
3
Methodology

James Welch1, Jim Davies1, Kevin Feeney2, Pieter Francois1,
Jeremy Gibbons1 and Seyyed Shah1

1University of Oxford, UK
2Trinity College Dublin, Ireland

3.1 Introduction

Software engineering is concerned with the development of reliable computer
applications using a systematic methodology. Data engineering involves the
collation, organisation, and maintenance of a dataset, or data product, and
may be seen as the dual of software engineering. The two processes are
typically treated as separate concerns – largely as a result of different skill
sets. However, there is often a great deal of overlap: dependable software
is reliant on consistent, semantically correct data; processing data at scale
requires high-quality tools and applications.

For most enterprises, the data they hold may well be their most valuable
asset. Day-to-day operations will be dependent on data concerning customers,
payments, and stock. It is vital that this data is of high quality: any loss of
integrity or inconsistencies with operating practices or business processes,
may be costly, and in many cases irreparable. Furthermore, the ongoing
success of the business is increasingly reliant on analysis of the data: his-
torical reporting, predictive analytics, and business intelligence. These latter
processes, along with decreasing costs for storing and managing data, drive
an increase in scale: minimising human effort is vital, and new Big Data tools
and techniques are required to manage ever-larger datasets.

For some organisations, the data may be the primary artefact or the
product in itself. From research enterprises to social networks, the value of
the data stems from its quality, coverage, and completeness. These curated
datasets may be the product of many smaller ones, perhaps different in
structure or domain, and linked to create new, richer datasets. For these

41



42 Methodology

combined datasets, the ability to version and update individual components is
critical: users of the data require up-to-date input, new features, and access to
corrections and clarifications. Tool support must be sympathetic to changes
in requirements and the acquisition of new data, and must scale accordingly.

It therefore follows that Software Engineering and Data Engineering are
closely related. Mission-critical software is reliant on high-quality data, and
the construction and maintenance of large datasets is dependent on secure,
reliable software. Many of the key challenges are common to both disciplines:
correctness, scale, and agility; tools and techniques for improving software
quality may also result in improved data quality and vice versa.

The increase in popularity of “Big Data” analytics means that solutions
to these challenges are required more than ever. The rise in data-intensive
applications – those systems that deal with data that is large in scale, complex,
or frequently changing1 – has brought about a requirement to abandon tradi-
tional methodologies and explore new processes and techniques. A broader
range of software applications for processing data, including visualisation,
natural language processing, and machine learning, have provided new areas
for innovation, and the integration of a range of software components around
an underpinning data corpus has become a typical system architecture.

Engineering processes for both data and software are also required to be
sympathetic to the so-called “Five V’s of Big Data”: velocity, volume, value,
variety, and veracity. The speed at which data can be acquired – manually
through the efforts of large groups, or automatically through complex
applications – can impact the processes of data curation, enriching, and
analysis. The ever-increasing amount of data collected – which can include
static “historical data” and changing contemporaneous data – can reach scales
challenging existing software scalability. The perceived value of data cap-
tured requires precision software, and rigorous data engineering processes,
to ensure continuing accuracy and integrity. The ever-greater heterogeneity
of data to be handled creates semantic issues, which must be resolved when
linking and analysing data. Finally, the quality or trustworthiness creates fur-
ther semantic issues – understanding the meaning, provenance, and accuracy
of data is vital to realising its worth, and all phases of both software and data
engineering processes need to take this into account.

Modern approaches to software engineering consider automation for
agility and correctness, formal techniques for reliability and iterative
approaches to improve delivery time and adapt to requirements. Data

1M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems, O’Reilly Media, 2016.



3.2 Software and Data Engineering Life Cycles 43

engineering as a discipline is less mature, although certain phases of an
iterative process have been identified, and dependencies between phases can
infer a natural development life cycle. However, both life cycles remain inde-
pendent, and finding an integrated process, which considers both software
and data in parallel, remains a considerable challenge.

The content in this chapter is adapted from a paper submitted (in January
2018) to Elsevier’s Journal of Information Sciences.

3.2 Software and Data Engineering Life Cycles

3.2.1 Software Engineering Life Cycle

Modern software development methodologies can be seen as refinements
to the original waterfall process for hardware systems development. First
conceived as a “stagewise” model,2 an instantiation targeting software
development is typically summarised by the diagram in Figure 3.1.

In this most basic process, progress flows one way, through each of
the stages, and one phase cannot begin until the previous phase has been
completed. Each of the stages can be “signed off” by either the customer or
the developer in such a way that completion of a phase can be recognised and
made final. For example, the requirements for the system determine the scope

Figure 3.1 The waterfall process for software development.

2H. D. Benington, Production of large computer programs, IEEE Annals of the History of
Computing 5 (1983), pp. 350–361.



44 Methodology

of the specification; the completed specification document may be seen as a
contract for the design work.

The first major problem with the waterfall model is that the execution
of one phase of design may influence the previous stage. This is particularly
apparent in the verification stage: issues in verification will require further
effort in design; design may be said to be unfinished until verification is
complete. This may also hold true in the case of specification: the pro-
cess of producing a clear, precise specification may uncover ambiguities or
inconsistencies in the requirements provided.

One solution to this problem is to allow feedback from one phase to
modify earlier decisions. This leads to a modified version as proposed by
Boehm,3 in which backward arrows lead from one phase to the preceding
one (see Figure 3.2). Although this allows for some notion of iteration in
development, allowing decisions made in each phase to be revisited, it suffers
from another flaw, that is, estimating delivery time (and therefore cost) can
be very difficult. Without specific bounds on revisiting decisions, overall
implementation can take unspecified amounts of time, leading to frustration
for both developer and customer.

Figure 3.2 A modified waterfall process.

3B. W. Boehm, Software Engineering, IEEE Transactions on Computers 25 (12),
pp. 1226–1241, 1976.



3.2 Software and Data Engineering Life Cycles 45

This uncertainty can be exacerbated by another common problem in
software development: customers often do not know, or understand, precisely
what they want until they have had a chance to see it, or interact with
it. Business rules that may seem fixed at the time of requirements and
specification may need revising in light of constraints in subsequent design
or implementation stages. A good software engineering process must be
sympathetic to revisiting even the earliest requirements decisions after design
and implementation are underway, but still be amenable to stable project
management in order to allow predictable costs and timescales.

More modern approaches to these problems can take two forms. The first
of these is more technical, and directed at the actual design and implementa-
tion process: by reducing the length of time taken to get from requirements
to implementation, decisions can be revisited quickly, and with less devel-
opment effort. Prototyping allows the customer or user to get a feel for the
solution earlier, permitting the requirements or specification to be revisited
sooner in the overall implementation process. Automation in the implemen-
tation phase can reduce the effort involved in updating implementations to
match updated requirements.

The second approach is another update to the software engineering life
cycle, allowing multiple iterations of the traditional model, typically reducing
the retrograde steps in the previous model in favour of completing an imple-
mentation and starting a new requirements and specification iteration sooner.
Figure 3.3 shows a typical iterative software development life cycle.

Figure 3.3 An iterative software development process.



46 Methodology

The iterative model allows a more flexible approach to contracts and
timelines: short cycles of the entire process allow prioritisation of features;
early implementations can be used as prototypes and complex details can
be saved for future iterations when there may be more clarity. Cycles are
typically kept to a predefined length; at the start of each cycle, the scope
of each phase is determined, managing time and cost expectations. Although
system-wide requirements will be gathered throughout the whole cycle, some
analysis will be performed at the start of each cycle in order to confirm the
scope for the next cycle. Overall, time and cost estimation can be managed
more effectively4 and revised at the end of each cycle.

Another advantage to the iterative approach is that it changes the nature
of the maintenance phase. Typically, during the life of the software, func-
tionality will need adjusting to match evolving business requirements. With
the standard waterfall model, the final phase of maintenance is often insuf-
ficient to deal with updated requirements, and the whole process needs to
begin again; an iterative approach takes this into account, and maintenance
can be merged in as part of the overall development and re-evaluation
cycle.

The “Manifesto for Agile Software Development”5 proposes 12 prin-
ciples for such a development process, including to “satisfy the customer
through early and continuous delivery of valuable software”, to “welcome
changing requirements, even late in development”, and to “deliver working
software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale”. The iterative approach is typically
referred to as an “agile” approach, although the principles as set out for
an agile process extend beyond the software life cycle itself and provide
guidance for the way in which developers work as a team and interact with
their customers.

Managing an iterative process effectively can still be difficult: although
individual cycles can be fixed in duration, and development effort within
the cycle may be reasonably estimated, it can still be difficult to manage
priorities and overall development direction. A number of variations on the
iterative, “agile” process have been proposed, and frameworks built around

4A. Begel, N. Nagappan, Usage and perceptions of agile software development in an
industrial context: An exploratory study, in: First International Symposium on Empirical
Software Engineering and Measurement, pp. 255–264, IEEE, 2007.

5K. Beck, Manifesto for agile software development, http://agilemanifesto.org, accessed:
November 2017 (2001).



3.2 Software and Data Engineering Life Cycles 47

them, for example, Scrum’,6 Kanban,7 and Extreme Programming,8 all of
which can help with cost estimation, reducing the time spent on verification
and enhancing code quality.

An agile approach can also be counter-productive for building certain
types of software where solutions are complex and irreducible. Such solutions
require a high degree of planning and design and architectural decision-
making in advance. An iterative development methodology can restrict the
solution space to one in which development time may be reasonably esti-
mated, where progress may be demonstrated at the end of each iteration and
where prioritisation stays consistent.

3.2.2 Data Engineering Life Cycle

As an emerging field of research, the processes of data engineering used in
industrial applications are still relatively immature. The LOD stack LOD29 is
a collection of integrated tools supporting a life cycle for creating and man-
aging Linked Data. Auer et al.10 proposed an iterative process for developing
linked open datasets. Eight core activities of Linked Data management are
identified and managed as phases in an iterative life cycle, consistent with the
principles of Linked Data:

• storage/querying: retrieving and persisting information to be included as
part of the dataset;

• manual revision/authoring: processes for manual curation of content;
• interlinking/fusing: creating and maintaining links between datasets;

6K. Schwaber, M. Beedle, Agile Software Development with Scrum, Vol. 1, Prentice Hall,
2002.

7M. O. Ahmad, J. Markkula, M. Oivo, Kanban in software development: A systematic
literature review, in: Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, IEEE, pp. 9–16, 2013.

8K. Beck, Embracing change with extreme programming, Computer 32 (10), pp. 70–77,
1999.

9S. Auer, V. Bryl, S. Tramp, Linked Open Data–Creating Knowledge out of Interlinked
Data: Results of the LOD2 Project, Vol. 8661, Springer, 2014.

10S. Auer, L. Bühmann, C. Dirschl, O. Erling, M. Hausenblas, R. Isele, J. Lehmann,
M. Martin, P. N. Mendes, B. van Nuffelen, C. Stadler, S. Tramp, H. Williams, Managing
the life-cycle of linked data with the LOD2 stack, in: P. Cudre-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein,
E. Blomqvist (Eds.), International Semantic Web Conference, pp. 1–16, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.



48 Methodology

• classification/enrichment: creating and maintaining links between data
and models of data (which themselves may be linked and part of the
dataset);

• quality analysis: testing for data completeness and correctness;
• evolution/repair: correcting invalid data resulting from a quality analysis

phase via either manual or automated processes;
• search/browsing/exploration: making data artefacts available to domain

experts or to users beyond the original authors;
• extraction: producing or publishing profiles or projections of data to be

used in other applications.

Figure 3.4 shows an iterative life cycle incorporating these stages.
These stages of data engineering have been identified primarily for

building tool support and integrated frameworks, encouraging compatibility
of independent tools within a particular framework. As with the software
engineering process, feedback from one phase may be fed into another. For
example, the models linked during the classification or enrichment stage will
determine the scope of the quality analysis stage; any errors found during
quality analysis may need to be resolved in the evolution/repair phase.

Figure 3.4 A data engineering life cycle.



3.3 Software Development Processes 49

3.3 Software Development Processes

In order to design a combined software and data engineering process, we will
first consider some modern approaches to software engineering at scale and
how phases of the data engineering life cycle might be integrated or merged.
As explained in Section 3.2, automation is often seen as key to improving
both the speed of software delivery and the correctness of the delivered
product. In this section, we will consider three cross-cutting techniques of
software engineering and discuss their advantages and disadvantages. We first
consider model-driven approaches to software development, and the trade-off
between automation and customisation. We then look at formal techniques,
in particular formal specification, validation, and verification. Finally, we
discuss test-driven development and its role in an iterative development
process.

3.3.1 Model-Driven Approaches

MDE describes a development process in which the components of the
final software artefact are derived – either manually or automatically – from
models that typically form part or all the specifications or requirements of the
system. Rather than writing software that understands the data itself, software
is written that understands the modelling language and is capable of handling
updates to the model. Such software can be reused in different applications
within a similar domain, minimising the time spent on the implementation
phase and capturing common repeating patterns that would otherwise have to
be repeated on each cycle of an iterative development.

MDE is a promising starting point for our combined methodology:
by choosing well-suited models that fit the application domain, updating
software to match evolving data can be achieved by simpler updates to a
model. With suitable tool support, this methodology may also allow ordinary
business users to manipulate these models and help bridge the gap between
requirements and specification.

As implied above, MDE approaches fall on a sliding scale between a fully
automated generation process, and something much more manual, allowing
greater flexibility and customisation. An overview of some of the possible
approaches and discussion of their practicality follows below.

The first MDE approach can be described as “full automation”: every-
thing is modelled – including future-proofing – and machine learning is used
to learn how to change the model from the flows of data as their format
changes over time. This approach has significant advantages in terms of



50 Methodology

maintenance cost: once the system is deployed and operational, minimal
further intervention is required. However, although learning how to self-
adapt a model is theoretically possible, it remains impractical for real-world
applications. Another problem is the generation of training datasets for the
machine-learning component: this is currently beyond the scope of most data
engineering projects.

A second approach that appears more practical is where a full model
of system behaviour is manually produced, but a fully functional software
implementation can be generated automatically from the model. The mod-
elling language should be designed in such a way that a broad range of
likely future developments and feature requests can be handled without any
custom code needing to be written. If such tools are written with evolution
and upgrade in mind, they may be used for rapid prototyping, as part of an
iterative agile process or as a technique to manage and enable software change
beyond initial deployment. If the tools for editing and managing models are
good enough, such changes may even be carried out by business users and
deployed instantly, rendering the whole process cost-free from a technical
resources point of view.

Although feasible within particular domains of application, this approach
does not work universally: there can be no theoretical basis for automatically
implementing arbitrary behaviours and functionalities. However, subsets of
the overall problem are tractable, and such modelling languages – also
referred to as DSLs – exist with usable tool support. The UML11 is the
most significant attempt to create a complete modelling language. It does
not have a formal semantics itself, but can be given one for a specific
purpose, and there are many tools based on subsets of the language. UML
has been successfully deployed for building large, complex model-driven
systems. However, in practice, the development and testing of the models
takes considerable amount of time and effort to get right. Such systems are
most appropriate for domains in which a lot of effort is spent moving data
through highly stereotyped workflows that do not change rapidly over time
and where significant resources can be allocated to testing and managing
model updates.

The remaining modelling approaches do not attempt to model behaviours,
limiting their scope to data. The third approach is where a complete data
model, containing a full specification of all the classes and properties that

11J. Rumbaugh, I. Jacobson, G. Booch, Unified Modelling Language Reference Manual,
Pearson Higher Education, 2004.



3.3 Software Development Processes 51

are present in the data, is used to constrain or guide the manipulation of data
corresponding to that model. This approach has the advantage that constraints
on data are easier to define and use than those upon behaviours. A complete
data model can be used to generate a large proportion of software components
in an information system – for example, the data storage mechanism and user
interfaces.

The disadvantages to this third approach are that although generation
processes have been formally solved and public standards such as OWL are
available, in practice, automated software generation from such models is
still very hard and requires tools to be built from scratch. Most importantly,
the conceptual framework and the assumptions underlying the logic of OWL
need to be changed. Existing tools for model management are typically
focussed on knowledge engineers with specific goals and as such are not
really suited to business users.

A fourth approach is that of partial data modelling: where a subset of the
information domain is specified – limited to ad-hoc or incomplete positive or
negative constraints on the data. Here the assumption is made that the model
is not exhaustive, that there are states of the data that are not addressed in the
model. This technique has a particular advantage in processing large datasets:
where data are messy and do not necessarily conform to any model, we can
identify and filter out the most important problems caused by the lack of
structure. A model may be incrementally built, adding rules to specifically
address any issues with the data as they are encountered.

A disadvantage with this approach is that the incompleteness of the model
prevents most automation techniques. Another is that the models are built
up by accumulation of ad-hoc rules and become difficult to manage over
time, invariably becoming a barrier to agility, and may become inconsis-
tent. Changes to the model may result in large changes to the data – or
worse, required changes to the data may go unnoticed or their calculation
or derivation may be infeasible from the model.

3.3.2 Formal Techniques

The use of formal methods in the development of programs has been the
traditional practice for those systems that may be seen as safety-critical: typ-
ically those systems whose failure could endanger human life. Such formal
techniques include the mathematical derivation of program code from precise
specifications, the logical proof that code exactly implements specifications in
the form of contracts, or the exhaustive verification of software to show that



52 Methodology

unwanted behaviours are precluded. Each suffers from the same problems:
that formal techniques are slow and expensive, and do not scale to large
complex software systems. A rigorous, mathematical approach will require
developers with very specialised skills and experience.

However, there have been some successful applications of formal tech-
niques in practical software development. Automation can solve problems of
scalability, but a completely automatic process is impossible in the general
case. One solution is to restrict the problem domain: pattern matching can
be applied to the specification and particular refinements applied; proof
libraries and verification results can be stored for reuse. Another solution is
to focus automation on part of a stepwise process; for example, automatically
generating method stubs or proof obligations for manual completion.

In many cases, formal techniques are associated with a more traditional
waterfall method development. This can be because there is a need for a
detailed, comprehensive specification before the mathematical process can
begin – requiring that much of the solution is explored before any program-
ming starts. Hall12 described the development life cycle of the specification
itself: from Learning through Production and Simplification. These stages are
necessary within any development method, but in a formal code derivation
process, these must typically happen before any code has been written. This
may result in an overall speed increase, but does not incorporate the funda-
mental component of an iterative process: feedback – the user’s response to
an initial implementation.

However, the construction of a complete, precise specification is not
without merit. The explication and analysis of the problem space is invaluable
when developing code, most importantly when a team of developers require
a shared understanding. Human-readable documentation is also important
for giving context and addressing subtleties not obvious from the plain
mathematical statement. By addressing both specification and requirements
in this way, developers have a clearer sense of direction, customers can make
better judgements on the suitability of a solution, and managers can better
manage expectations of time and cost.

3.3.3 Test-Driven Development

A test-driven (or “test-first”) software development proceeds in an itera-
tive fashion, but relies on a short development cycle, focussed on building

12A. Hall, Seven myths of formal methods, IEEE Software 7 (5), pp. 11–19, 1990.



3.4 Integration Points and Harmonisation 53

functionality to meet requirements, rather than specification. At the start of
each iteration, acceptance tests are written to validate the implementation of
the next round of features: the expectation is that these new tests will initially
fail. Minimal changes to the code are made in order to get the test suite
completely passing; once all tests pass, the feature development is complete.
An optional refactoring phase can be used to tidy the code, whilst maintaining
a full suite of passing tests.

As well as measuring the suitability of the latest iteration of develop-
ment, tests also provide a valuable restraint on regressions: that previously
correct functionality is not broken by the latest updates. This can give
users confidence in the stability of the software and reduce the burden for
developers.

An agile test-first approach can lead to high-quality, timely software.
However, some of the caveats about agile, iterative development also apply:
maintaining long-term objectives whilst focussing on short-term goals can
be difficult. Finding appropriate levels of code coverage requires experience:
total coverage is often impossible; tests covering trivial or non-realistic cases
can waste developer time, but too few tests may lead to a reduction in quality.

The test-driven approach to software has obvious parallels in the develop-
ment of large datasets: the quality analysis phase of development can be used
to measure the correctness of the other phases – in particular those of manual
revision, interlinking, and enrichment. Tools for finding inconsistencies in
data – and highlighting areas of concern – are readily available and well
understood by data engineers.

3.4 Integration Points and Harmonisation

Although the processes for software engineering and data engineering dis-
cussed so far are complementary, it is more than likely that in the development
of a data-intensive system, there will be dependencies between the two
processes. In general, an integration point corresponds to any pair of points
in the software and data engineering life cycles where specific artefacts and
processes should be shared. In this section we enumerate three different forms
of integration point: overlaps, synchronisation points and dependencies; we
discuss the importance of each, and consider the difficulties in spotting them.
We conclude the section by examining potential barriers to harmonising the
two processes, in terms of terminologies, development roles, models, and tool
support.



54 Methodology

3.4.1 Integration Points

The first type of integration point between the data and software engineering
processes is that of a natural overlap. This will be particularly prominent
at the start of the project: for example, where the initial implementation
of the software may run in parallel with a manual curation of the initial
dataset. Similarly, in some projects, a phase of testing the software for
correctness may coincide with a phase of quality analysis for the data: bugs
in the software may be a cause of inconsistencies in the data; errors in the
data may uncover issues in the software. In general, overlapping phases
such as these can indicate a requirement for software engineers and data
engineers to work together to ensure successful conclusions in both life
cycles.

More generally, we can consider synchronisation points: where phases in
both cycles are required to start, or finish, at the same time. This could be due
to a release of software coinciding with the linking of a new dataset. It may be
due to external pressures: the implementation of software and manual update
of data to match new business processes; the completion of a cross-cutting
software and data concern before a member of staff leaves the organisation.

More generally still, it is important to consider dependencies between
phases in cycles. Typically this can mean that a phase in one cycle must finish
before another starts, but may simply be that one phase must reach a certain
level of completion. One example where a software engineering phase might
depend on a data engineering phase would be when data quality analysis
must be completed before the requirements for the next iteration of software
development can be signed off. An example where a data engineering phase
may depend on a software engineering phase might be where a particular
software feature must be tested and deployed before some manual data
curation may start.

Such integration points may happen regularly with every iteration – for
example the requirement to migrate data to match the deployment of new
software, or may happen irregularly, for example in response to changes
in business processes, the implementation of new features, or updates to
external data sources. Thus it becomes important to regularly review known
integration points and assess the potential for new integration points in the
future. As this requires insight into both data and software engineering
development plans, along with an understanding of overall roadmaps and
business direction, the integration analysis will involve many stakeholders
across a range of disciplines or technical competencies.



3.4 Integration Points and Harmonisation 55

As with any project management activity, care should be taken to ensure
that dependencies can be appropriately managed. It is conceivable that in rare
cases, cyclic dependencies appear: this may indicate that data and software
engineering phases need more carefully defining – split up or merged – or
that requirements and design need revising. Generic tool support for such
project management is readily available, but specialist tooling – as discussed
in Section 7 – is really only available for software development processes.

The nature of each integration point needs investigation to explore the
best way of addressing it. For example, although some straightforward
dependencies may be seen to be sufficiently addressed by a simple sign-
off process, the criteria for completion must be agreed beforehand. More
complicated dependencies, especially where an overlap in phases is con-
cerned, may require more substantial collaboration between data engineers
and software engineers, perhaps with intermediate checkpoints and combined
requirements.

3.4.2 Barriers to Harmonisation

There are a number of barriers to the easy combination of software and data
engineering processes. Although both processes have foundations in com-
puter science and information engineering, the two disciplines have different
terminology, and different reference or metamodels. The participants in each
will also vary: roles may not have obvious counterparts in the other discipline,
and the people carrying out each role will have different backgrounds and
skills. Highlighting barriers and potential pitfalls is important so that they
can be anticipated and worked around.

An integration point will usually indicate some shared resource between
software and data engineering: typically a requirement, a model or a meta-
model. It can be important to recognise this shared resource and ensure
that both data engineers and software engineers share a collective under-
standing. A common barrier is that of terminology: although engineers
may typically share a common language in the domain of application, with
differing skills and backgrounds, software and data engineers may have
different technical terminology. An example of this is shown in Figure 3.5 –
showing a standard equivalence between terms of abstraction in different
domains: data engineering, model-driven software engineering and more
general programming.

Based on the scope of the project, however, the equivalence may not be
as direct as those shown. For example, in a particular project, one specific



56 Methodology

Meta-level Data engineering So�ware engineering Programming
M3 Schema, 

Ontology Language
Meta-metamodel Grammar nota�on

M2 Upper Ontology Metamodel Language Grammar
M1 Domain Ontology,

Schema
Model Program defini�on

M0 Triple, Dataset Instance, Object Program run�me

Figure 3.5 Comparison of terminology in software and data engineering.

Upper Ontology may be used as a Model in software engineering, which
may be represented at Program Runtime in practice. The abstraction level at
which each artefact is expected to be used when shared between software and
data engineering processes should be documented as part of the process, and
any changes in notation – for example, a process used to turn UML software
models into an OWL ontology – should be automated if possible.

As well as the differing terminologies, the models themselves may differ.
In order to facilitate interlinking, data engineers typically make good reuse
of existing models – for example Dublin Core (DC)13 for generic metadata,
Friend Of A Friend (FOAF)14 for social relationships, or PROV15 for data
provenance information, are all commonly reused or extended. This extension
is an essential part of the data engineering process, allowing dataset linking.
In software engineering, however, reuse of such pure data models is less
common: reuse happens in terms of libraries of functionality. While there are
some libraries that do implement standard data models,16 most are typically
restricted to the most trivial – for example hash maps – or the domain-
specific – for example models of Microsoft Word documents.17 Without
common models for software and data, harmonising the two development
processes will prove difficult.

Enumerating the participants involved in each of the two processes can
also highlight potential hurdles. A wide variety of roles may be involved:
in software engineering, these might be systems or software analysts, devel-
opers and testers; in data engineering these might be data architects, data

13S. L. Weibel, T. Koch, The Dublin Core metadata initiative, D-lib Magazine 6 (12),
pp. 1082–9873, 2000.

14D. Brickley, L. Miller, FOAF vocabulary specification 0.91 (2007).
15P. Groth, L. Moreau, PROV-overview. an overview of the PROV family of documents,

project Report, April 2013.
16C. Mattmann, J. Zitting, Tika in Action, Manning Publications Co., 2011.
17The Apache Software Foundation, Apache POI, http://poi.apache.org, accessed:

November 2017 (2017).



3.4 Integration Points and Harmonisation 57

harvesters and data consumers. There may be roles which can, or should,
be shared across the two processes: requirements engineers, system admin-
istrators, technical or development managers. Users may be technical or
domain experts; they may be users of the software, the data, or both. It is
important that interaction between roles is between both sides of the process:
software developers should understand the concerns of data quality analysts,
for example, and the data architects should collaborate with the software
architects.

Another area where software and data engineers can be divided is on the
use of tools for managing the development process. In software development,
the usual practice is to use an issue-tracking or defect-tracking tool, such
as Atlassian Jira,18 or JetBrains YouTrack.19 Such tools can help orchestrate
an iterative process: plugins are available to manage agile variants such as
Kanban or Scrum. Technical problems can be managed through this process
too: issues can be raised directly by users, taken through a workflow from
prioritisation through development to testing by the developers, and “signed
off” as complete by management or the original users. Customisable work-
flows allow this process to be adapted according to particular development
processes or business culture.

Typically, such tool support for data engineering processes does not exist,
in part due to the relative immaturity of formalised processes, and in part due
to the wide variety of workflows for data curation, some of which will be
specific to particular domains. In some cases, customisable tools such as Jira
can be re-purposed, and plugins developed, but data engineers – especially
the domain experts, who may be non-technical – can often be reluctant to use
such tools aimed at software developers. Processes can often be managed in
a more ad-hoc fashion without tool support or building additional bespoke
support into data curation tools.

Having identified a number of potential barriers to integrating two
different engineering processes, we can consider approaches to success.
Collaboration and harmonisation between two typically distinct teams in an
organisation requires a detailed understanding of the other process and those

18J. Fisher, D. Koning, A. Ludwigsen, Utilizing Atlassian JIRA for large-scale software
development management, Tech. rep., Lawrence Livermore National Laboratory (LLNL),
Livermore, CA (2013).

19JetBrains, JetBrains YouTrack, https://www.jetbrains.com/youtrack/documentation/, acce-
ssed: November 2017 (2017).



58 Methodology

participating in it; of compromise in terms of terminology and modelling;
a sympathy for those solving orthogonal problems within the same space;
and shared sets of resources and tools for collaboration.

3.4.3 Methodology Requirements

Data-intensive systems require careful alignment between data engineering
and software engineering life cycles to ensure the quality and integrity of
the data. Data stored in such systems typically persist longer than, and may
be more valuable than, the software itself, and so it is key that software
development is sympathetic to the aims of “Big Data”: scalability to large
volumes of data; distributed, large-scale research across multiple disciplines;
and complex algorithms and analysis. These are normally described in the
literature as the Five V’s of Big Data: velocity, volume, value, variety, and
veracity.

In existing development methodologies, software and data engineering
are considered as separate concerns.20 Integrating these will introduce a
number of new challenges: software engineering aims of software quality,
agility and development productivity may conflict with data engineering
aims of data quality, data usability, and researcher productivity. Further
challenges include federation of separate data sources, dynamic and auto-
mated schema evolution, multi-source data harvesting, continuous data cura-
tion and revision, data reuse and the move towards unstructured/loosely
structured data.

Auer et al. identified challenges within the domain of life cycles for
Linked Data.21 These include extraction, authoring, natural-language queries,
automatic management of resources for linking, and Linked Data visual-
isation. Typically seen as concerns for data life cycles, they all have a
major impact upon software development: the authors mentioned compo-
nent integration, the management of provenance information, abstraction
to hide complexity, and artefact generation from vocabularies or semantic
representations.

20M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems, O’Reilly Media, 2016.

21S. Auer, J. Lehmann, A.-C. N. Ngomo, A. Zaveri, Introduction to linked data and its
lifecycle on the web, in: Reasoning Web. Semantic Technologies for Intelligent Data Access,
pp. 1–90, Springer, 2013.



3.4 Integration Points and Harmonisation 59

Mattmann et al.22 used their experience of data-intensive software sys-
tems across a range of scientific disciplines to identify seven key challenges
which may be summarised as:

• data volume: scalability issues that apply not just to the hardware of the
system, but may affect the tractability and usability of the data;

• data dissemination: distributed systems bring challenges of interoper-
ability and can lead to complex system architectures;

• data curation: supporting workflows and tools for improving the quality
of data, in a way that allows subsequent inspection or analysis;

• use of open source: complex technologies will depend upon reliable,
reusable components supporting generic functionality;

• search: making the data collected available in a usable fashion to users,
including access to related metadata;

• data processing and analysis: boiling down to workflows, tasks, work-
flow management systems, and resource management components;

• information modelling: the authors state that “the metadata should be
considered as significant as the data”.

The authors split these challenges into further subcategories and pointed
out many interdependencies between these problems. Zaveri et al.23 took a
broader view, highlighting inadequate tool support for Linked Data quality
engineering processes. Where tool support does exist, these tools are aimed
at knowledge engineers rather than domain experts or software engineers.

Anderson agreed with this issue,24 describing a more wide-ranging lack
of support for developers of data-intensive systems. He also identified “the
necessity of a multidisciplinary team that provides expertise on a diverse set
of skills and topics” as a non-technical issue that can be addressed by projects
dealing with large, distributed datasets. A technical equivalent to this issue
is to understand notions of iteration with respect to the data modelling –
he argued that domain knowledge is required in order to understand data
collection and curation. Subsequently, he also argued for technical knowledge

22C. A. Mattmann, D. J. Crichton, A. F. Hart, C. Goodale, J. S. Hughes, S. Kelly, L. Cinquini,
T. H. Painter, J. Lazio, D. Waliser, et al., Architecting data-intensive software systems, in:
Handbook of Data Intensive Computing, pp. 25–57, Springer, 2011.

23A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment
for linked data: A survey, Semantic Web 7 (1), pp. 63–93, 2016.

24K. M. Anderson, Embrace the challenges: Software engineering in a big data world,
in: Proceedings of the First International Workshop on BIG Data Software Engineering,
pp. 19–25, IEEE Press, 2015.



60 Methodology

in order to match frameworks with requirements, emphasising the need for a
multi-disciplinary team.

Some solutions to these challenges have been identified – most notably
in the area of model-driven software engineering, DSLs, and generative
programming. These approaches, in combination with Linked Data languages
and schemas, enable self-describing data structures with rich semantics
included within the data itself. Aspects of program logic previously encap-
sulated in software are now embedded in data models, meaning that the
alignment between data and software engineering becomes even more impor-
tant. But these approaches can lead to further problems: Qiu et al.25 identified
two issues: firstly the interaction between domain experts and application
developers, and secondly that change to schema code may not always impact
application code in a straightforward manner.

3.5 An ALIGNED Methodology

This section outlines the proposed methodology for combined software and
data engineering. We describe it as “lightweight”, because the technique
requires some initial setup and maintenance, and its exact form can be heavily
determined by the exact software and data engineering processes, by the
tools available and the technical members of the team. However, in this
methodology, we propose a general framework for process management, an
iterative methodology, and a number of guidelines or recommendations for
successful integration. We conclude the section by considering tool support
for such a process.

3.5.1 A General Framework for Process Management

In Section 5, we outlined a number of potential barriers to harmonising the
data and software engineering processes. Our general framework is concerned
with reducing the effect of these issues, as well as providing an iterative
methodology that is suitably adaptive in response to changes in context. The
framework is split into two phases: the first, a “setup” phase, involves some
analysis of the preferred engineering processes, the shared resources and
integration points, and the impact of any tools, project roles or terminology
where managing integration points will prove problematic. The second phase

25D. Qiu, B. Li, Z. Su, An empirical analysis of the co-evolution of schema and code
in database applications, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 125–135, ACM, 2013.



3.5 An ALIGNED Methodology 61

is the iterative development, where the outputs of the setup phase are under
a process of continuous revision, such that problems can be foreseen at the
start of each cycle.

The setup phase is broken into four consecutive steps – the first of which is
to perform some basic analysis on the preferred software and data engineering
processes. This will be most greatly influenced by the skills of the technical
collaborators, the preferred management style, and the requirements laid
down by the users. As part of the guidelines later in the section, we strongly
recommend iterative development approaches to both software and data, and
for the remainder of the section assume processes similar to those outlined
in Figures 3.3 and 3.4 – generic iterative approaches corresponding with
an agile approach. However, specific projects may choose, for example, a
specific software testing phase apart from the more general software main-
tenance; or a detailed requirements phase within the data engineering life
cycle.

At this point, we can assume that there is some shared understanding of
the requirements – not necessarily a full detailed consensus, but a general
appreciation for the tools and techniques required to produce a satisfactory
solution. This is not an unreasonable assumption, as in most cases some
contractual negotiations will have preceded a team starting on a development,
or the new development will be part of a rolling series of features given to an
in-house team of engineers working on a particular project.

The second step of the setup phase is to consider the resources that should
be shared between software and data engineers. Typically, this will include
requirements or specification in the form of models, or perhaps metamodels,
that can be shared rather than creating two incompatible versions. Unifying
terminology and semantics is important here: if software and data engineers
have differing interpretations of the same model, any potential advantage
may be lost. Creativity in this part of the process may result in gains later
on: other potentially sharable resources may include test suites and other
quality analysis tools, technical and user-facing documentation, and project
management tools or support. As with all analysis carried out in this setup
phase, it can be revised in later iterations, and so any decision taken here
need not be final.

The third step is to consider the integration points for this particular
project, in the context of the decisions made in the previous two analyses.
Given iterative approaches to software and data processes, and a list of shared
resources, it is possible to build a grid, similar to that shown in Figure 3.6. The
software engineering life cycle steps are enumerated along the top, and the



62 Methodology

Data Engineering So�ware Engineering
Requirements Specifica�on Design Verifica�on Maintenance

Manual revision/ 
Author
Inter-link/fuse
Classify/Enrich
Quality Analysis
Evolve/Repair
Search/Browse/ 
Explore

Extract

Store/Query

Figure 3.6 An incomplete grid for analysing integration points.

data engineering life cycle steps are enumerated on the left-hand side. Each
box in the main part of the grid therefore corresponds to a potential integration
point – for example, the first column in the first row represents a potential
synchronisation between the requirements phase in software engineering with
the manual revision/authoring phase in data engineering.

The grid can now be populated with two pieces of information. The first
is to highlight any squares in which a potential integration point is possible –
this will be based on the shared resources analysed in the previous step. For
example, if a data schema is to be shared, then any changes made as part
of the specification phase could impact some or all the data engineering
phases. Similarly, any shared test cases which are updated as part of the
quality analysis phase in data engineering, will affect the verification phase
of the software development process. The second piece of information is the
tooling that can be used to facilitate the integration at each point in the grid. In
Section 7, we outline some of the tools built by the ALIGNED project that can
be used to support and manage these integration points, but appropriate tools
may be found off-the-shelf, repurposed from software or data engineering,
developed in-house, or built for this specific development. As the need for
data-intensive systems development increases, it is expected that such tools
will be more widely available.

It should be obvious at this point that any identified integration point
without specific tool support may need addressing. In many cases, simple
awareness could be sufficient: highlighting such unsupported integration
points and ensuring greater effort on collaboration at these points in the
process. Alternatively, new tools could be sourced, or processes adjusted to
minimise potential integration.The fourth and final step in this setup phase is



3.5 An ALIGNED Methodology 63

to consider the other barriers to harmonisation, in the context of each integra-
tion point. Software and data engineers involved in the project should come
together to consider how their terminology, standard models, developer roles
and tools can be made compatible in order to ensure maximum integration at
each feasible point.

3.5.2 An Iterative Methodology and Illustration

Once the setup phase is complete, a more traditional iterative development
can begin. In the setup phase, an iterative process for each of the software and
data engineering components was selected. In our methodology, these may
now continue independently in parallel, but constrained by the integration
points previously discussed: overlap, synchronisations, and dependencies. To
ensure that these integration points may be sufficiently addressed, it is our
recommendation that the cycles are aligned, or are coincident at a particular
phase in each cycle – this will be determined by the integration points, and
the shared resources.

To illustrate, we consider a typical scenario encountered by our
ALIGNED project use cases. In this scenario, the software engineering pro-
cess is approximately equivalent to the iterative methodology in Figure 3.3,
and the data engineering process can be seen as similar to that defined in
Figure 3.4. The key shared resource is a complex data model, used as a
reference by the data engineers, but also forming part of the software model:
data modification functionality, business rules, and additional internal data
points are added to the external-facing data model, and used as a specification
document for the software engineers.

In such a process, updates to the data model can occur as part of the
storage/querying phase of the data engineering activity, where new data are
added to the existing data corpus, or as part of the specification phase of the
software engineering activity, where new requirements give rise to updates
in the intended functionality of the system. This forms the key integration
point: there is an overlap in process here, as both software and data engineers
should agree on any updates to the data model, and neither may continue
until the updates made are complete and consistent. It is important that
such a key integration point is well managed: problems here could result
in wasted time and effort in curating a dataset against an incorrect model,
developing software against an invalid or inconsistent schema, or managing
a difficult merge operation between two parallel versions of the same data
model. However, managed properly, having a shared data model is worth the



64 Methodology

effort: a reduction in duplication can save time and money; automation based
on this model can be shared; a common understanding can lead to a more
coherent, better designed solution.

In this scenario, we insist that iterative processes in software and data
engineering may now continue independently, but must synchronise on this
overlapping event: storage/querying and specification. Figure 3.7 shows an
example of such a parallel, synchronising process. In theory, this means that
the iterations of each process should be the same length, and while in some
projects this may be feasible, in others, where a particular phase may be more
burdensome, this may prove to be overly restrictive. In such situations, it
may be possible to relax this guideline, by simply insisting that the iterations
synchronise whenever a change affecting both processes is made to the data
model. For example, after a major release of a combined software and data
product, minor, or patch releases may be made to the software if no changes
are made to the data model, or any changes made do not affect the current
iteration of data engineering. This will allow the software engineers to iterate
a few times within a single iteration of the data engineering process, ensuring
that data engineers have time to satisfactorily complete their iteration, and
that software engineers are not kept waiting before beginning a new iteration.

Such synchronous iterations must be managed with care – those managing
the projects must be made aware of any potential delays, since a delay to one
process will impact the other. In software engineering, developers may be
used to working within time-bounded “sprints” – in which the scope of a
release may be reduced in order to ensure that completion is not delayed.

Figure 3.7 A parallel life cycle with synchronisation.



3.6 Recommendations 65

In data engineering, such practices are less common, and so some training
may be required to ensure all technical staff understand the restrictions. In
developments where software and data iterations coincide, but are of differing
lengths, care must be taken to ensure that any additional iterations do not
impact the shared resources. For example, in the scenario outlined above, any
additional software iterations for a minor or patch release must not update
the shared part of the data model, for otherwise the current data engineering
iteration may be inconsistent with the software that will next be deployed.

3.6 Recommendations

The iterative approach outlined above can provide a framework for combining
software and data engineering processes, in such a way that a certain amount
of autonomy can be maintained in two quite separate disciplines, but also
in a way that can improve consistency and efficiency in the delivery of a
solution made up of two closely coupled components. We now give some
recommendations, based on our experience on a number of use-case projects,
for ensuring that integration points are managed efficiently, and to maximise
collaboration between software and data engineers.

Our first recommendation is that models are shared between software
and data specifications, wherever possible. As previously discussed, this
increases the opportunities for reuse and helps ensure that software and data
remain consistent. We further recommend that these models are formalised
in such a way that removes ambiguities, reducing the chance of inconsistent
assumptions being made by software and data engineers.

Second, we recommend that development is driven by these shared mod-
els, in an automated fashion wherever possible. This reduces the chance of
error in development and can ensure consistency such that developers can
rely on the solutions produced in a parallel iteration.

Third, any solutions for either software or data should be rigorously
tested, where tests are also developed – automatically if possible – directly
from the model. Sharing or reusing test components can prove efficient, as
well as ensuring consistency between data and software.

Fourth, tool support should be used to effectively manage the iterative
process on both software and data sides. As discussed in Section 5, software
engineers are used to using project management software to coordinate
and administer an agile process, but such tools are not commonly used in
data engineering applications. Such tools would need specialist support for



66 Methodology

managing the integration points, and a wider range of developer roles and
responsibilities.

Our final recommendation is that whenever meetings are held to discuss
the iterative process – in particular the planning and feedback stages – these
meetings should be attended by representatives of all solution stakeholders.
The purpose for this is twofold: so that integration points and shared resources
can be carefully managed; and so that the overall roadmap and architecture
can be maintained whilst engineers focus on small iterations addressing short-
term goals.

These five recommendations are derived from the combined experience of
the project use cases, but in every project, their priorities differed, according
to the experience of the development and project management teams, the tools
available, and the particular iterative steps used in each development.

3.6.1 Sample Methodology

As an illustration, in this section, we look at the synchronisation points
required for the ALIGNED use cases.

Table 3.1 outlines the usecase-oriented view of the synchronisation
between Data and Software Engineering life cycles. Each entry of the table
represents a synchronisation point within in the project. The use cases will be

Table 3.1 A usecase-oriented synchronisation table for the ALIGNED project
Data Software Engineering
Engineering Requirements Specification Design Verification Maintenance
Manual
revision/
Author

PS5.1, PS5.2,
JURION
[WKD1]

PS5.1, PS5.2
JURION
[WKD2]

JURION [WKD3]
PS1.4, [Seshat1]

Inter-link/
fuse

PS4.1, PS4.2,
DBpedia
[DBP1]

PS4.1, PS4.2,
PS4.4

DBpedia
[DBP2]

Classify/
Enrich

[Seshat2]

Quality
Analysis

JURION
[WKD4]
DBpedia
[DBP3]

PS1.1, PS1.2,
PS1.3, PS2.3,
PS3.1

PS1.1, PS1.2,
PS1.3, PS2.3,
DBpedia
[DBP4]

Evolve/Repair PS5.3 PS3.1, PS3.2
Search/Browse/
Explore

PS5.1, PS5.2 PS5.1, PS5.2 DBpedia [DBP5]

Extract PS4.1, PS4.2 PS4.1, PS4.2 DBpedia [DBP6]
Store/Query PS5, JURION

[WKD5]
JURION [WKD6]
DBpedia [DBP7]



3.6 Recommendations 67

used to enact the methodology with the tools in Section 7. The following
summary describes the high-level features of each intersection point, in terms
of use cases:

• Manual Revision/Author

◦ A2: [WKD1] In the schema change use case (JS7), it is reflect-
ing the situation that when a schema change is introduced and
forwarded to the software manager in the SE life cycle, which
initiates a process of validating the suitability of the model for use
in SE. [WKD2] In the bug reporting governance use case (JS8),
when a bug is reported and the software analyst finds that the
bug is caused by a data error, he informs the DE expert to fix the
data error via manual revision. [PS5.1] Develop plugins for Con-
fluence and JIRA [PS5.2] Make use of collected process-related
data.

◦ A3: [WKD2] In the bug reporting governance (JS 8) use case, the
SE designer can eliminate scenarios where a data-caused bug could
occur in the future by sending additional constraints to the DE
side, where these constraints are integrated to the schema. [PS5.1]
Develop plugins for Confluence and JIRA [PS5.2] Make use of
collected process-related data.

◦ A4: [Seshat1] We will implement of graphical user interface soft-
ware to author and edit data and the data will be communicated
and captured in the DE life cycle.

• (B) Interlinking/Fusing

◦ B2: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data. [DBP1] Refers to the fact over-
lap and conflict evaluation (DS1.3) and in the interlink evaluation
(DS3.2). DS1.3 refers to validation by fusing data from different
DBpedia language editions and Wikidata in order to identify over-
laps and conflicts. DS3.2 refers to tools that validate external links
to other datasets.

◦ B3: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data [PS4.4] Link Development
Process Data with Data Model Integrity Information.

• (C) Classify/Enrich: There are few synchronisation points where DE use
cases exploit SE tools, possibly because classification in DE is a well-
studied task.



68 Methodology

◦ A5: [Seshat2] The graphical user interface software widgets on the
SE side will be continuously updated and maintained as the DE
schemas evolve.

• (D) Quality Analysis

◦ D2: [DBP3] Quality analysis for mapping (DS2.1), ontology
(DS2.2) and instance data (DS3.1).

◦ [WKD4] When a quality-related schema change is introduced and
accepted in the DE Life Cycle, the changes are communicated
to the SE Life Cycle, where the software is accepted. There is a
protocol for accepting quality changes.

◦ D4: [PS1.1] Constraints for Internal Actions [PS1.2] Rules for
Reasoning and Inferencing [PS1.3] Constraints for Specific
Schemas [PS2.3] Validate Thesaurus Against Schema.

◦ D5: [DBP4] Schemas refers to reports, generated by the automated
mapping validation tool (DS5.1) and erroneous fact report to the
Wikimedia community (DS5.2). [PS1.1] Constraints for Internal
Actions [PS1.2] Rules for Reasoning and Inferencing [PS1.3] Con-
straints for Specific Schemas [PS2.3] Validate Thesaurus Against
Schema.

• (E) Evolve/Repair

◦ E4: [PS5.3] Integrate Data Constraints Information with PPT Data
Migration and Deployment Strategy.

◦ E5: [PS3.1] Formulation of Constraint Violation Repair Strategies
[PS3.2] Creation of Repair User Interfaces.

• (F) Search/Browse/Explore

◦ F2: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data.

◦ F3: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data.

◦ F4: [DBP5] These integration points use the generation of DataID
as a core and auto generate tool for browsing and querying
based on the DataID file. Browsing is achieved by auto gener-
ating a download page for a DBpedia release and querying by
providing a Docker image that contains the release stored in a
triple store.



3.7 Sample Synchronisation Point Activities 69

• (G) Extract

◦ G2: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data.

◦ G3: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data.

◦ G4: [DBP6] Extraction of two additional Wikimedia projects:
Wikimedia Common (DS1.1) and Wikidata (DS1.2), implement-
ing tools in the SE domain that extract the data.

• (H) Store/Query

◦ H2: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data [PS5.3] Integrate Data
Constraints Information with PPT Data Migration and Deployment
Strategy.

◦ [WKD5] This integration point appears in the schema change
(JS 7) use case. Once the schema change is in place in the DE
Life Cycle, new instance by the DE expert to the SE expert. The
new data are used to execute test scenarios on how the new schema
is affects the existing software, to formulate new requirements for
the design and implementation phases.

◦ H4: [DBP7] These integration points use the generation of DataID
as a core and auto generate tool for browsing and querying based
on the DataID file. Browsing is achieved by auto generating a
download page for a DBpedia release and querying by provid-
ing a Docker image that contains the release stored in a triple
store.

A1–F1: The planning phase of the software engineering life cycle does not
contain any synchronisation points. Possibly because there are few tools
for this stage (in general) artefacts produced at this stage are informal and
documentary, and not useful to Data Engineering processes.

3.7 Sample Synchronisation Point Activities

As example, tools from the synchronisation table and details of the changes
made are included below, in the Model Catalogue tool and Semantic Booster.
The aim of the following sections is to demonstrate the methodology using
the example tools. The implication of iteration in the life cycles is also
discussed.



70 Methodology

3.7.1 Model Catalogue: Analysis and Search/Browse/Explore

The Model Catalogue Tool has been developed for use cases supporting
model driven software engineering. The main purpose is to capture, doc-
ument, and disseminate models including software systems, data standards
and data interchange formats, amongst others. The interface of the Model
Catalogue is shown in Figure 3.8. The tool helps end users to analyse
the available models and understand requirements for capturing new data
against existing models. In the standard version, models can be imported

Figure 3.8 Model catalogue interface: browsing the SESHAT code book.



3.7 Sample Synchronisation Point Activities 71

from formalisms such as UML and XSD. Models may be interlinked and
reuse elements from related models. Some of the output formats include
Booster for software generation and Microsoft Word for documentation of the
model.

The catalogue tool has been adapted to support similar data engineering
use cases, and thus bridge between data engineering and software engineering
domains. The main addition has been the import and export of models in
standard data engineering formats, such as RDFS and OWL. For the data
engineer, the tool can be used to explore how their data models are used in
practice in software. The models can be updated and changed without relying
on software engineers to create new versions of software. Models exported
using the catalogue will retain interlinks between models in the two domains.
This allows more streamlined integration of semantic metadata into working
software.

The synchronisation point is bi-directional. The models can capture a
software model from a data engineering model or use the model to capture
data in the data engineering domain. Multiple iterations of the software
engineering and data engineering life cycles will typically result in new
versions of the model; the changes will need to be synchronised after each
iteration. A feature to compare the changes in models in the model catalogue
is planned to support this activity.

3.7.2 Model Catalogue: Design and Classify/Enrich

In model-driven development, the model catalogue tool also supports the
creation of new models for capturing emerging designs for data standards,
software systems, and so on. The tool supports definition of new data classes
and data elements that form the basis of data models. The tool has features
such as model versioning, annotation, collaborative editing and communica-
tion between developers. The models can be built using existing models in
the catalogue or imported from partial models that exist in semi-structured
and human-readable formats such as spread sheets, CSV or text documents.

The model catalogue has been adapted for data engineering activity:
classify data and enrich data models by linking elements with existing model
elements. Model classes can be refined and developed in the catalogue,
capturing new and emerging structures in a data model, which leads to more
precise understanding of the domain. Data engineers can use the catalogue
to link between concepts in separate data engineering standards, and decide
where links are semantically appropriate.



72 Methodology

Similar to the “Analysis and Search/Browse/Explore” synchronisation
point, this sync point is bi-directional. Iterations of the software and data
engineering life cycles can result in new versions of the models. The
model catalogue compare feature will support synchronisation of independent
changes in models across both life cycles.

3.7.3 Semantic Booster: Implementation and Store/Query

Booster is a tool for the model-driven generation of information systems.
High-level specifications are developed in Booster notation, which models
the system implementation. Booster performs a series of translations and
refinements on the model to generate a working system and Application
Programming Interface (API) backed by a standard relational database. A
user interface to the system is provided as an example of how the API
may be used. The tool is used in the software engineering life cycle at the
implementation phase.

Semantic Booster is a set of modifications to the Booster framework
to support some data engineering life cycle activities. The changes add
support for semantic annotation to standard Booster specifications, as shown
in Figure 3.9: Example Semantic Booster System with Annotations. The
Booster translations have been adapted to present the data as triples, with
a SPARQL endpoint. The data in such a Booster system can be accessed
and queried using standard data engineering toolsets. In combination with
the design activity supported in the model catalogue, data engineering tools
can be generated automatically using semantic Booster.

This synchronisation point is unidirectional at the model level, as MDE
provides an implementation for the data engineering domain. The created
implementation will be used by subsequent stages in the data engineering
domain. As the mapping into triple form created by Booster uses a live
version of the data, subsequent data engineering life cycle phases will access
the version of latest data. Any modifications to the data must performed via
the Booster generated API.

3.7.4 Semantic Booster: Maintenance and Search/Browse/
Explore

In model-driven software development, maintenance and adaption of existing
systems is a challenging task. Any changes to a Booster specification must
be reflected in the implemented system, which can require re-generation of



3.7 Sample Synchronisation Point Activities 73

Figure 3.9 Example semantic booster system with annotations.

the implementation. The Booster approach ensures that any data entering a
system are always validated to conform to the constraints. A large or complex
change to the model involves the migration and validation of existing system
data. Previous experiments with Booster have shown that for some model
edits, existing data can be migrated automatically.

The data in Semantic Booster are presented as triples. Using the Booster
mechanism for migration, automated migration of triple data in the Booster
system becomes possible. Once data have been migrated, tools from the data
engineering world can be used to validate the migration for compliance with
the semantic rules of the model.

This synchronisation point is bi-directional. In subsequent iterations of
the software and data engineering life cycles, the model catalogue will cap-
ture changes to the model. Booster will use the changes to automate migration
of data stored in the Booster system; the data will be presented both in the API
of Booster and as triples.



74 Methodology

3.8 Summary

3.8.1 Related Work

That software and data engineering life cycles should be more closely inte-
grated are not a new observation: Cleve et al.26 took a more concrete approach
and also proposed a number of contemporary challenges in system evolution,
based on higher levels of tool support; better tooling for co-evolution of
databases and programs; more agile coding techniques; and aligning data
orientation through Object-Relational Mappings.

A more general-purpose approach to integrating life cycles elicits a num-
ber of broader challenges: software-engineering aims of software quality,
agility and development productivity may conflict with data engineering
aims of data quality, usability, and user productivity. Such is the importance
of this integration work, the NESSI has identified “Collaborative Service
Engineering based on the convergence of software and data” and “Integration
of Big Data Analytics into Business Processes” as EU research priorities.27

Further challenges relating more specifically to Big Data applications have
been identified by Chen and Zhang:28 in particular, those relating to data
capture and storage, curation and analysis are of relevance here: hardware
as well as software limitations can impact the effectiveness of Big Data
techniques and highlighted opportunities may be missed.

Auer et al.29 identified challenges within the domain of life cycles for
Linked Data. These include extraction, authoring, natural-language queries,
automatic management of resources for linking, and Linked Data visu-
alisation. Typically seen as concerns for data life cycles, they all have
a major impact on software development: the authors mentioned compo-
nent integration, the management of provenance information, abstraction
to hide complexity, and artefact generation from vocabularies or semantic
representations.

26A. Cleve, T. Mens, J.-L. Hainaut, Data-intensive system evolution, Computer 43(8),
pp. 110–112, 2010.

27NESSI, Strategic research and innovation agenda, Tech. rep., NESSI, version 2.0, April,
2013.

28C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technolo-
gies: A survey on big data, Information Sciences 275 pp. 314–347, 2014.

29S. Auer, J. Lehmann, A.-C. N. Ngomo, A. Zaveri, Introduction to linked data and its
lifecycle on the web, in: Reasoning Web. Semantic Technologies for Intelligent Data Access,
pp. 1–90, Springer, 2013.



3.8 Summary 75

Mattmann et al.30 used their experience of data-intensive software
systems across a range of scientific disciplines to identify seven key
challenges:

• data volume: scalability issues that apply not just to the hardware of the
system, but may affect the tractability and usability of the data;

• data dissemination: distributed systems bring challenges of interoper-
ability and can lead to complex system architectures;

• data curation: supporting workflows and tools for improving the quality
of data, in a way that allows subsequent inspection or analysis;

• use of open source: complex technologies will depend upon reliable,
reusable components supporting generic functionality;

• search: making the data collected available in a usable fashion to users,
including access to related metadata;

• data processing and analysis: boiling down to workflows, tasks, work-
flow management systems, and resource management components;

• information modelling: the authors state that “the metadata should be
considered as significant as the data”.

The authors split these challenges into further subcategories and pointed
out the many interdependencies between these problems. Zaveri et al.31

took a broader view, highlighting inadequate tool support for Linked Data
quality engineering processes. Where tool support does exist, these tools
are aimed at knowledge engineers rather than domain experts or software
engineers.

Anderson32 agreed with this issue, describing a more wide-ranging lack
of support for developers of data-intensive systems. He also identified “the
necessity of a multidisciplinary team that provides expertise on a diverse set
of skills and topics” as a non-technical issue that can be addressed by projects
dealing with large, distributed datasets. A technical equivalent to this issue
is to understand notions of iteration with respect to the data modelling –
Anderson argued that domain knowledge is required to understand data
collection and curation. Subsequently, he also argues for technical knowledge

30C. A. Mattmann, D. J. Crichton, A. F. Hart, C. Goodale, J. S. Hughes, S. Kelly, L. Cinquini,
T. H. Painter, J. Lazio, D. Waliser, et al., Architecting data-intensive software systems, in:
Handbook of Data Intensive Computing, pp. 25–57, Springer, 2011.

31A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment
for linked data: A survey, Semantic Web 7 (1) pp. 63–93, 2016.

32K. M. Anderson, Embrace the challenges: Software engineering in a big data world,
in: Proceedings of the First International Workshop on BIG Data Software Engineering,
pp. 19–25, IEEE Press, 2015.



76 Methodology

in order to match frameworks with requirements; emphasising the need for a
multi-disciplinary team.

Some solutions to these challenges have been identified – most notably
in the area of model-driven software engineering, DSLs, and generative
programming. These approaches, in combination with Linked Data languages
and schemas, enable self-describing data structures with rich semantics
included within the data itself. Aspects of program logic previously encap-
sulated in software are now embedded in data models, meaning that the
alignment between data and software engineering becomes even more impor-
tant. But these approaches can lead to further problems: Qiu et al.33 identified
two issues: firstly the interaction between domain experts and application
developers, and secondly that changes to schema code may not always impact
application code in a straightforward manner. In this document, we attempt
to tackle these two issues explicitly.

3.9 Conclusions

We have described a flexible methodology for integrating software and data
engineering life cycles, identified a number of barriers to harmonisation,
and made recommendations in order to better implement the combined
methodology, and reduce the impediments. The methodology reflects the
observed practices and experiences of the ALIGNED consortium – across
a range of application domains, development practices, and experiences, both
for the development of new solutions and the evolution of existing ones.
We outlined the application of the methodology in each of the use cases,
describing the particular challenges and requirements faced by each, and
how the use of the methodology has improved development practice. We also
described a number of tools built by the ALIGNED project partners that have
been adapted to fit the integration points in the methodology, showing how
they may be repurposed, or similar tools may be adapted for application to
data-intensive systems.

The use cases presented here represent a small fraction of the potential
application domains: further work is to apply the methodology in a wider
range of projects, with a different selection of tools, and with different
development teams. Further validation may be obtained from more qualitative
or quantitative validation: although it is rare for two system developments to

33D. Qiu, B. Li, Z. Su, An empirical analysis of the co-evolution of schema and code
in database applications, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 125–135, ACM, 2013.



3.9 Conclusions 77

be directly comparable, experienced developers may be able to evaluate the
effectiveness of the methodology against previous practice.

As discussed above, the software engineering life cycle is relatively
mature and is broadly similar in all developments, but the data engineering
processes are less well-defined, and may be more varied in further real-
world applications – perhaps differing by domain or toolsets used. Further
investigation is necessary to ensure that the methodology presented here is
applicable to different data engineering practices.




