic Booster tool allows the automatic generation of software sys-
tems from formally specified system specifications. Hence, it supports both
semantic domain models and models of the software and data engineering
life cycles. In particular, Semantic Booster has its strengths in the auto-
matic model and software code creation process. It has also strong quality
constraints, so that no invalid data gets into the transformation process.
This approach was augmented by using RDFUnit for further data quality
checks and which is the prerequisite to connect external open datasets to the
IPG application in an easy and sustainable way. A Booster specification is

14Shah et al. 2017: 380.



2.5 Conclusions 39

designed, which creates a model from the SQL database, along with formal
constraints, which ensure that the data remains correct by construction. The
Model Catalogue tool is then used to manage this data model. Semantic
Booster is used to make this data available as RDF via an API.

This system was deployed in Jurion IPG and Health Data. The use of
Semantic Booster in Jurion IPG allows the introduction of a wider range
of semantic integrity constraints and business rules, to be applied on the
data upon entry – ensuring availability of high-quality data. The automatic
data migration tools provided with Semantic Booster minimise the impact of
upgrading and evolving the underlying data model whilst still maintaining
data consistency. Whilst Semantic Booster can already help enforce a range
of integrity constraints, there are some consistency checks, which would be
more reliably performed using RDF and reasoning. Hence, it was decided to
use the existing D2RQ tool to convert data stored within a Booster database
into RDF format, making it available to the RDFUnit testing tool. The
additional testing and monitoring also provides insight into productivity and
quality gains through the use of the ALIGNED tool stack.

The effective maintenance can be achieved in two alternative ways. The
first approach is provided by a configuration of the Oxford MDE approach,
while the second is by Dacura. A Booster specification is created, which
(i) generates SQL statements to extract the data from the legacy SQL DB
and saves it in a format that can be managed by the Model Catalogue tool
and (ii) the Booster specification should ensure that this extracted data are
correct by construction according to the Booster specification. Then, this
extracted data are made available as RDF via Semantic Booster. In the
approach offered by Dacura services, the Model mapping tool transforms the
SQL schema of the legacy DB into an OWL ontology, which is then used by
the schema checking tool to ensure that all data conforms to the model. The
curation and workflow tools allow data managers to change the model and
migrate the data and manage the process. This ontology is deployed as the
schema for the graph into which the instance data are imported.

2.5 Conclusions

All five use cases in the ALIGNED project were thoroughly analysed to
achieve its major goal, namely to create effective methods and tools for inte-
grating software and data engineering processes and develop full life cycle
workflows for combined software and data engineering. The deployment
of the project designed and produced software and tools led to significant



40 ALIGNED Use Cases – Data and Software Engineering Challenges

enhancement of all case studies and significant improvements in data pro-
ductivity, quality, and agility and eventually user satisfaction and customer
support. In Jurion IPG, of particular significance turned out to be Seman-
tic Booster, showing significant improvements in agility, with the addition
of new attributes being up to 45 times faster. Also, Dacura significantly
improved the management of re-engineering from the old relational database
schema to the new one. In addition, Wolters Kluwer’s Jurion and Jurion
IPG business information database was enhanced with ALIGNED tools,
significantly improving their ability to correct errors and change data schemas
over their previous tools.

The introduction of import validation in the PoolParty use case improved
data quality and reduced customer support time as well as significantly con-
tributed to the ability to fix a number of violations. Overall improvements in
data curation, data agility, model agility, and software development processes
were also achieved. The major achievement in DBpedia was the error rate
improved.

The rebuilding of the Seshat data and tools used the full suite of Dacura
tools to import the data, ensure it met consistency requirements, automatically
produce user interfaces and curation tools, and finally publish the data. It
resulted in a quantifiable reduction in the number of errors in data entry,
while the amount of data entered dramatically increased. The new format
of the dataset enabled the ability to link to external datasets to enrich the
Seshat data. The data generators and users reported an increase in usability
and productivity, and the technical users reported an increase in agility: the
speed in which tools and data can adapt to changes in the model. The shared
model for data validation and software generation involves integration points
with the planning phase of the software engineering life cycle, and the quality
analysis, manual revision/authoring, and search/browse/explore phases of the
data engineering life cycle. In addition, the collaborative consensus required
for updating the model brings additional dependencies on the interlinking and
extraction phases of data engineering.


