
4
ALIGNED MetaModel Overview

Rob Brennan1, Bojan Bozic1, Odhran Gavin1 and Monika Solanki2

1Trinity College Dublin, Ireland
2University of Oxford, UK

The foundation of our ALIGNED methodology is an RDF-based semantic
metamodel or language to describe software and data life cycles, inter-life
cycle events, design intent, and domain models. This common framework for
software and data engineering enables the following techniques for managing
complexity: (1) Model-driven software engineering of data-intensive systems
based on Linked Data; (2) Integrating expert-based data curation workflows
into the software and data quality cycles; and (3) Providing unified views and
governance of both software and data engineering activities when developing
data-intensive systems;

This common metamodel for software and data engineering describes
data-intensive systems both at a system specification level and in terms of
the engineering activities, actors and artefacts.

Figure 4.1 illustrates the ALIGNED metamodels. At the top layer (the
generic metamodel), it documents the common concepts used in data-
intensive systems as a set of Linked Data vocabularies. The next ALIGNED
layer covers the domain-specific metamodels that constitute a vocabulary
and constraints for operating in a specific domain. This layer constrains
the types of data-intensive systems that can be built in terms of architec-
ture and tools, best practices for data collection and curation and common
data assets (e.g., Linked Data datasets to be consumed by applications
in this domain). ALIGNED has developed four domain-specific metamod-
els based on each of our use cases: enterprise information processing
(JURION), e-research in the Social Sciences and Humanities (Seshat), crowd-
sourced public datasets (DBpedia), and enterprise software development
(PoolParty).

79

80 ALIGNED MetaModel Overview

Figure 4.1 The ALIGNED metamodel layers.

Both the generic metamodel and domain-specific model layers are further
specified in the following sections of this document.

4.1 Generic Metamodel

As specified in the last section, the ALIGNED metamodel is split into two
major layers: the upper or generic layer is described in this section.

4.1.1 Basic Approach

The ALIGNED generic metamodel is structured as a set of complementary
vocabularies that can be used to document the development and design of
a data-intensive system throughout its life cycle. It extends the W3C PROV
Ontology (PROV-O) to define software and data engineering agents, activities
and entities. This facilitates the creation of provenance records describing
software and data engineering.

The constituent vocabularies defined are as follows:

Software Life cycle Vocabulary (SLO and SIP): This is split into two
components: the Software Life cycle Ontology (SLO) and the Software
Implementation Process Ontology (SIP). SLO defines a top-level ontology

4.1 Generic Metamodel 81

for describing life cycle processes. SIP uses SLO to define the major agents
(project roles, classes of software tools, etc.), activities (life cycle stages)
and entities (models, code, test cases, etc.) involved in a software engi-
neering project and their relations. SIP is implemented as a set of RDF
modules implementing specific processes in the software development and
implementation life cycle.

Data Life Cycle Ontology (DLO): Defines the major agents (project roles,
classes of software tools, etc.), activities (life cycle stages) and entities
(schema, datasets, code, test cases, etc.) involved in a data engineering project
and their relations with a special focus on capturing the engineering life cycle.

Design Intent Ontology (DIO): Used to document the design decisions
about data-intensive system artefacts such as software components or
datasets. The purpose of the DIO ontology is to model the design intent
or design rationale while undertaking the design of any artefact. A design
intent or design rationale is an explicit documentation of the reasons behind
decisions made when designing a system or artefact.

Domain Vocabulary: Describes the domain(s) of a data-intensive system. It
is the specific data model or knowledge model used within the data-intensive
system. The SLO, DLO, and DIO vocabularies are used to document addi-
tional context or constraints for the domain vocabulary to support semantics-
driven software engineering, data quality engineering, engineering project
governance, and tool integration.

In the subsections below, some basic details about our specification
approach are described. Then we provide an overview of the structure and
contents of each vocabulary.

4.1.2 Namespaces and URIs

Table 4.1 lists the standard prefixes used for each vocabulary. All have been
checked for clashes with prefix.cc.

Table 4.1 Generic metamodel namespace declarations
Generic Metamodel Vocabulary Name Prefix
Data Life Cycle Ontology dlo
Design Intent Ontology dio
Domain Vocabulary This is defined by the specific data-intensive

system rather than by the ALIGNED metamodel.
Software Life Cycle Vocabularies slo, sip

82 ALIGNED MetaModel Overview

Each prefix has been registered as a persistent URL (PURL) with purl.org
or the W3C community persistent name service. These namespaces will be
maintained by TCD servers.

4.1.3 Expressivity of Vocabularies

Since these generic vocabularies are designed to have the widest possible
reuse, they only require the use of RDFS semantics. However, full utilisation
of the model also requires the use of the W3C PROV ontology and in line
with that specification the OWL2 RL profile is used for advanced features of
the model.

4.1.4 Reference Style for External Terms

The ALIGNED metamodel vocabularies (DIO, SLO, DLO) must reference
terms from each other and from externally defined vocabularies or ontolo-
gies. This necessitates an ontology implementation style decision that ranges
from full OWL import statements to free-flowing Linked Data with no
defined style or structure. For ALIGNED, the consortium has decided to
adopt the MIREOT (Minimum information to reference an external ontology
term) implementation style guide.1 This avoids the practical problems with
OWL imports and yet provides some structure around the reuse of existing
resources.

4.1.5 Links with W3C PROV

The basic strategy for the ALIGNED metamodel is to specialise the W3C
PROV ontology to describe software and data engineering activities (pro-
cesses, tasks), entities (engineering artefacts or concepts) and agents (roles or
software tools). Examples include:

• prov:Activity – sub-types defined to describe data or software engineer-
ing life cycle stages

• prov:Plan – used to describe engineering workflows
• prov:Entity – to describe software or data engineering artefacts – test

case, design, test results, and so on
• prov:SoftwareAgent – to describe software engineering tools
• prov:Role – for software and data engineering roles

This approach means that PROV acts as a common upper ontology for all of
our metamodel vocabularies and binds them together into a coherent whole.

1http://obi-ontology.org/page/MIREOT

4.3 Software Engineering 83

It also facilities the creation of provenance records describing software
and data engineering. The software and data engineering tools created in
ALIGNED generate these PROV records as a way of logging their activities
using enterprise Linked Data. This common representation of the domain
facilitates tool integration and the creation of unified governance tools for
combined software and data engineering.

4.2 ALIGNED Generic Metamodel

4.2.1 Design Intent Ontology (DIO)

The purpose of the DIO ontology is to model the design intent or design
rationale while undertaking the design of any artefact. A design intent or
design rationale is an explicit documentation of the reasons behind decisions
made when designing a system or artefact.

The Design Intent Ontology (DIO)2 is a generic ontology that provides
the conceptualisation needed to capture the knowledge generated during
various phases of the overall design life cycle. It provides definitions for
design artefacts such as requirements, designs, design issues, solutions, jus-
tifications, and evidence and relationships between them to represent the
design process and how these things lead to design outcomes. It draws upon
the paradigms of IBIS (Interactive Intent-Based Illustration),3 argumentation,
and design rationale. It is linked to W3C PROV by defining the actors in
the design process as PROV agents and the design artefacts themselves are
PROV entities. It makes few assumptions about the design process used as
the definitions of these activities properly belongs in the software life cycle
and data life cycle models. Figure 4.2 illustrates the conceptual entities in
DIO and their relationships.

4.3 Software Engineering

4.3.1 Software Life Cycle Ontology

The purpose of the SLO is to provide a top-level ontology for describing a
process in the life cycle of a software. The ontology conforms to the ISO/IEC
12207 standard for Systems and software engineering – Software life cycle
processes. The terminology used in the ontology conforms to ISO/IEC TR
24774:2010(E). All subprocesses will require to import this module.

2http://purl.org/dio/
3http://www.cs.columbia.edu/˜doree/IBIS/thesis.html

84 ALIGNED MetaModel Overview

F
ig
ur
e
4.
2

T
he

D
es

ig
n

In
te

nt
O

nt
ol

og
y

(D
IO

).

4.3 Software Engineering 85

Figure 4.3 The Software Life cycle Ontology.

Figure 4.3 illustrates the conceptual entities in SLO. The core concept
is a SoftwareLifecyleProcess, which can be decomposed into sub-processes,
tasks and activities. The SIP ontology (see below) builds on this basic frame-
work to describe standard software engineering processes e.g., requirements
analysis and architectural design.

4.3.2 Software Implementation Process Ontology (SIP)

The purpose of the SIP is to provide a set of conceptual entities to represent
a specified system element implemented as a software product or service.

This ontology imports and builds upon the ALIGNED SLO as the basic
description of a process. It also utilises concepts defined in the SEON
(Software Evolution ONtologies)4 and the Software Ontology (SWO).5

The basic concepts of the SIP ontology are illustrated in Figure 4.4. It
shows the definition of basic software engineering processes and activities

4http://www.se-on.org/
5http://purl.obolibrary.org/obo/swo.owl

86 ALIGNED MetaModel Overview

Figure 4.4 Core Concepts of the Software Implementation Process (SIP) Ontology.

such as requirements analysis, design, implementation, integration in terms
of SLO activities and processes.

4.4 Data Engineering

4.4.1 Data Life Cycle Ontology

The purpose of the DLO is to provide a set of conceptual entities, agents,
activities, and roles to represent the general data engineering process. Fur-
thermore, it is the basis for deriving specific domain ontologies which
represent life cycles of concrete data engineering projects such as DBpedia
or Seshat.

Figure 4.5 shows the main classes of the data life cycle model. We
have used the W3C PROV ontology, in this example represented by the
classes Role, Person, Entity, and Activity. We use the Process class which
is derived from Activity to implement the Linked Data Stack life cycle stages
as subclasses. This allows us to represent LOD activities in our data life
cycle metamodel. In addition, we have modelled datasets, data sources, and

4.5 DBpedia DataID (DataID) 87

Figure 4.5 Generic data life cycle metamodel (DLO).

data repositories. For datasets, we import the W3C Data Catalog Vocabulary
(DCAT)6 definition of a dataset as it is a broad definition that goes beyond
representing only RDF-based datasets.

The full documentation and OWL ontology file of the ALIGNED data life
cycle model can be downloaded from http://www.essepuntato.it/lode/owlapi/
https://w3id.org/dlo.

4.5 DBpedia DataID (DataID)

DataID is a multi-layered metadata system, extending both the DCAT and
PROV Ontology to provide more specific dataset metadata. Depending on
context, type of data and use case, this core ontology can be augmented by
multiple existing extensions (e.g., Linked Data, repository descriptions, etc.).

DataID core, as the kernel element of this ecosystem, describes datasets
and their different manifestations, as well as relations to agents like persons
or organisations, in regard to their rights and responsibilities. Together with

6http://www.w3.org/TR/vocab-dcat/

88 ALIGNED MetaModel Overview

DLO, DataID core constitutes the data management side of the ALIGNED
Suite of Ontologies.7

The DBpedia DataID core vocabulary is a metadata system for detailed
descriptions of datasets and their different manifestations. Established vocab-
ularies like DCAT, VoID, PROV-O and FOAF are reused for maximum
compatibility, in order to establish a uniform and accepted way to describe
and deliver dataset metadata for arbitrary datasets and to put existing stan-
dards into practice. In addition, DataID can describe the relations of Agents
(like persons or organisations) to datasets with regard to their rights and
responsibilities.

Due to the growing complexity and different usage purposes, the DataID
ontology was modularised into a core ontology and multiple mid-layer
ontologies. While the core ontology is mandatory for any of the mid-level
ontologies presented, none of those are required for describing data. That
being said, in many use cases, some or all the mid-level ontologies will be a
useful extension.

The DataID core vocabulary (Figure 4.6) describes datasets (based heav-
ily on the DCAT ontology), as well as their relation to agents like persons or
organisations with regard to their rights and responsibilities.

DataID

dct:temporal

dct:spatial

dcat:theme

dcat:record dataid:inCatalog

dcat:dataset

dct:language dct:language

dataid:previousVersion
dataid:nextVersion
dataid:latestVersion

dataid:identifier

dataid:associateAgent dct:publisher dct:creator

dct:creator

dataid:identifier

dataid:identifierScheme

datacite:usesIdentifierScheme

dataid:authorizedAgent

dataid:hasAuthorization

dataid:authorizedAction

dataid:authorizationScope
dataid:authorizedFor

dataid:underAuthorization
dataid:needsSpecialAuthorization

Legend:

defined by the DataID ontology

external concept by other ontology

dataid:SS abbrev. for dataid:SimpleStatement dataid:authorityAgentRole

dataid:allowsFor

Core Ontology:
Markus Freudenberg

Martin Brümmer

dataid:innerMediaType

dcat:mediaType

dataid:checksum

dct:licensedct:license

void:subset
dct:isPartOf

dataid:datasetRelationRole

dcat:distribution
dataid:distributionOf

dataid:qualifiedDatasetRelation

dataid:qualifiedRelationOf

dataid:qualifiedRelationTo

foaf:primaryTopic

foaf:isPrimaryTopicOf
dataid:DataId

time:Interval

geonames:Feature

skos:Concept

dcat:Catalog

lvont:Language

dataid:Dataset

dataid:DatasetRelationship

dataid:DatasetRelationRole

dataid:Superset

odrl:Policy

spdx:Checksum

dataid:Distribution

dataid:MediaType

dataid:SingleFile

dataid:Directory

dataid:FileCollection

dataid:ServiceEndpoint

datacite:IdentifierScheme

dataid:AuthorizedAction

dataid:EntitledActiondataid:ResponsibleAction
dataid:AgentRole

dataid:Agent

dataid:Identifier

dataid:Authorization

prov:Entity

subClassOf: dcat:CatalogRecord,
void:DatasetDescription, prov:Entity

dct:title : rdfs:Literal
dct:description : rdfs:Literal
dct:issued : xsd:data
dct:modified : xsd:date

dct:title : rdfs:Literal
dct:description : rdfs:Literal
dct:issued : xsd:date
dct:modified : xsd:date
dct:rights : rdfs:Literal
foaf:homepage : foaf:Document

subclassOf: void:Dataset, dcat:Dataset,
prov:Entity

dct:title : rdfs:Literal
dct:rights : dataid:SimpleStatement
dct:description : rdfs:Literal
dct:issued : xsd:date
dct:modified : xsd:date
void:entities : xsd:integer
void:classes : xsd:integer
void:distinctObjects : xsd:integer
void:vocabulary
dcat:keyword : rdfs:Literal
dcat:landingPage : foaf:Document
foaf:page : foaf:Document
dataid:dataDescription : dataid:SS
dataid:openness : dataid:SS
dataid:growth : dataid:SS
dataid:reuseAndIntegration : dataid:SS
dataid:similarData : dataid:SS
dataid:usefulness : dataid:SS

subclassOf : datacite:Identifier

dataid:literal : rdfs:Literal
dct:references : foaf:Document
dct:issued : xsd:date

subclassOf: prov:agent, foaf:Agent

foaf:name : rdfs:Literal
foaf:mbox : rdfs:Literal
foaf:homepage : foaf:Document
foaf:account : foaf:OnlineAccount

subclassOf: skos:Concept

subclassOf: prov:Attribution

dataid:isInheritable : xsd:boolean
dataid:validFrom : xsd:date
dataid:validUntil : xsd:date

subclassOf: prov:role,
skos:Concept

dataid:Guest
dataid:Creator
dataid:Maintainer
dataid:Contributor
dataid:Contact
dataid:Publisher

subclassOf: dataid:AuthorizedAction

dataid:ResponseToContact
dataid:ResponseToLifeCycleEvent
dataid:PublishingDecision
dataid:UpdateDataId
dataid:AgentSupervision

subclassOf: dataid:AuthorizedAction

dataid:ReadContent
dataid:ModifyContent
dataid:DeleteContent
dataid:ModifyAuthorizedAgents
dataid:ModifyAuthorization
dataid:ModifyAgentRoles

subclassOf: dct:MediaType

dataid:typeName : rdfs:Literal
dataid:typeTemplate : rdfs:Literal
dataid:typeReference : rdfs:Resource
dataid:typeExtension : rdfs:Literal

subclassOf:
prov:EntityInfluence

subclassOf: prov:Role

subclassOf: dcat:Distribution, prov:Entity

dct:title : rdfs:Literal
dct:description : rdfs:Literal
dct:issued : xsd:date
dct:modified : xsd:date
dcat:downloadURL : rdfs:Resource
dcat:accessURL : rdfs:Resource
dcat:byteSize : xsd:integer
dataid:uncompressedByteSize : xsd:integer
dataid:preview : rdfs:Resource
dataid:accessProcedure : dataid:SS
dataid:softwareRequirement : dataid:SS

Figure 4.6 The DataID Ontology.

7http://aligned-project.eu/data-and-models

4.6 Unified Quality Reports 89

The full documentation and OWL ontology file of DataID can be down-
loaded from DBpedia,8 the DataID landing page at DBpedia,9 and through
the ALIGNED website.

4.6 Unified Quality Reports

4.6.1 Reasoning Violation Ontology (RVO) Overview

The purpose of RVO is to enable a reasoner to describe reasoning errors
detected in an input ontology, in order to facilitate the integration of reasoners
into semantic Web tool chains.

It is defined as a simple OWL 2 ontology that is amenable to RDFS-based
interpretations or use as a Linked Data vocabulary without any dependence
on reasoning. A permanent identifier for the ontology has been registered
with the W3C permanent identifier community group. The full source of the
ontology is published online. This ontology is used to describe RDF and
OWL reasoning violation messages in the Dacura Quality Service. These
are generated by running an RDF/RDFS/OWL-DL reasoner over an RDF-
based ontology model and allowing the Dacura quality service to report
any integrity violations detected at schema or instance level. These viola-
tions report areas where the input model is logically inconsistent or breaks
RDFS/OWL semantics or axioms. Violations may be reported as based on
open world or closed world assumptions. The open world is the default OWL
semantics and can typically only detect a limited number of problems due
to incomplete knowledge. The closed world interpretation assumes that you
have provided all relevant aspects of the model and is able to detect a much
wider range of violations, e.g., missing or misspelled term definitions. This is
often useful during ontology development or in a system that interprets OWL
as a constraint language.

RVO will allow machine-readability and interpretation of detailed rea-
soning error messages. Furthermore, this would enable building tools to
verify the OWL DL compliance of an ontology, find out which best practice
requirements the ontology meets or violates, track the impact of interpreting
the ontology in open and closed world contexts, identify the exact position of
violations, and support intelligent visualisation of errors. The structure of the
base RVO classes is shown in Figure 4.7.

8http://dataid.dbpedia.org/ns/core.html
9http://dbpedia.org/projects/dbpedia-dataid#Data%20model

90 ALIGNED MetaModel Overview

Figure 4.7 Reasoning Violation Ontology (RVO) Base Classes.

RVO class and instance violations are shown in Figure 4.8. Class viola-
tions are used for reporting issues regarding the TBox and instance violations
ABox in general. Therefore, class violations are reported when e.g., property
domains are missing, subsumption errors are detected, or class and property
cycles are found. Instance violations show instances which are not elements
of valid classes, cardinalities which are incorrect, property constraints that are
violated, literals and objects which are confused, and so on.

The full documentation and OWL ontology file for RVO can be down-
loaded using the LODE documentation service and the persistent URI for the
ontology.10

Example

This example shows a ClassViolation which is a SchemaViolation and more
specifically a ClassCycleViolation. Such specific violation detection results
make it possible to provide exact suggestions to ontology developers or
repair agents and trigger ontology improvements. Figure 4.9 shows the errors
produced by this violation.

Ontology Snippet Producing the Violation:

seshat:Territory seshat:hasValue xsd:DateTime.

10http://www.essepuntato.it/lode/owlapi/https://w3id.org/rvo

4.6 Unified Quality Reports 91

Figure 4.8 RVO Instance and Schema Violation Classes.

Figure 4.9 Resulting RDF Graph after Validation.

4.6.2 W3C SHACL Reporting Vocabulary

The Shapes Constraint Language is a language to validate RDF graphs against
a set of constraints. These constraints are formalised as shapes and other
constructs expressed in the form of an RDF graph. The language features
and approaches occurring in the current specification of SHACL were in

92 ALIGNED MetaModel Overview

part inspired by the SPIN11 and Shape Expressions (ShEx). The current
revision of the specification for SHACL is published by the W3C12 with
complementary material available in a GitHub repository.13

SHACL Core defines frequently needed features to formulate common
constraints for RDF graphs. SHACL Core Constraints are defined by param-
eterising Constraint Components that are templates for checks for a specific
required property of an RDF nodes (e.g., unique occurrence of a property
value associated with a specific property, for instance only one foaf:age value
for a given foaf:Person). One or several of such constraints are associated
with target RDF nodes to validate against in a SHACL Shape. SHACL shapes
are expressed as RDF resources and aggregated in a Shapes Graph. An RDF
graph to be checked for conformance against a Shapes Graph (the Data
Graph) is provided to a Validation Engine that produces a Validation Report.
The Validation Report states whether the Data Graph conforms to the Shapes
Graph, listing violations of individual RDF nodes against shapes detected
during the validation process in case of non-conformance.

SHACL Example

The following example data graph contains three SHACL instances of the
class ex:Person. It is taken from the SHACL documentation.
ex:Alice

a ex:Person ;
ex:ssn "987-65-432A" .

ex:Bob
a ex:Person ;
ex:ssn "123-45-6789" ;
ex:ssn "124-35-6789" .

ex:Calvin
a ex:Person ;
ex:birthDate "1971-07-07"ˆˆxsd:date ;
ex:worksFor ex:UntypedCompany .

The following conditions are shown in the example:
A SHACL instance of ex:Person can have at most one value for the

property ex:ssn, and this value is a literal with the datatype xsd:string that
matches a specified regular expression.

A SHACL instance of ex:Person can have unlimited values for the
property ex:worksFor, and these values are IRIs and SHACL instances of
ex:Company.

11http://spinrdf.org/
12https://www.w3.org/TR/shacl/
13https://github.com/w3c/data-shapes

4.6 Unified Quality Reports 93

A SHACL instance of ex:Person cannot have values for any other property
apart from ex:ssn, ex:worksFor and rdf:type.

These conditions can be represented as shapes and constraints in the
following shapes graph:

ex:PersonShape
a sh:NodeShape ;
sh:targetClass ex:Person ; # Applies to all persons
sh:property [# _:b1

sh:path ex:ssn ; # constrains the values of ex:ssn
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:pattern "ˆ\\d{3}-\\d{2}-\\d{4}$" ;

] ;
sh:property [# _:b2

sh:path ex:worksFor ;
sh:class ex:Company ;
sh:nodeKind sh:IRI ;

] ;
sh:closed true ;
sh:ignoredProperties (rdf:type) .

The shape declaration above illustrates some of the key terminology used
by SHACL. The target for the shape ex:PersonShape is the set of all
SHACL instances of the class ex:Person. This is specified using the prop-
erty sh:targetClass. During the validation, these target nodes become focus
nodes for the shape. The shape ex:PersonShape is a node shape, which
means that it applies to the focus nodes. It declares constraints on the focus
nodes, for example using the parameters sh:closed and sh:ignoredProperties.
The node shape also declares two other constraints with the property
sh:property, and each of these is backed by a property shape. These property
shapes declare additional constraints using parameters such as sh:datatype
and sh:maxCount.

Some of the property shapes specify parameters from multiple constraint
components in order to restrict multiple aspects of the property values. For
example, in the property shape for ex:ssn, parameters from three constraint
components are used. The parameters of these constraint components are
sh:datatype, sh:pattern and sh:maxCount. For each focus node the property
values of ex:ssn will be validated against all three components.

4.6.3 Data Quality Vocabulary

The Data Quality Vocabulary (DQV) is an extension to the DCAT vocabulary
which covers data quality, frequency of updates, user correction, persistence,
and other properties of the dataset in question. It is designed to improve trust
in data. It does not provide a determination of what quality is, but instead

94 ALIGNED MetaModel Overview

seeks to allow data consumers to judge whether the data in a dataset is
suitable for their uses, and to publish their opinions and annotations about
the dataset and its quality. The vocabulary seeks to do this by making it easier
to publish, exchange, and consume metadata at every step of the dataset life
cycle. Figure 4.10 shows the DQV ontology.

The quality of a dataset is assessed via certain observed properties. To
express these properties, an instance of a dcat:Dataset or dcat:Distribution
can be related to five different types of quality information represented by the
following classes:

• dqv:QualityAnnotation represents feedback and quality certificates
given about the dataset or its distribution.

• dcterms:Standard represents a standard the dataset or its distribution
conforms to.

• dqv:QualityPolicy represents a policy or agreement that is chiefly
governed by data quality concerns.

• dqv:QualityMeasurement represents a metric value providing quantita-
tive or qualitative information about the dataset or distribution.

Figure 4.10 Data model showing the main relevant classes and their relations.

4.6 Unified Quality Reports 95

• prov:Entity represents an entity involved in the provenance of the dataset
or distribution.

DQV defines quality measures as specific instances of Quality Measurements,
adapting the daQ quality framework. It relies on quality dimensions and
quality metrics. Figure 4.11 shows the interrelation of statements about data
quality.

A Quality Dimension (dqv:Dimension) is a quality-related character-
istic of a dataset relevant to the consumer (e.g., the availability of a
dataset).

A Quality Metric (dqv:Metric) gives a procedure for measuring a data
quality dimension, which is abstract, by observing a concrete quality indica-
tor. There are usually multiple metrics per dimension; e.g., availability can be
indicated by the accessibility of a SPARQL endpoint, or that of an RDF dump.
The value of a metric can be numeric (e.g., for the metric “human-readable
labeling of classes, properties and entities”, the percentage of entities having
an rdfs:label or rdfs:comment) or Boolean (e.g., whether or not a SPARQL
endpoint is accessible).

Besides quality measurements, DQV considers certificates, standards,
and quality policies, which can also be organised according to dimen-
sions. Quality metadata containers (dqv:QualityMetadata) can group together
different quality statements, so that their provenance can be tracked jointly.

Figure 4.11 Using the property prov:wasDerivedFrom to interrelate quality metrics and
other quality statements.

96 ALIGNED MetaModel Overview

4.6.4 Test-Driven RDF Validation Ontology (RUT)

The RDFUnit ontology describes concepts used in RDFUnit, a test-driven
RDF Validation framework that can run automatically generated (based on a
schema) and manually generated test cases against an endpoint.14

14“NLP data cleansing based on Linguistic Ontology constraints” pp. 5–7, http://jens-
lehmann.org/files/2014/eswc rdfunit nlp.pdf, ESWC, 2014.

4.6 Unified Quality Reports 97

Table 4.2 Domain-specific metamodel namespace declarations
Domain-specific Metamodel Vocabulary Name Prefix
Enterprise information processing eip
E-research in the Social Sciences and Humanities sdo
Crowd-sourced public datasets pds
Enterprise software development sdev

Domain-Specific Extensions

Namespaces

Table 4.2 lists the standard prefixes used for each vocabulary. All have been
checked for clashes with prefix.cc. Each prefix has been registered as a
persistent URL (PURL) with purl.org or the W3C community persistent name
service. These namespaces will be maintained by TCD servers.

Enterprise Information Processing

The purpose of the Enterprise Information Processing Domain-specific Meta-
Model (EIPDM) is to provide a set of concrete entities, agents, activities,
and roles to represent the data engineering process. It is based on the general
DLO. The initial information gathered to build the domain-specific enterprise
information processing metamodel is based on the JURION use case. The
JURION use case includes both processes for data and software development
and therefore uses the DLO and the SLO.

As the JURION use case includes the both processes of data (D) and
software development (S), the model information are marked with their
respective process type.

The actors identified in JURION are listed in Table 4.3. The entities iden-
tified in JURION are listed in Table 4.4. The activities are listed in Table 4.5.

For functionalities, we have a number of existing models for different
kinds of documents. Depending on the document type, there is different
mandatory metadata and additional information.

e-research in the Social Sciences and Humanities

The purpose of the ALIGNED E-research in the Social Sciences and Humani-
ties domain-specific metamodel is to provide a set of concrete entities, agents,
activities, and roles to represent the specific data engineering process for
e-research in the social sciences and humanities. It is based on the Seshat
use case within ALIGNED. It specialises the ALIGNED generic DLO and
imports the W3C PROV ontology.

98 ALIGNED MetaModel Overview

Table 4.3 JURION actors
Actor Description
CMS Expert Responsible for the technical correctness of process and data
Content Architect Responsible for the overall process and schemas
Legal Domain Expert Responsible for ensuring that legal data are correct
Legal Editor Responsible for editing legal information
Product Owner Wants the best possible product
Schema Expert Responsible for executing and documenting schema changes
Software Developer Review requirements, suggest possible solutions, estimate cost of

certain features and bugfixing actions and implement them.
Software Manager Coordinates all software development teams and projects
Software Testers Perform manual testing, issue and observe automated test runs
Software Analyst Studies the application domain and defines requirements based on

his experience the software on the one hand, and the domain and
customers on the other hand

Customers Partners and testers

Table 4.4 JURION entities
Entity Description
Schema Changes Schema changes are done at regular intervals
Test Cases Data tests
Text files In XML, data in Ontowiki, databases –

specific with constraints
Controlled Vocabularies Several controlled vocabularies are maintained

in PoolParty
Data Sources External data sources
Testing Suites Java unit tests, Jenkins, Performance Tests,

Integration Test, Sonarqube
Source Code Git and SVN repositories
Server Infrastructure Servers that support the development process
Data/Software Requirements Documents Mostly unstructured and free-text description

of new features

This model adds support for specific external data sources for datasets
like wikis, Web pages, and academic paper repositories. It adds new entities
to represent candidate data for inclusion in a dataset, reports of historical
events and historical interpretations created by domain experts. It extends
the set of data life cycle processes to include data curation activities such as
data collection and data publishing. Finally, new roles are defined for data
consumer, processor and producer tools that help maintain semi-automated
data curation pipelines or workflows.

4.6 Unified Quality Reports 99

Table 4.5 JURION activities
Activity Description
Specify and model data e.g., definition of base URI and schema mapping
Transform data Transformation process from XML to RDF format
Integrate/Upload data Integrate new datasets, entities, and so on
Maintain data Enrich, delete, change, curate
Link data Mapping with internal or external sources, link sources
Extract data Generate test data, configure, test, review, e.g., for classification

purposes
Use data e.g., for visualisations, search, and so on
Quality analysis of data Checking for consistency, integrity, and so on
Plan Software Requirements planning, application evolution, data requirements

for the data development team
Analyse Software Requirement validation – requirements changes, version

tracking, schema/data-based software evolution analysis
Design Software Design verification, query design, design evolution via mapping

evaluation
Implement Software Code generation and transformation, application verification
Software maintenance Schema and instance change impact evaluation, bug

classification
Publish data Converting a dataset to a release

Figure 4.12 illustrates the concepts found in the ontology. A full specifica-
tion of the model is available online at http://www.essepuntato.it/lode/owlapi/
https://w3id.org/sdo.

Seshat Domain Ontologies

The Seshat Domain Ontology Set consists of the following specific ontolo-
gies: seshat, xdd, and dacura.

seshat

This ontology describes human societies throughout time. It is used by the
Evolution Institute and its partners to describe time-series data collected
about all human societies. Figure 4.13 shows the seshat ontology in graphic
form.

The most important classes are:

• Polity: A polity is defined as an independent political unit. Kinds of
polities range from villages (local communities) through simple and

100 ALIGNED MetaModel Overview

Figure 4.12 The ALIGNED domain-specific ontology for E-research in the Social Sciences
and Humanities.

seshat:Event

seshat:MetaConflict

seshat:Siege

seshat:SubPolity

seshat:QuasiPolity

seshat:Polity

seshat:NGA

seshat:FreeFormArea

seshat:Territory
seshat:War

seshat:Duration

seshat:EphemeralEntity

dacura:Entity

seshat:Building

seshat:Organisation

seshat:DegreeOfCentralisation

seshat:SupraculturalEntity

seshat:ReligiousSystem

seshat:InterestGroup

seshat:PoliticalAuthority

seshat:Battle

seshat:NavalEngagement

seshat:LandBattle

seshat:EpistemicState

seshat:City

dacura:CoordinatePolygon

seshat:professionalMilitaryOfficers
seshat:professionalSoldiers

seshat:professionalPriesthood
seshat:fulltimeBureaucrats
seshat:examinationSystem

seshat:meritPromotion
seshat:formalLegalCode

seshat:specialisedGovernmentBuildings
seshat:judges
seshat:courts

seshat:utilitarianPublicBuildings
seshat:irrigationSystems

seshat:drinkingWaterSupplySystems

seshat:precedingQuasipolity

seshat:territory
seshat:capital

seshat:succeedingQuasipolity

seshat:hasDiplomaticRelationsWith

seshat:warDate
seshat:duration

seshat:degreeOfCentralisation

seshat:originalName

seshat:warName

seshat:scaleofSupraculturalInteraction
seshat:supraculturalEntity

seshat:peakDate

seshat:utmZone
seshat:alternativeNames

seshat:populationOfTheLargestSettlement
seshat:population

seshat:largestCommunicationDistance
seshat:administrativeLevels
seshat:settlementHierarchy

seshat:religiousLevels
seshat:militaryLevels

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

owl:oneOf

Absent Unknown Present

xsd:string

xsd:string

xsd:string

xsd:string

xsd:string

xsd:gYear

xsd:integer

xsd:integer

rdfs:subClassOf

Figure 4.13 The Seshat ontology.

4.6 Unified Quality Reports 101

complex chiefdoms to states and empires. A polity can be either cen-
tralised or not (e.g., organised as a confederation). What distinguishes a
polity from other human groupings and organisations is that it is politi-
cally independent of any overarching authority; it possesses sovereignty.
Polities are defined spatially by the area enclosed within a boundary on
the world map. There may be more than one such areas. Polities are
dynamical entities, and thus their geographical extent may change with
time. Thus, typically each polity will be defined by a set of multiple
boundaries, each for a specified period of time. For prehistoric periods
and for geographical areas populated by a multitude of small-scale
polities, we use a variant called quasi-polity.

• TemporalEntity: An abstract concept describing anything that must have
temporal bounds.

• PointInSpace: This is an abstract class for all points in space.
• Box: Class for boxing datatypes in order to add annotations.

Which have the following properties:

• alternativeName: The name of a seshat Entity. Generally same as the
name of the wiki page.

• population: Estimated population of the polity; can change as a result
of both adding/losing new territories or by population growth/decline
within a region.

• name: The name of a seshat Entity. Generally same as the name of the
wiki page.

• peakDate: A property used to define the temporal bounds of a seshat-
box:TemporalEntity. For example, corresponds to the Duration for a
Polity from the Seshat code book.

• longitude and latitude: In numeric form.
• capitalCityLocation: The latitude and longitude of the capital city.
• type: The xsd datatype of a Box.

xdd

The xdd ontology describes complex datatypes such as polygon, polyline and
range types.

@prefix xdd: <http://dacura.scss.tcd.ie/ontology/xdd#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

xdd:coordinatePolygon a rdfs:Datatype ;
rdfs:label "Coordinate Polygon"@en ;
rdfs:comment "A closed JSON list of coordinates."@en .

xdd:coordinatePolyline a rdfs:Datatype ;

102 ALIGNED MetaModel Overview

rdfs:label "Coordinate Polyline"@en ;
rdfs:comment "A JSON list of coordinates."@en .

xdd:gYearRange a rdfs:Datatype ;
rdfs:label "Year"@en ;
rdfs:comment "Either a year or a range of years."@en .

xdd:integerRange a rdfs:Datatype ;
rdfs:label "Integer"@en ;
rdfs:comment "Either an integer or a range of integers."@en .

xdd:decimalRange a rdfs:Datatype ;
rdfs:label "Decimal"@en ;
rdfs:comment "A number with an arbitrary number of decimal places, or

a numberrange"@en .

dacura

The dacura ontology covers all xsd datatypes, rdf and rdfs literal types used
in other ontologies on the platform. The dacura ontology can be seen in
Figure 4.14.

Figure 4.14 The Dacura ontology.

4.6 Unified Quality Reports 103

Figure 4.15 Dacura console usage example.

Usage

The set of seshat domain ontologies is designed to be generic in order to keep
the usage as broad as possible. An example of the usage of the seshat domain
ontology is the dacura console which is available as a browser plugin and
enables the user to harvest social sciences and digital humanities data from
websites and store them as RDF triples in a knowledge base.

Figure 4.15 shows the dacura console listing types for a candidate from
the seshat domain ontology and available candidates for entities and polities.
The user selects an existing collection on the left side of the browser bar and
depending on her user role, which can be Data Harvester, Expert Annotator or
Architect, she can browse and create new candidates of a certain type and edit
existing candidates in addition to automatically harvested candidates from a
website.

The usage of the dacura and xdd ontologies is best shown on the backend
of the dacura platform as represented in Figures 4.16 and 4.17. The screen-
shots show the creation of a new candidate of the type Polity. Dacura and xdd
ontologies are used to describe the used datatypes for properties of a polity
(in this example e.g., original name, polity territory, religious levels, polity
population, military levels, etc.). Used datatypes can be strings in open text
fields as in “Original name”, classes in dropdown boxes as in “Has diplomatic
relations with”, polygons in google maps as in “Polity territory” and many
more datatypes.

Crowd-sourced Public Datasets (CSPDO)

This ontology is used to describe the domain-specific extensions to the
ALIGNED data life cycle model ontology (DLO) and SLO for crowd-
sourced public datasets based on the DBpedia use case within the ALIGNED

104 ALIGNED MetaModel Overview

Figure 4.16 New candidate example part 1.

project. Over time, generic features may be migrated to the upper ontology.
Figure 4.18 shows the CSPDO ontology.

This ontology is used to describe the domain-specific extensions to the
ALIGNED data life cycle model ontology (DLO) and SLO for crowd-sourced
public datasets based on the DBpedia use case within the ALIGNED project.
Over time, generic features may be migrated to the upper ontology.

This ontology supports extensions needed for DBpedia. Thus, there is a
focus on the validation activities. DBpedia is a large-scale extraction project
of unstructured and semi-structured data from different Wikipedia language
editions to RDF. This extraction is achieved from a modular extraction frame-
work that is customised to handle multilingualism and structural differences

4.6 Unified Quality Reports 105

Figure 4.17 New candidate example part 2.

between different Wikipedia language editions. The latest DBpedia release
(v. 2016) generated a total of three billion facts from 125 localised versions.
As Wikipedia evolves over time, the code should be able to adapt to these
changes. However, identifying errors at this data scale becomes very hard
and validation workflows must be established that will ensure the quality of
the extracted data.

ALIGNED tackled these challenges with data validation and inter-
link validation tools that communicate their results though the ALIGNED
vocabularies.

The actors identified in DBpedia are listed in Table 4.6. The entities
identified in DBpedia are listed in Table 4.7. The activities are listed in
Table 4.8.

106 ALIGNED MetaModel Overview

Figure 4.18 The Crowd-sourced Public Datasets ontology.

The DBpedia software and data engineering development process
involves the following actors:

Table 4.6 DBpedia actors
Actor Description
Extraction manager DBpedia team members who run the extraction process for a

given DBpedia release
Extraction Agent Software agents that perform the extraction such as DBpedia

live
Mapping editor Community members who edit the DBpedia mapping wiki
Ontology Editor DBpedia foundation members that edit the DBpedia ontology
Release manager DBpedia team members that are responsible for the actions

leading to a given release of DBpedia
Developer DBpedia team members or community who write code for the

extraction framework or tools
User Users of DBpedia

We can identify the following entities (i.e., tools and technologies) that
support the DBpedia development workflow:

4.6 Unified Quality Reports 107

Table 4.7 DBpedia entities
Entity Description
Wikipedia Input source for DBpedia
Extraction Framework The source code used to extract knowledge from

Wikipedia
Server The physical/virtual server where an extraction

agent is running
DBpedia Ontology Crowdsourced OWL ontology describing DBpedia

concepts and properties
Infobox to Ontology mappings Crowdsourced mappings between the DBpedia

ontology and Wikipedia infoboxes
Dataset static dataset (dump)
External dataset Live feed

The output that comes after an extraction manager or
release manager runs an extraction agent based on
the extraction framework on a Wikipedia input.
The output can be a static dataset, an external dataset
(such as links to other datasets) or the DBpedia
Live feed

Tools Scripts or applications that work on DBpedia data
Issue or support question New feature or support requests and bug reports are

filed as tickets in the extraction framework Github
issue tracker or reported in the DBpedia-related
mailing lists

Actors and Entities are connected by the following activities:

Table 4.8 DBpedia activities
Activity Description
Coding Involves resolution of issues/error reports (i.e., bug fixing,

feature development), but also refactoring. Done by
developers, working on the extraction framework.

Release
Pre-processing step
Extraction
Post-processing step
Publishing

Releasing a DBpedia dataset is a complex procedure that
involves a lot of pre-processing steps, the actual extraction,
additional postprocessing steps and finally the dataset
publishing step. This activity is performed by the release
manager using the extraction framework and DBpedia tools

Maintain dbpedia.org The act of maintaining the information website of DBpedia
Support (mailing lists or
bugs)

Acting on a user support or new feature request or tackling a
bug report

DBpedia Ontology (DBO)

The structure of the DBpedia knowledge base is maintained by the DBpe-
dia user community. Most importantly, the community creates mappings

108 ALIGNED MetaModel Overview

from Wikipedia information representation structures to the DBpedia
ontology. This ontology unifies different template structures, both within
single Wikipedia language editions and across currently 27 different
languages. The complete DBpedia ontology can be browsed online at
http://mappings.dbpedia.org/server/ontology/classes/.

DBO is used to describe the data that are extracted with the DBpedia
information extraction framework.

Usage

Model Mapper tool

The prototype Model Mapper tool (D3.4) uses CSPDO to record interlink
validation processing on the DBpedia release candidate. This enables its
activities to be shown in the Unified Governance tool (D5.2), and for other
data engineering tools to co-ordinate with it in a toolchain. For example, as
shown here, for the exchange of which mappings failed the validation test.
This allows another tool to take corrective action on these mappings or to
present them to a user.

The RDF shows the description of an interlink validation run which
identifies the specific tool used for validation, the three datasets consumed
(the linkset, DBpedia and Geonames) and the validation report produced
(ex:interlink validation report 1). The datasets are identified as DataID data-
sources and thus could have a large amount of metadata recorded about
them. The actor who initiated the interlink validation is recorded and
classified as a SysAdmin. The interlink validation report itself identifies
two invalid mappings in the mapping set analysed, in the first case both
ends of the mapping are incorrect (probably missing from the mapped
datasets) and the second mapping error identifies only one mal-formed
resource.

ex:interlink_val_1 a cspdo:InterlinkValidation ;
dlo:isSupportedBy ex:interlink_validator ;
dlo:consumes ex:dbpedia_geonames_interlinks_2015 ;
dlo:consumes ex:dbpedia_dataset_2015 ;
dlo:consumes ex:geonames_dataset_20151010 ;
dlo:produces ex:interlink_validation_report_1 .

ex:dbpedia_dataset_2015 a dlo:DataSource .
ex:geonames_dataset_20151010 a dlo:DataSource .
ex:person_1 a dlo:SystemAdmin ;

dlo:initiates ex:interlink_val_1 .

4.6 Unified Quality Reports 109

ex:model_mapper a dlo:DataSoftwareAgent ;
dlo:supports ex:interlink_val_1 .

ex:interlink_validation_report_1 a cspdo:InterlinkValidationReport ;
prov:wasGeneratedBy ex:interlink_val_1 ;
ex:invalidMapping1 [ex:mapId ex:mapping_1 ;
ex:invalidResource <resource_1> ;
ex:invalidResource <resource_2>] ;
ex:invalidMapping2 [ex:mapId ex:mapping_2 ;
ex:invalidResource <resource_3>] ;
prov:generatedAtTime ‘‘20151010’’ˆˆxsd:date .

DBpedia release description

Since 2015, DBpedia releases are described with the DataID ontology. This
created the opportunity for application on top of the machine readable
dataset metadata. These DataID descriptions are used to automatically gen-
erate the DBpedia release download page as well as automate the creation
of a triple store loaded with the release data using the Docker container
technology.15

DBpedia workflow description (planned)

As a future work, we plan to integrate DataID, DLO and PROV to describe
DBpedia extraction workflows and keep track of origin and pre-processing
steps of each dataset.

4.6.5 Enterprise Software Development (DIOPP)

The aim of the ontology is to integrate the datasets generated through
requirements specification and the issues raised during their implementation.
This ontology covers the mappings defined between the PoolParty concep-
tualisation and the DIO ontology. The mappings are further supported by
the figures illustrated here. An example illustrating the mapping can be
found here.

In the following, we describe PoolParty’s requirements for the ALIGNED
domain-specific metamodel for enterprise software development.

The actors identified in PoolParty are listed in Table 4.9. The entities
identified in PoolParty are listed in Table 4.10. The activities are listed in
Table 4.11.

15https://github.com/dbpedia/Dockerized-DBpedia

110 ALIGNED MetaModel Overview

For the software life cycle and design intent, the development process
involves the following actors:

Table 4.9 PoolParty actors
Actor Description
Project Manager Responsible for resource planning
Requirements Editor Specifies requirements for a specific feature in a way that it fits to

the application’s design (functional and UI)
Product Owner Knows the market and customers, identifies new features,

(informally) specifies requirements, continuous and final
inspection of new features

Consultant Knows the customers and their needs, provide support for existing
and training for new customers. May act as Project Managers,
Requirements Editors, and Testers

Developer Review requirements, suggest possible solutions, estimate cost of
certain features and bugfixing actions and implement them.

Tester Perform manual testing, issue and observe automated test runs
Customer Partners, Integrators

We can identify the following entities (i.e., tools and technologies) that
support the PoolParty development workflow:

Table 4.10 PoolParty entities
Entity Description
Issue Ticket New feature requests and bug reports are filed as tickets in

Atlassian Jira. They have assigned, e.g., a creator (a
consultant in most cases), an actor responsible for
resolution (a developer in most cases), a cost estimation (in
days), and version information (e.g., which version it
occurred) and other metadata like description, dates,
comments. Can be organised in Epics, Stories and Issues.
Each of these may cover a Requirements Document (see
below).

Requirements Documents Are written using Atlassian Confluence Wiki. Mostly
unstructured and freetext description of new features. Are
proofread by product owner and developers.

Source Code Git and SVN repositories
Server Infrastructure Servers that support the development process, e.g., testing

PoolParty or performing demos, scheduled builds for
continuous integration, hosting developer chat/continuous
integration notifications

Testing Suite Java unit tests, Selenium Web Browser automation tests,
API tests, operated by testers

Communication Resource Skype, GotoMeeting, Chat clients, email

4.6 Unified Quality Reports 111

Actors and Entities are connected by the following activities:

Table 4.11 PoolParty activities
Activity Description
Resource planning Meetings where project managers and product owners

decide (based on the issue ticket cost estimations)
what features and bug requests will be scheduled for a
sprint with what priority

Sprint Certain period of time during which a specified set of
issue tickets should be resolved

Coding Involves resolution of issue tickets (i.e., bug fixing,
feature development) but also refactoring. Done by
developers, creating source code.

Staging Preparing a release version of the software, i.e.,
creating installation packages and installing them at
customer server infrastructure

Requirements writing The activity of creating requirement documents and
issue tickets

Communication to customers Informal communication between Consultant and
Customer for initiating requirements writing

4.6.6 Unified Governance Domain Ontologies

The motivation for our work was the current setup at SWC, where Atlas-
sian Confluence wiki-like team collaboration software is used to support
requirements engineering, feature specification and discussion, providing
documentation of research projects and publishing of technical informa-
tion. Atlassian JIRA is a ticket system used for issue and change tracking,
organising ideas from team members as well as collecting from customers.
These loosely coupled tools form the basis for a requirements engineering
system.

Following the agile methodology of software development, the data
are recorded in Confluence under headings such as “Requirements”,
“Goal”,“User Story”, “Epic” and “Stakeholders”. Additional fields such as
“Precondition”, “Detailed description”, “Acceptance criteria & Test scenario”
are included to provide further context to the requirements. A single field,
“Comment” captures the opinions/discussion carried out by human agents.
The JIRA interface is used without any major modification.

SWC collects the requirements for each version of PPT in the PoolParty
development space. Requirements are then linked to pages containing epics
and user stories. Most of these pages are structured based on standard

112 ALIGNED MetaModel Overview

templates defined by SWC. The outputs from these template-based pages
are largely document-centric and require extensive human intervention to
synthesise and synchronise them with PoolParty development tasks.

By using DIO, DIOPP and bespoke mappings to annotate and provide
metadata to the content extracted from Confluence and JIRA, SWC is able to
create merged repositories of requirements, customer feedback, bug reports
and project documentation thereby consolidating PoolParty experiences, cus-
tomer ideas and market needs in order to integrate them into products. This
is a key factor for successful development of SWC products and for raising
customer satisfaction and enterprise agility. Questions asked by customers
will flow faster into the requirement engineering system. The process will
help to generate concise reports on distributed business objects and entities
relevant for the development processes, and to coordinate the data manage-
ment and development workflows required to deliver new versions of the
evolving PoolParty product. The serendipitous mining of design intents from
requirements and issues will therefore have a significant impact on the full
life cycle of PoolParty products from requirements through to development
and maintenance.

4.6.7 Semantic Booster and Model Catalogue Domain Ontology

4.6.7.1 Model catalogue
The Model Catalogue can be used to document models and metamodels –
adding descriptions and descriptive metadata to concepts and relation-
ships. Search and comparison tools allow modellers and data engineers to
understand concepts in the model and better understand the underlying
data. In the ALIGNED project, we have been building a repository of the
metamodels and domain-specific models for external users.

The catalogue can also be used to provide, and reason about, links
between concepts in different domains. For example, showing how a software
model reuses and extends concepts from the data life cycle (DLO) will help
the users of data understand how data can be linked and compared.

The Model Catalogue may be used as a development platform for meta-
models or domain-specific models – a collaborative editing platform enables
the easy development of new versions of models, permitting discourse and
iteration, controlling versioning and user access. The catalogue is tightly
integrated with pipelines for MDE: enabling export of software components –
alternate representations, sources or configurations for data entry such as
XForms, data transfer such as XSD and XML, or data storage, such as
relational database schemas or Booster specifications.

4.6 Unified Quality Reports 113

The catalogue can also use the ALIGNED ontologies to capture metadata
about the models themselves – for example using PROV to capture prove-
nance information about a dataset, or DIO to capture design intent behind
software modelling decisions. The metamodel for the catalogue itself – that
constrains the way that models are represented –is being extended in the next
phase of the ALIGNED project to incorporate more concepts from the generic
ALIGNED models.

4.6.7.2 Booster
As a MDE tool, Booster uses domain-specific models to build systems.
Booster can aid the development of tools that build interoperable datasets
by extending the ALIGNED metamodels. For example, an abstract model of
DLV in Booster may be extended and specialised in a domain-specific model.
This will ensure that any data captured and stored in the Booster-generated
system will be semantically interoperable with data collected in other systems
based on the DLV ontology. By understanding how these domain-specific
models extend or instantiate parts of the ALIGNED metamodels, the tool
can be configured to specialise the software. For example, data captured and
stored in Booster might be automatically linked to public external datasets
corresponding to compatible ontologies.

Booster has its own metamodel: instances of which are Booster specifi-
cations. The Booster metamodel may be linked to concepts in the ALIGNED
ontologies – in particular “design decisions”, and parts of a “software life
cycle”. Currently the textual notation for Booster does not easily support
the linking of these concepts, but the design and development of a more
advanced metamodel for Booster is underway, allowing explicit links to
external ontologies, with support for maintaining and using these links within
the generated software components.

4.6.8 PROV16

The provenance of digital objects represents their origins. PROV is a spec-
ification to express provenance records, which contain descriptions of the
entities and activities involved in producing and delivering or otherwise
influencing a given object. Provenance can be used for many purposes,
such as understanding how data were collected so it can be meaningfully
used, determining ownership and rights over an object, making judgements

16This section contains material derived from “PROV-Overview An Overview of the PROV
Family of Documents”, https://www.w3.org/TR/prov-overview/ c© 2013 W3C.

114 ALIGNED MetaModel Overview

about information to determine whether to trust it, verifying that the process
and steps used to obtain a result complies with given requirements, and
reproducing how something was generated.

As a specification for provenance, PROV accommodates all those differ-
ent uses of provenance. Different people may have different perspectives on
provenance, and as a result, different types of information might be captured
in provenance records.

• One perspective might focus on agent-centred provenance, that is, what
people or organisations were involved in generating or manipulating the
information in question. For example, in the provenance of a picture in a
news article we might capture the photographer who took it, the person
that edited it, and the newspaper that published it.

• A second perspective might focus on object-centred provenance, by
tracing the origins of portions of a document to other documents. An
example is having a Web page that was assembled from content from
a news article, quotes of interviews with experts, and a chart that plots
data from a government agency.

• A third perspective one might take is on process-centred provenance,
capturing the actions and steps taken to generate the information in
question. For example, a chart may have been generated by invoking a
service to retrieve data from a database, then extracting certain statistics
from the data using some statistics package, and finally processing these
results with a graphing tool.

The goal of PROV is to enable the wide publication and interchange of
provenance on the Web and other information systems. PROV enables one
to represent and interchange provenance information using widely available
formats such as RDF and XML. In addition, it provides definitions for
accessing provenance information, validating it, and mapping to Dublin Core.

The design of PROV stems from the recommendations of the Provenance
Incubator Group which performed an extensive information gathering process
including use case cataloging, requirements elicitation and a literature survey.
From this process, the following eight recommendations were made:

1. the core concepts of identifying an object, attributing the object to person
or entity, and representing processing steps;

2. accessing provenance-related information expressed in other standards;
3. accessing provenance;
4. the provenance of provenance;
5. reproducibility;

4.6 Unified Quality Reports 115

Serializations

PROV-PRIMER

PROV-
DC

PROV-
O

PROV-
XML

PROV-
N

PROV-
DICT

IONARY

PROV-
LINKS

PROV-
SEM

PROV-
AQ

PROV-DM PROV-CONSTRAINTS

Figure 4.19 The Organisation of PROV.

6. versioning;
7. representing procedures;
8. representing derivation.

Figure 4.19 shows the organisation of PROV and how the documents
(roughly) depend on each other. At its core is a conceptual data model (PROV-
DM), which defines a common vocabulary used to describe provenance.
This is instantiated by various serialisations. These serialisations are used
by implementations to interchange provenance. To help developers and users
express valid provenance, a set of constraints (PROV-Constraints) are defined,
which can be used to implement provenance validators. This is complimented
by a formal semantics (PROV-SEM). Finally, to further support the inter-
change of provenance, additional specifications are provided for protocols to
locate and access provenance (PROV-AQ), connect bundles of provenance
descriptions (PROV-Links), represent dictionary style collections (PROV-
Dictionary) and define how to interoperate with the widely used Dublin Core
vocabulary (PROV-DC).

4.6.9 SKOS17

The SKOS is a data-sharing standard, bridging several different fields of
knowledge, technology and practice. In the library and information sciences,

17This section contains material derived from “SKOS Simple Knowledge Organization
System Reference”, https://www.w3.org/TR/skos-reference/ c© 2009 W3C.

116 ALIGNED MetaModel Overview

a long and distinguished heritage is devoted to developing tools for organ-
ising large collections of objects such as books or museum artefacts. These
tools are known generally as “knowledge organization systems” (KOS) or
sometimes as “controlled structured vocabularies”. Several similar yet dis-
tinct traditions have emerged over time, each supported by a community
of practice and set of agreed standards. Different families of knowledge
organisation systems, including thesauri, classification schemes, subject
heading systems, and taxonomies are widely recognised and applied in
both modern and traditional information systems. In practice, it can be
hard to draw an absolute distinction between thesauri and classification
schemes or taxonomies, although some properties can be used to broadly
characterise these different families. The important point for SKOS is
that, in addition to their unique features, each of these families shares
much in common and can often be used in similar ways. However, there
is currently no widely deployed standard for representing these knowl-
edge organisation systems as data and exchanging them between computer
systems.

The W3C’s Semantic Web Activity has stimulated a new field of inte-
grative research and technology development, at the boundaries between
database systems, formal logic and the World Wide Web. This work has
led to the development of foundational standards for the Semantic Web.
The RDF provides a common data abstraction and syntax for the Web.
The RDF Vocabulary Description language (RDFS) and the OWL together
provide a common data modelling (schema) language for data in the Web.
The SPARQL Query Language and Protocol provide a standard means for
interacting with data in the Web.

These technologies are being applied across diverse applications because
many applications require a common framework for publishing, sharing,
exchanging and integrating (“joining up”) data from different sources. The
ability to link data from different sources is motivating many projects, as
different communities seek to exploit the hidden value in data previously
spread across isolated sources.

The SKOS therefore aims to provide a bridge between different commu-
nities of practice within the library and information sciences involved in the
design and application of knowledge organisation systems. In addition, SKOS
aims to provide a bridge between these communities and the Semantic Web,
by transferring existing models of knowledge organisation to the Semantic
Web technology context, and by providing a low-cost migration path for
porting existing knowledge organisation systems to RDF.

4.6 Unified Quality Reports 117

The SKOS is a common data model for knowledge organisation systems
such as thesauri, classification schemes, subject heading systems and tax-
onomies. Using SKOS, a knowledge organisation system can be expressed
as machine-readable data. It can then be exchanged between computer appli-
cations and published in a machine-readable format in the Web. The SKOS
data model is formally defined as an OWL Full ontology. SKOS data are
expressed as RDF triples and may be encoded using any concrete RDF syntax
(such as RDF/XML or Turtle). The SKOS data model views a knowledge
organisation system as a concept scheme comprising a set of concepts. These
SKOS concept schemes and SKOS concepts are identified by URIs, enabling
anyone to refer to them unambiguously from any context, and making them a
part of the World Wide Web. SKOS concepts can be labelled with any number
of strings, in any given natural language. One of these labels in any given
language can be indicated as the preferred label for that language, and the
others as alternative labels.

4.6.10 OWL18

The OWL is a language for defining and instantiating Web ontologies.
Ontology is a term borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they are related. An
OWL ontology may include descriptions of classes, properties, and their
instances. Given such an ontology, the OWL formal semantics specifies
how to derive its logical consequences, i.e., facts not literally present in the
ontology, but entailed by the semantics. These entailments may be based on a
single document or multiple distributed documents that have been combined
using defined OWL mechanisms.

One question that comes up when describing yet another XML/Web
standard is “What does this buy me that XML and XML Schema don’t?”
There are two answers to this question.

• An ontology differs from an XML schema in that it is a knowledge rep-
resentation, not a message format. Most industry-based Web standards
consist of a combination of message formats and protocol specifications.
These formats have been given an operational semantics, such as, “Upon
receipt of this PurchaseOrder message, transfer Amount dollars from
AccountFrom to AccountTo and ship Product”. But the specification is

18This section contains material derived from “OWL Web Ontology Language Overview”,
https://www.w3.org/TR/owl-features/ c© 2004 W3C.

118 ALIGNED MetaModel Overview

not designed to support reasoning outside the transaction context. For
example, we will not in general have a mechanism to conclude that
because the Product is a type of Chardonnay it must also be a white
wine.

• One advantage of OWL ontologies will be the availability of tools that
can reason about them. Tools will provide generic support that is not
specific to the particular subject domain, which would be the case if
one were to build a system to reason about a specific industry-standard
XML schema. Building a sound and useful reasoning system is not a
simple effort. Constructing an ontology is much more tractable. It is
our expectation that many groups will embark on ontology construction.
They will benefit from third-party tools based on the formal properties of
the OWL language, tools that will deliver an assortment of capabilities
that most organisations would be hard pressed to duplicate.

The OWL language provides three increasingly expressive sublanguages
designed for use by specific communities of implementers and users.

OWL Lite supports those users primarily needing a classification hierar-
chy and simple constraint features. For example, while OWL Lite supports
cardinality constraints, it only permits cardinality values of 0 or 1. It should
be simpler to provide tool support for OWL Lite than its more expressive rel-
atives, and provide a quick migration path for thesauri and other taxonomies.

OWL DL supports those users who want the maximum expressiveness
without losing computational completeness (all entailments are guaranteed
to be computed) and decidability (all computations will finish in finite time)
of reasoning systems. OWL DL includes all OWL language constructs with
restrictions such as type separation (a class cannot also be an individual or
property, a property cannot also be an individual or class). OWL DL is so
named due to its correspondence with description logics, a field of research
that has studied a particular decidable fragment of FOL. OWL DL was
designed to support the existing Description Logic business segment and has
desirable computational properties for reasoning systems.

OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees. For exam-
ple, in OWL Full, a class can be treated simultaneously as a collection
of individuals and as an individual in its own right. Another significant
difference from OWL DL is that a owl:DatatypeProperty can be marked as
an owl:InverseFunctionalProperty. OWL Full allows an ontology to augment
the meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that
any reasoning software will be able to support every feature of OWL Full.

4.6 Unified Quality Reports 119

4.6.11 RDFS19

The RDF is a framework for expressing information about resources.
Resources can be anything, including documents, people, physical objects,
and abstract concepts.

RDF is intended for situations in which information on the Web needs
to be processed by applications, rather than being only displayed to people.
RDF provides a common framework for expressing this information so it
can be exchanged between applications without loss of meaning. Since it is
a common framework, application designers can leverage the availability of
common RDF parsers and processing tools. The ability to exchange informa-
tion between different applications means that the information may be made
available to applications other than those for which it was originally created.

In particular, RDF can be used to publish and interlink data on the Web.
For example, retrieving http://www.example.org/bob#me could provide data
about Bob, including the fact that he knows Alice, as identified by her IRI
(International Resource Identifier). Retrieving Alice’s IRI could then provide
more data about her, including links to other datasets for her friends, interests,
and so on. A person or an automated process can then follow such links
and aggregate data about these various things. Such uses of RDF are often
qualified as Linked Data.

Triples
RDF allows us to make statements about resources. The format of these
statements is simple. A statement always has the following structure:

<subject> <predicate> <object>

An RDF statement expresses a relationship between two resources. The
subject and the object represent the two resources being related; the predicate
represents the nature of their relationship. The relationship is phrased in a
directional way (from subject to object) and is called in RDF a property.
Because RDF statements consist of three elements, they are called triples.

Here are examples of RDF triples (informally expressed in pseudocode):

Example 1: Sample triples (informal)

<Bob> <is a> <person>.
<Bob> <is a friend of> <Alice>.

19This section contains material derived from “RDF Schema 1.1”, https://www.w3.org/TR/
rdf-schema/ c© 2004–2014 W3C.

120 ALIGNED MetaModel Overview

<Bob> <is born on> <the 4th of July 1990>.
<Bob> <is interested in> <the Mona Lisa>.
<the Mona Lisa> <was created by> <Leonardo da Vinci>.
<the video “La Joconde Washington”> <is about> <the Mona Lisa>

The same resource is often referenced in multiple triples. In the example
above, Bob is the subject of four triples, and the Mona Lisa is the subject
of one and the object of two triples. This ability to have the same resource be
in the subject position of one triple and the object position of another makes
it possible to find connections between triples, which is an important part of
RDF’s power.

We can visualise triples as a connected graph. Graphs consist of nodes
and arcs. The subjects and objects of the triples make up the nodes in the
graph; the predicates form the arcs. Figure 4.20 shows the graph resulting
from the sample triples.

Once you have a graph like this you can use SPARQL to query for e.g.,
people interested in paintings by Leonardo da Vinci.

The RDF Data Model is described in this section in the form of an
“abstract syntax”, i.e., a data model that is independent of a particular con-
crete syntax (the syntax used to represent triples stored in text files). Different
concrete syntaxes may produce exactly the same graph from the perspective
of the abstract syntax. The semantics of RDF graphs are defined in terms of
this abstract syntax.

4.6 Unified Quality Reports 121

4.6.12 RDF20

The RDF is a language for representing information about resources in the
World Wide Web. It is particularly intended for representing metadata about
Web resources, such as the title, author, and modification date of a web
page, copyright and licensing information about a Web document, or the
availability schedule for some shared resource. However, by generalising the
concept of a “Web resource”, RDF can also be used to represent information
about things that can be identified on the Web, even when they cannot be
directly retrieved on the Web. Examples include information about items
available from online shopping facilities (e.g., information about specifica-
tions, prices, and availability), or the description of a Web user’s preferences
for information delivery.

RDF is intended for situations in which this information needs to be
processed by applications, rather than being only displayed to people. RDF
provides a common framework for expressing this information so it can
be exchanged between applications without loss of meaning. Since it is
a common framework, application designers can leverage the availability
of common RDF parsers and processing tools. The ability to exchange
information between different applications means that the information may
be made available to applications other than those for which it was originally
created.

RDF is based on the idea of identifying things using Web identifiers
(called Uniform Resource Identifiers, or URIs), and describing resources in
terms of simple properties and property values. This enables RDF to represent
simple statements about resources as a graph of nodes and arcs represent-
ing the resources, and their properties and values. To make this discussion
somewhat more concrete as soon as possible, the group of statements “there
is a Person identified by http://www.w3.org/People/EM/contact#me, whose
name is Eric Miller, whose email address is em@w3.org, and whose title is
Dr.” could be represented as the RDF graph below:

This illustrates that RDF uses URIs to identify:

• individuals, e.g., Eric Miller, identified by http://www.w3.org/People/
EM/contact#me

20This section contains material derived from “RDF Primer”, https://www.w3.org/TR/rdf-
primer/ c© 2004 W3C.

122 ALIGNED MetaModel Overview

Figure 4.20 An RDF Graph Describing Eric Miller.

• kinds of things, e.g., Person, identified by http://www.w3.org/2000/10/
swap/pim/contact#Person

• properties of those things, e.g., mailbox, identified by http://www.w3.
org/2000/10/swap/pim/contact#mailbox

• values of those properties, e.g., mailto:em@w3.org as the value of the
mailbox property (RDF also uses character strings such as “Eric Miller”,
and values from other datatypes such as integers and dates, as the values
of properties)

RDF also provides an XML-based syntax (called RDF/XML) for record-
ing and exchanging these graphs. Example 2 is a small chunk of RDF in
RDF/XML corresponding to the graph in Figure 4.20:

Example 2: RDF/XML Describing Eric Miller

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact\#me">
<contact:fullName>Eric Miller</contact:fullName>

4.6 Unified Quality Reports 123

<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>
</contact:Person>

</rdf:RDF>

Note that this RDF/XML also contains URIs, as well as properties like
mailbox and fullName (in an abbreviated form), and their respective values
em@w3.org, and Eric Miller.

Like HTML, this RDF/XML is machine processable and, using URIs,
can link pieces of information across the Web. However, unlike conventional
hypertext, RDF URIs can refer to any identifiable thing, including things that
may not be directly retrievable on the Web (such as the person Eric Miller).
The result is that in addition to describing such things as Web pages, RDF can
also describe cars, businesses, people, news events, and so on. In addition,
RDF properties themselves have URIs, to precisely identify the relationships
that exist between the linked items.

