Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

RIVER PUBLISHERS SERIES IN BIOMEDICAL ENGINEERING

Series Editor:

DINESH KANT KUMAR *RMIT University*

Australia

Indexing: All books published in this series are submitted to the Web of Science Book Citation Index (BkCI), to SCOPUS, to CrossRef and to Google Scholar for evaluation and indexing.

The "River Publishers Series in Biomedical Engineering" is a series of comprehensive academic and professional books which focus on the engineering and mathematics in medicine and biology. The series presents innovative experimental science and technological development in the biomedical field as well as clinical application of new developments.

Books published in the series include research monographs, edited volumes, handbooks and textbooks. The books provide professionals, researchers, educators, and advanced students in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

- Biomedical engineering
- Biomedical physics and applied biophysics
- Bio-informatics
- Bio-metrics
- Bio-signals
- Medical Imaging

For a list of other books in this series, visit www.riverpublishers.com

Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

Editor

Winnie Jensen

Aalborg University, Denmark

Published, sold and distributed by: River Publishers Alsbjergvej 10 9260 Gistrup Denmark

River Publishers Lange Geer 44 2611 PW Delft The Netherlands

Tel.: +45369953197 www.riverpublishers.com

ISBN: 978-87-7022-076-7 (Hardback) 978-87-7022-075-0 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2019. This book is published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/ licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. The images or other third party material in this book are included in the work's Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work's Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper.

Contents

Pr	eface			xiii
Ac	know	ledgem	ents	XV
Li	st of C	Contribu	itors	xvii
Li	st of F	ligures		xxi
Li	st of T	ables	2	xxxiii
Li	st of A	bbrevia	ations	xxxv
In	trodu	ction		1
	Win	nie Jens		
		Refere	ences	5
1	An I	ntroduc	ction to Phantom Limb Pain	7
	Cale	b C. Cor	moglio, Kristine Mosier and Ken Yoshida	
	1.1	Epider	niology and Etiology of Phenomena and Sequelae	
		Associ	iated with Amputation	8
		1.1.1		8
		1.1.2		11
			1.1.2.1 Triggers of PLP	13
		1.1.3		14
		1.1.4	Neuropathic Pain (NP)	15
		1.1.5	Secondary Effects of PAP	16
	1.2	The Pr	coposed Loci and Mechanisms of PLP	16
		1.2.1	Neurologic Locus of PLP	16
		1.2.2	Predominant Mechanisms of the Peripheral	
			Neurologic Locus	17

vi Contents

	1.2.3		nant Mechanisms of the Spinal Neurologic	
				17
	1.2.4		nant Mechanisms of the Supraspinal	
		Neurolog	gic Locus	18
	1.2.5		nant Mechanisms of the Cortical	
			gic Locus	18
		1.2.5.1	Referred sensation and related	
			mechanisms	19
	1.2.6		gical Aspects of Pain	20
1.3			in Nonamputees – A Complicated Issue	21
1.4			PLP Presents	22
	1.4.1		eory	22
	1.4.2		trix Theory	23
	1.4.3	Maladap	tive Cortical Plasticity	23
	1.4.4		nory	24
	1.4.5	Sensory	Confusion	24
1.5	Measur			24
	1.5.1		hysical Measures of Pain	25
		1.5.1.1	Self-report questionnaire	25
		1.5.1.2	The visual analog scale (VAS)	26
		1.5.1.3	The neuropathic pain symptom inventory	
			(NPSI)	26
		1.5.1.4	The profile of mood states-short form	
			(POMS-SF)	27
		1.5.1.5	The brief pain inventory-interference	
			scale (BPI-IS)	28
		1.5.1.6	Problems with measuring PLP and other	
			phantom phenomena	28
	1.5.2		oposed Self-report Measures of PLP	29
	1.5.3		ng Cortical Reorganization	30
	1.5.4		Cons of Different Measurement Approaches	31
1.6			nt/Pain Management Methods	31
	1.6.1		Standard of Care	32
	1.6.2		al Treatments	33
	1.6.3		icinal Treatments	34
		1.6.3.1		34
		1.6.3.2		36
		1.	6.3.2.1 Considerations for FES of	
			peripheral nerves	36

~	
Contents	V11
Contentis	

			1.6.3.3 Imagery	37
		Refere	nces	39
2	Neu	robiolog	y of Pain	55
	Vícto	or M. Ló	pez-Álvarez, Elena Redondo-Castro and Xavier Navarro	2
	2.1	Physic	logy of Pain	55
		2.1.1	Nociceptors and Nociceptive Fibers	55
		2.1.2	Nociceptive Spinal Cord Circuits	57
		2.1.3	Nociceptive Ascending Pathways	59
		2.1.4	Descending Control of Pain	61
	2.2	Neuro	biology of Neuropathic Pain	64
		2.2.1	Mechanisms of Neuropathic Pain	65
		2.2.2	Nerve Injury-induced Changes in Transduction	66
		2.2.3	Central Sensitization	67
		2.2.4	Low-threshold A β Fiber-mediated Pain	70
		2.2.5	Changes in Endogenous Inhibitory	
			Pathways, Disinhibition, and Plasticity	70
		2.2.6	Changes in Subcortical and Cortical Regions	72
		Refere	nces	74
3	The	TIME I	Implantable Nerve Electrode	77
	Tim .	Boretius	and Thomas Stieglitz	
	3.1	Introdu	uction	77
	3.2			78
		DUSIGI	and Development of TIME Devices	10
		3.2.1		81
		•	Process Technology to Manufacture TIMEs	
		3.2.1	Process Technology to Manufacture TIMEs Coating of Electrode Sites	81
		3.2.1 3.2.2	Process Technology to Manufacture TIMEs	81 83
		3.2.1 3.2.2 3.2.3	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i>	81 83
	3.3	3.2.1 3.2.2 3.2.3 3.2.4	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i> Assembling of Connectors and Design Optimization for First Preclinical <i>In Vivo</i> Studies	81 83 84
	3.3	3.2.1 3.2.2 3.2.3 3.2.4	Process Technology to Manufacture TIMEs Coating of Electrode Sites	81 83 84 88
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i>	81 83 84 88 95
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I 3.3.1	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i> Assembling of Connectors and Design Optimization for First Preclinical <i>In Vivo</i> Studies	81 83 84 88 95 96
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I 3.3.1 3.3.2	Process Technology to Manufacture TIMEsCoating of Electrode SitesElectrochemical Characterization In VitroAssembling of Connectors and Design Optimizationfor First Preclinical In Vivo StudiesFlat to Corrugated Intrafascicular ElectrodesDesign considerationsPrecision Machining ApproachMicromachining Approach	81 83 84 88 95 96 98
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I 3.3.1 3.3.2 3.3.3	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i> Assembling of Connectors and Design Optimization for First Preclinical <i>In Vivo</i> Studies	81 83 84 88 95 96 98
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I 3.3.1 3.3.2 3.3.3	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i> Assembling of Connectors and Design Optimization for First Preclinical <i>In Vivo</i> Studies	81 83 84 88 95 96 98 100
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I 3.3.1 3.3.2 3.3.3 3.3.4	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i> Assembling of Connectors and Design Optimization for First Preclinical <i>In Vivo</i> Studies	81 83 84 88 95 96 98 100
	3.3	3.2.1 3.2.2 3.2.3 3.2.4 From I 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Process Technology to Manufacture TIMEs Coating of Electrode Sites Electrochemical Characterization <i>In Vitro</i> Assembling of Connectors and Design Optimization for First Preclinical <i>In Vivo</i> Studies	81 83 84 88 95 96 98 100 103

		3.4.1 Design Changes Towards TI	МЕ-3	106
		3.4.2 Development of Helical Mult	istrand Cables	108
		3.4.3 Connector Development		110
		3.4.4 Final Assembly of the TIME		113
	3.5	Life-time Estimation of TIMEs for H	uman Clinical	
		Trials		114
		3.5.1 Lifetime Estimation of Polyin	nide	114
		3.5.2 Stability of Iridium Oxide as	Stimulation Electrode	
		Material		115
		3.5.3 Mechanical Stability of Helic	ally Wound	
		Cables		117
	3.6	Requirements and Steps to Transfer		
		Devices for the First-in-man Clinical	Trial	120
		3.6.1 Assessment of Previous W	Vork and Pre-existing	
		Knowledge	-	120
		3.6.2 Final Electrode Design and H	Fabrication Technology	
		for Human Use		122
		3.6.3 Quality Management System		125
		3.6.3.1 Documentation of	device development	126
		3.6.3.2 Risk management		126
		3.6.3.3 Quality manageme	ent system for device	
		manufacturing		126
	3.7	Discussion		129
		References		130
4		deling to Guide Implantable		
		ctrode Design		135
		como Valle and Silvestro Micera		
	4.1	Hybrid Model		139
	4.2	Finite Elements Model		140
	4.3	Neuron Fiber Model		142
	4.4	Hybrid Model Solution		142
	4.5	Model-driven Electrode Design, Dir		
		of Implants		145
	4.6	Simulation of Biological Reaction to		
		Optimization		147
	4.7	Discussion		149
		References		150

5	Bioc	ompatil	bility of the TIME Implantable Nerve Electrode	155
	Jordi	Badia,	Aritra Kundu, Kristian R. Harreby, Tim Boretius,	
	Thon	nas Stieg	glitz, Winnie Jensen and Xavier Navarro	
	5.1	Introdu	uction	155
	5.2		mpatibility of the TIME in the Rat	
		Nerve	Model	157
		5.2.1	Biocompatibility of the Substrate and	
			Components	157
		5.2.2	Biocompatibility of the TIME Implanted in the Rat	
			Nerve	159
		5.2.3	Morphological Evaluation of the Implanted	
			Nerves	160
	5.3	Biocor	mpatibility of the TIME in the Pig Nerve Model	162
		5.3.1	Morphological Evaluation of the Implanted	
			Nerves	164
	5.4	Discus	ssion	165
		Refere	ences	168
6	Selec	ctivity o	f the TIME Implantable Nerve Electrode	171
		•	Kristian R. Harreby, Aritra Kundu, Tim Boretius,	
			glitz, Winnie Jensen and Xavier Navarro	
	6.1		uction	171
	6.2		ation of TIME in the Rat Sciatic Nerve Model	173
		6.2.1	Stimulation Selectivity	173
			6.2.1.1 Methods	173
			6.2.1.2 Results	174
		6.2.2	Recording Selectivity	177
			6.2.2.1 Methods	177
			6.2.2.2 Results	178
			6.2.2.3 Discussion	180
	6.3	Evalua	ation of TIME in the Pig Nerve Model	181
		6.3.1	Acute Study of Stimulation Selectivity	182
			6.3.1.1 Results	182
		6.3.2	Chronic Study of Stimulation Selectivity	184
			6.3.2.1 Follow-up methods	185
		6.3.3	Results	186
		6.3.4	Discussion	188
		Refere	ences	189

x Contents

7		chronous Multichannel Stimulator with Embedded Safety cedure to Perform 12-Poles TIME-3H 3D Stimulation	193
		id Andreu, Pawel Maciejasz, Robin Passama, Guy Cathebras,	
		laume Souquet, Loic Wauters, Jean-Louis Divoux and	
		id Guiraud	
	7.1	Introduction	193
	7.2	Bench-top Stimulator	194
		7.2.1 Design of the Bench-top Stimulator (Stim'ND)	194
		7.2.1.1 From specifications to design of	
		the stimulator	194
		7.2.1.2 The Stimulus Generator	197
		7.2.1.3 The stimulation controller	197
		7.2.2 Prototyping of the Stimulator	202
		7.2.2.1 Prototyping of the stimulus generator	203
		7.2.2.2 Prototyping of the stimulation	
		controller	203
		7.2.2.3 Prototypes of stim'ND	205
	7.3	Software Suite	206
		7.3.1 SENIS Manager	207
		7.3.2 Impedance Follow-up Software	210
	7.4	Discussion	213
		References	214
8	Con	nputerized "Psychophysical Testing Platform" to Control	
Ŭ		Evaluate Multichannel Electrical Stimulation-Based	
		sory Feedback	217
	Bo (Geng, Ken Yoshida, David Guiraud, David Andreu,	
		-Louis Divoux and Winnie Jensen	
	8.1	Introduction	217
	8.2	Sensory Feedback	218
	8.3	Sensory Feedback for Phantom Limb Pain Treatment	219
	8.4	Psychophysical Testing Platform Design Strategy	
		and Principles	220
	8.5	Software Components	222
	8.6	Implementation of ISI Subsystem	225
	8.7	Communication Between SEC and ISI	227
	8.8	Use of the Psychophysical Testing Platform	227
	8.9	Discussion	228
		References	229

9	Rest	ew Treatment for Phantom Limb Pain Based on coration of Somatosensory Feedback Through Intraneural	233			
	Electrical Stimulation <i>Guiseppe Granata, Winnie Jensen, Jean-Louis Divoux, David</i> <i>Guiraud, Silvestro Micera, Xavier Navarro, Thomas Stieglitz, Ken</i> <i>Yoshida and P. M. Rossini</i>					
	9.1 9.2	Introduction	234 235 239 239 239 239 242			
	9.3 9.4	Results Discussion References	243 247 250			
10		Ire Applications of the TIME nas Stieglitz References	255 258			
Inc	lex		261			
Ab	out tl	he Editor	263			

Preface

Phantom limb pain (PLP) is a frequent consequence of amputation, and it is notoriously difficult to treat. Despite isolated reports of success, no medical/non-medical treatments have been beneficial on more than a temporary basis. While the majority of the treatments currently offered seek to actively suppress the pain, we emabarked on a journey back in 2008 to challenge the status-quo of PLP treatment by instead supplying meaningful sensations that will restore the neuroplastic changes in the cortex and thereby control and alleviate pain. We designed, implemented and tested a novel 'human-machine interface' that included a 'first-in-human' clinical trial of the system. In this book we report on the first steps and results from this journey to demonstrate and provide a proof of concept of our ideas.

The authors would like to thanks the European Commission for the support for this work, which was primarily funded through the CP-FP-INFSO 224012 (TIME project). The views and ideas expressed in this book are those of the authors and do not necessarily represent those of the European Commission. This work was partially supported by national funds through BEVICA fonden (DK), FEDER and CIBERNED funds Fondo de Investigación Sanitaria of Spain, the FET 611687 NEBIAS Project, the IUPUI BME Department Research Assistantship Fund and The National Competence Center in Research (NCCR) in Robotics funded by the Swiss National Science Foundation, and the Bertarelli Foundation.

June 2019, Winnie Jensen

List of Contributors

Aritra Kundu, Department of Health Science and Technology, Aalborg University, Denmark

Bo Geng, *SMI*, *Department of Health Science and Technology*, *Aalborg University*, *Denmark*

Caleb C. Comoglio, Department of Biomedical Engineering, Indiana University – Purdue University Indianapolis

David Andreu, *LIRMM*, *University of Montpellier*, *INRIA*, *CNRS*, *Montpellier*, *France*

David Guiraud, *LIRMM*, *University of Montpellier*, *INRIA*, *CNRS*, *Montpellier*, *France*

Elena Redondo-Castro, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain

Giacomo Valle, Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy

Guillaume Souquet, Axonic, MXM, France

Guiseppe Granata, Fondazione Policlinico Universitario A. Gemelli – IRCCS, Italy; Università Cattolica del Sacro Cuore, Italy; E-mail: granata.gius@gmail.com

Guy Cathebras, *LIRMM*, *University of Montpellier*, *INRIA*, *CNRS*, *Montpellier*, *France*

Jean-Louis Divoux, Axonic, MXM, France

xviii List of Contributors

Jordi Badia, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain

Ken Yoshida, Department of Biomedical Engineering, Indiana University – Purdue University Indianapolis; E-mail: yoshidak@iupui.edu

Kristian R. Harreby, Department of Health Science and Technology, Aalborg University, Denmark

Kristine Mosier, Department of Radiology and Imaging Sciences, Indiana University School of Medicine

Loic Wauters, Axonic, MXM, France

P. M. Rossini, Fondazione Policlinico Universitario A. Gemelli – IRCCS, Italy; Università Cattolica del Sacro Cuore, Italy

Pawel Maciejasz, *LIRMM*, *University of Montpellier*, *INRIA*, *CNRS*, *Montpellier*, *France*

Robin Passama, *LIRMM*, *University of Montpellier*, *INRIA*, *CNRS*, *Montpellier*, *France*

Silvestro Micera, Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; E-mail: silvestro.micera@epfl.ch

Thomas Stieglitz, Laboratory for Biomedical Microsystems, Department of Microsystems Engineering-IMTEK, Albert-Ludwig-University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, Albert-Ludwig-University of Freiburg, Freiburg, Germany; Bernstein Center Freiburg, Albert-Ludwig-University of Freiburg, Freiburg, Germany; E-mail: stieglitz@imtek.uni-freiburg.de **Tim Boretius**, Neuroloop GmbH, Freiburg, Germany; Laboratory for Biomedical Microsystems, Department of Microsystems Engineering-IMTEK, Albert Ludwig University of Freiburg, Freiburg, Germany

Víctor M. López-Álvarez, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain

Winnie Jensen, Department of Health Science and Technology, Aalborg University, Denmark; *E-mail: wj@hst.aau.dk*

Xavier Navarro, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; E-mail: xavier.navarro@uab.cat

List of Figures

Figure 1	Overview of the main hypothesis of the TIME	
	project	2
Figure 2	Overview of the TIME prototype system for	
	preclinical evaluation in amputee subjects	4
Figure 3	Overview of elements in the development and	
	test of the TIME prototype system for preclinical	
	evaluation in amputee subjects	5
Figure 1.1	Among the peculiar potential pathological changes	
	that occur after amputation is telescoping. Telescop-	
	ing is a phenomenon in which the amputees sensory	
	body image changes resulting in an alteration in the	
	phantom sensations with respect to the sensations	
	from the normal parts of the body. With time, the	
	phantom sensation gradually moves or shrinks, for	
	example as shown above, into odd or impossible	
	positions or joint angles. This results in a state of	
	sensory confusion, and concern for the amputee that	
	potentially contributes to the increase in phantom	
	limb pain.	10
Figure 1.2	Various rates have been reported in literature for	
	the frequency of PLP episodes. Most respondents	
	reported PLP as occurring at a frequency some-	
	where between never and always. Several variables	
	could explain discrepancies among studies, includ-	
	ing epidemiology and etiology of amputation, years	
	since amputation, size of sample population, etc.	
	The effect of these factors on PLP presentation is	
	not well understood	13

xxii List of Figures

Figure 2.1	Representation of the three main types of noci- ceptive fibers, their markers and the laminae of	
	the dorsal horn where they mainly project central	50
Figure 2.2	terminals	58
	afferents constitute the anterolateral system, crossed	
	at segmental cord levels.	60
Figure 2.3	Ascending (left side) and descending (right side) pain pathways	62
Figure 2.4	Schematic representation of the main peripheral mechanisms involved in the generation of neuro- pathic pain after a peripheral nerve injury	65
Figure 3.1	Selectivity of different electrode types (activated nerve region in white): Cuff electrodes activate the superficial perimeter of the nerve first (left); LIFEs (middle) have very local activation proper-	05
Figure 3.2	ties; TIME allows multiple small areas of activation over the nerve cross section	80
Figure 3.3	millimeters	82
Figure 5.5	manufacture TIME devices (see text for details)	82
Figure 3.4	Impedance and phase angle of the TIME with platinum, platinum gray, and platinum black as	
F: 2 5	electrode material.	86
Figure 3.5	Voltage response after current stimulation of the TIME with platinum, platinum gray, and platinum black as electrode material.	87
Figure 3.6	Assembling of TIME with a flip-lock ZIF con- nector. (a) Pad array on polyimide, (b) reinforce- ment with tape, (c) insertion into ZIF connector, and (d) closing of connector fixates substrate and	87
	reinforcement	89
Figure 3.7	Folded TIME-1 with arrow-like tip	89

Figure 3.8	Schematic view of the TIME-2 device for small nerve models. (a) Substrate design with arrow tip	
	and 5 electrode sites per side. (b) Different con- nection pad designs. Left: arrangement for MFI on ceramic substrate. Right: Arrangement for direct	
	ZIF connection.	90
Figure 3.9	Schematic view of the TIME-2 devices for large nerve models. (a) Version A with three active sites and (b) Version B with 6 active sites	92
Figure 3.10	Photograph of a fully assembled TIME-1 electrode with ZIF connectors.	92 92
Figure 3.11	Light micrographs of fully assembled TIME-2 devices. Left: TIME-2-B; right: both versions of the TIME-2.	93
Figure 3.12	Cooner wires soldered to different plugs	94
Figure 3.13	Completely encapsulated TIME-2 electrode. Left:	
	MicroFlex Interconnections between thin-film and	
	ceramics. Right: Overview of TIME, adapter, and	
	wires	95
Figure 3.14	Schematic view of the cross section of nerve trunk with corrugated electrode: (a) in small animal model, which has 4 active sites; (b) in large animal	
	mode, which has 6 active sites	97
Figure 3.15	Schematic view of the moldform's design	98
Figure 3.16	Prototypes of corrugated electrodes using precision machining approach.	99
Figure 3.17	Schematic drawing of electrode to be corrugated using residual stress. (a) Cross-sectional view of electrode structure. High residual stress layer (red	
	layer) is placed on both side; (b) Simplified model	
	of structure in (a) (top) and its deformed shape	
	(bottom). Residual stress layer is placed in the middle and the substrate layer is placed on either	
	top side or bottom side of the residual stress layer repeatedly.	101
Figure 3.18	Thin-film micromachining process for corrugated	101
0	electrode.	103
Figure 3.19	Photograph of the corrugation test structure fabri-	
	cated by micromachining technique	103

xxiv List of Figures

Figure 3.20	Schematic side view of a TIME-3 electrode. Fixa-	
	tion flaps have been integrated; 90° angle between	
	intraneural linear array and interconnection lines	
	reduces movement opportunities after implantation.	
	Units in mm.	107
Figure 3.21	Comparison of different cable assemblies. Top: 12	
	helical copper wires in silicone tube; center: 12	
	helical MP35N wires in silicone tube; and bottom:	
	12 bundled Cooner wires type AS632	108
Figure 3.22	Left: Custom build cable winder with attached arbor	
	and 16 single wires on spindles. Right: Arbor with	
	helix of 16 MP35N wires and silicone tubing.	
	Excess material is cut after the arbor is removed	109
Figure 3.23	Left: Comparison between classic epoxy-based con-	
	nector and metal rings. Right: Completely assem-	
	bled TIME-3 electrode for chronic implants includ-	
	ing a connector.	111
Figure 3.24	Left: Omnetics nano connector assembled to 12	
	strand helical cable. Middle: Metal housing holding	
	two Omnetics connectors sutured to the skin. Right:	
	Closed metal housing after experiments	112
Figure 3.25	An assembled TIME-3 electrode for chronic pig	
	models. Note that the cable length is shortened	
	within this picture.	112
Figure 3.26	Young's modulus' change of polyimides (U-	
	Varnish-S, UBE) stored in PBS at different temper-	
	atures	115
Figure 3.27	The development of the mass of polyimide films	
	(Upilex25S, UBE) stored in PBS at different tem-	
	peratures.	116
Figure 3.28	Voltage across the phase boundary (upper) and	
	injected current pulse (lower) during the pulse test	
	of IrOx.	116
Figure 3.29	Impedance spectra of IrOx coating before pulse test,	11-
	after 175 M pulses and 250 M pulses	117

Figure 3.30	Picture of test assembly to characterize fabricated	
	cables according to ISO 45502	118
Figure 3.31	Model of coupling capacities between two adjacent	
	conductors.	119
Figure 3.32	Schematic view of polyimide loop parameters to be	
	optimized	121
Figure 3.33	Schematic design of TIME-3H	123
Figure 3.34	Basic tree of documentation according to ISO13485.	127
Figure 3.35	Scheme of the quality management system for	
_	TIME electrodes.	128
Figure 4.1	Hybrid modeling: nerves sections are taken at the appropriate level for the implantation, and then used	
	within the hybrid electroneuronal models for the	
	development of the optimized neural interfaces for	
	selective, gradual, and minimally invasive use	138
Figure 4.2	FEM solution. (a) Picture of cross-section of human	130
Figure 4.2	median nerve. (b) 2D cross-section in COMSOL.	
	(c) Final mesh of the entire structure in 3D. (d) Solu-	
	tion of the fem. Electric potential in plan xy	
	(z = 0)	141
Figure 4.3	2D nerve cross-section with electrode and the fibers	141
Figure 4.5	positioned inside the fascicles (red; left). 3D place-	
	ment of Ranvier nodes for each fiber inside the	
	nerve (right).	143
Figure 4.4	Active site of TIME close to three fascicles.	145
Figure 4.4	(a) Recruitment curves (%). (b) Electric potential	
	distribution (fixed 0–1.9 μ V)	144
Figure 4.5	Different electrode geometries (top). FEM solutions	177
Figure 4.5	according to different electrodes type (bottom).	145
Figure 4.6	Isopotential curves regarding different fibers dimen-	175
I Iguite 4.0	sions related for each active site inside the same	
	fascicle (1–5).	146
Figure 4.7	Double TIME implant in the same nerve and exam-	1 10
- 15ur v 70/	ple of different stimulation positions	147
Figure 4.8	Modeling of the fibrotic tissue growth over weeks.	148
1 igui (40	into a children in the norotic ussue growth over weeks.	1-10

xxvi List of Figures

Figure 5.1	Hematoxylin-eosin staining of representative sec- tions from skin without implant (A), with a silicone implant (B) and with a polyimide implant ((C), and detail in (D)). (B) Silicone implants showed a cavity formed during tissue processing (asterisk). White arrows show the superficial fibrous layer (outer zone). (C) Polyimide implants were embedded in the fibrous capsule (white arrowheads). The deep fibrous layers of the capsule are also shown (inner zone, black arrow). Scale bars: 500 μ m ((A)–(C))	
Figure 5.2	and 20 μ m (D)	158
Figure 5.3	of the insertion of a TIME-3 with the ribbon accom- modated to the longitudinal axis of the sciatic nerve. Neurophysiological tests result in the three groups with Acute, TIME-2, and TIME-3 chronic implant in comparison with control values. Values of the	160
Figure 5.4	CMAP amplitude (A) and onset latency (B) of the tibialis anterior muscle. Values of the SFI (C) and of algesimetry (D). Modified from Badia et al., 2011 Cross-sections of an implanted rat sciatic nerve. (A) At the level of TIME-3 implant crossing the tibial branch and part of the peroneal branch. Note the mild fibrous tissue surrounding the electrode.	161
Figure 5.5	(B) Semithin transverse section of the tibial nerve of the same animal distal to the implant site. There are no signs of degeneration and the density of myelinated fibers is similar to controls Example of nerve specimen retrieved from a minipig after approx. 30 days of implant. The sur- rounding fibrotic tissue has been removed by careful dissection to identify the entry and exit points of the TIME	162 163

Figure 5.6	Typical samples of H&E stains of the peripheral nerve, where the TIME electrode has been identified	
	inside the nerve. Left ($\times 20$, Pig 02): whole nerve	
	with TIME transversing through the nerve easily	
	identified. Right ($\times 100$, Pig 02): higher magnifica-	
	tion of the implant site – the TIME electrode and a	
	layer of fibrosis surrounding the electrode is seen.	
	The visible "cracks" inside the fascicles result from	
	the processing and embedding the nerve	164
Figure 6.1	Examples of CMAPs recorded in plantar (PL),	
	gastrocnemius medialis (GM), and tibialis anterior	
	(TA) muscles with stimulation (st) at increasing	
	pulse intensity, delivered from two different active	
	sites of a TIME implanted in the rat sciatic nerve.	
	Selective activation of GM (center block) and selec-	
	tive activation of PL muscle (right block) can be	
	observed.	175
Figure 6.2	(A) Plot of the threshold of activation of the motor	
	fascicles innervating PL, GM, and TA muscles, with	
	TIME, LIFE, and cuff electrodes. (B) Plot of the	
	Sias (best active site in each electrode) obtained for	
	each of the muscles tested with TIME, LIFE, and	
	cuff electrodes. (C) Plot of the SId corresponding to	
	TIME, Cuff, and LIFE devices. Bars are mean and	
	SEM. * $p < 0.05$ vs. Cuff; # $p < 0.01$ vs. LIFE.	
	Data from Badia et al., 2011	176
Figure 6.3	Microphotograph of a transverse section of a sciatic	
	nerve immunolabeled against cholin-acetyl trans-	
	ferase (ChAT, dots stained in black) to label motor	
	axons, and counterstained with hematoxilin to visu-	
	alize the tissue. The narrow strip occupied by the	
	intraneural portion of the TIME has been overlaid	
	with a thin line (brown) and the active sites (AS, in	
	black) marked in a possible position.	180

xxviii List of Figures

Figure 6.4	Heat maps indicate the selectivity achieved for indi- vidual muscles (M1–M7), 0 corresponding to white and black corresponding to 1, when using the dif- ferent contact sites of the TIME (1–6 and 1'–6', corresponding to the contact sites on each side of the TIME loop structure) and tfLIFE (1,1–4,4'). The histology images show the corresponding traces of the inserted electrodes. In general, the TIMEs were better at activating several different muscles, whereas the tfLIFE tended to activate a single muscle selectively. Reprinted with permission from Kundu et al. 2014.	183
Figure 6.5	 (A) picture of the TIME implant. (B) Illustration indicating the TIMEs were located inside the nerve. (B) Example was TIME electrodes are placed at 135° and 90°. As in the acute pig study, postmortem findings showed the TIMEs had been located between the fascicles. Reprinted with per- 	
Figure 6.6	mission from Harreby et al. 2014 (a) The raw evoked EMG response when stimulating in P2T1 at day 7 from the five monitored muscles when stimulating monopolar using 3'. The dotted vertical lines indicate 30% EMG recruitment (EMG _{RL30%}). (b) Shows the recruitment EMG _{RL} for each of muscles during monopolar stimulation (G–Ground) with a subset of six contact sites of P2T1. Note that the recruitment curves are not smooth, but rather have consist of steep increases and plateaus. (c) Shows the recruitment curves related to a subset of bipolar stimulation configurations. Note that the recruitment level is significant lower for bipolar stimulation than for monopolar	184
Figure 6.7	stimulation. Reprinted with permission from Har- reby et al. 2014	187

	session at day 37. The vertical and horizontal dotted lines indicate the limits for $\rm EMG_{RL30\%}$ and $\rm SI_m=0.4,$ thus based on our definitions a muscle is selectively recruited if it enters the upper right quadrant. In P2T1 muscles: M5 and M2 are selectively activated, in P2T2 M3 and M1 are selectively recruited. Reprinted with permission from Harreby et al. 2014	188
Figure 7.1 Figure 7.2	Schematic representation of Stim'ND architecture. Principle of the output stage. Each channel can be configured as shunt (anode) for passive discharge, anode controlled current or cathode controlled cur- rent. One current source is used and spread over the	195
Figure 7.3	12 poles through ratios (Ia_i, Ic_i) Four different stimulation waveforms generated by the miniaturized stimulator in bipolar mode (left- up). Rectangular biphasic charge balanced wave- form (20 µs, 1 mA) with interstim (right-up) bipha- sic with passive discharge (1 ms, 4 mA) (left-down) biphasic trapezoïdal pulse with passive discharge. Train of pulses on a tripolar configuration with different current ratios, followed by a passive dis- charge (right-down). The signal is generated on a 1 k Ω resistor	198 200
Figure 7.4	Example of 48-byte MP (left). Resulting stimulus with ch1 being cathode 1, ch3 cathode 3, and ch2 a	•••
Figure 7.5	trigger (right)	200 202
Figure 7.6	$4 \text{ mm} \times 4 \text{ mm}, 0.35 \mu$ HV technology As the DACC is on 12 bits but only 8 bits are finally coded, the 4 lower bits are used to compensate the current error following an affine linear law. It cuts down the error from about 20% to less than 5% error	202
Figure 7.7	over the full scale	204
Figure 7.8	model)	205 205

xxx List of Figures

Figure 7.9	N-tier architecture allowing remote control of the	
	stimulators	206
Figure 7.10	Example of simple architecture (left). Functionali-	
	ties associated to entities (right).	207
Figure 7.11	Stimulation profile editing (left). Correspondence	
0	between icons and instructions (right).	208
Figure 7.12	Electrode configuration (left). Configuring refer-	
0	ence model parameters (right)	208
Figure 7.13	Configuring the control-box (left). Configuration of	
8	buttons (right)	209
Figure 7.14	Following of the stimulator and control-box states.	209
Figure 7.15	Notification of a constraint violation to the control	
8	environment.	210
Figure 7.16	Example of microprogram sequence.	210
Figure 7.17	The screenshot shows the control of the stimulator	_10
	on the left and the resulting current-voltage curves	
	from which the estimation is performed (ratio of U	
	and <i>I</i> at the end of the active phase)	211
Figure 7.18	The four graphs represent the rough estimation of	
i igui e //i o	impedances (kohms) of all the 56 contacts. Two	
	different profiles of impedances were found (green	
	increase then decline, red constant increase). The	
	references are much bigger so the impedance is	
	much lower. Finally, open circuits have a clear and	
	strong increase of the impedance from day 17	212
Figure 8.1	Prototype system in the TIME project. The	_1_
i igui e oir	psyschophysical testing platform was implemented	
	on Computer #1 and Computer #2 to interact with	
	the experimenter and the subject.	222
Figure 8.2	Flow chart showing automated process of stimu-	
i igui e oiz	lus delivering and sensation measurement in one	
	stimulation session.	223
Figure 8.3	Screenshot of the main GUI of the SEC software	223
i igui e oie	with the five modules identified (i.e., the module	
	numbers are shown in the center of each module	
	box).	224
Figure 8.4	Screenshot of user interface for threshold determi-	<i></i> Ŧ
i iguit 0.4	nation.	226
	nauon,	220

Figure 8.5	Screenshot of user interface for characterization of	
	the sensation type, location, and magnitude, each	
	corresponding to a question in the red box	226
Figure 9.1	Schematic representation of the areas of the	
C	patient's phantom hand involved by the sensation	
	during intraneural stimulation. On the left side of	
	the picture, the areas of the phantom hand where	
	the patient felt the sensation stimulating with five	
	channels individually can be seen. On the right side	
	of the picture, the area of phantom hand where the	
	patient felt the sensation by stimulating simultane-	
	ously with the same five channels can be seen	244
Figure 9.2	Results of questionnaires for PLP evaluation. (A) A	
8	clear reduction of PLP is evident in all three ques-	
	tionnaires: VAS, McGill and PPI. (B) Results of	
	McGill more in detail: a clear reduction of different	
	qualities of pain during the treatment is evident	245
Figure 9.3	Assessment of cortical organization and reorgani-	
8	zation before and after repeated stimulation ses-	
	sions. (A) Somatosensory evoked cortical potentials	
	evaluated before and after the repeated stimulation	
	sessions. For comparison, we included a map on	
	the evoked potentials while stimulating the right	
	median nerve. (B) EEG current sources determined	
	before and after the repeated stimulation sessions.	
	The analyses in A and B show a modification of	
	the cortical topography in the central-parietal areas	
	contralateral to the amputation. (C) Analysis of the	
	EEG power and (D) cortical connectivity before and	
	after the repeated stimulation sessions. The EEG	
	analysis in C and D demonstrated a scattered reduc-	
	tion of delta activity and increase of alpha activity,	
	indicating a shift of the EEG activity towards nor-	
	mal states and towards less random	
	architecture	246

List of Tables

Table 1.1	Different investigators use VAS pain scales that quan-	
	tify pain intensities using different anchors, making it	
	difficult to compare the measures between studies	29
Table 2.1	Classification of the primary afferent axons in the	
	peripheral nervous system	56
Table 3.1	Results of EIS measurements with different electrode-	
	coating materials	86
Table 3.2	Lumped parameter equivalent circuit model of the	
	electrodes fitted from impedance measurement data .	86
Table 3.3	Voltages V_c and the derived capacitance of different	
	materials during stimulation	87
Table 3.4	Specifications of TIME-2 devices	91
Table 3.5	Comparison of required corrugation dimensions and	
	achieved ones by various manufacturing technologies	97
Table 3.6	Design parameters and expected results of the corru-	
	gation induced by residual stress	102
Table 3.7	Specifications of assembled TIME-3 electrodes for	
	chronic implants in pigs	113
Table 3.8	Properties of helically wound cables	119
Table 3.9	Specifications of TIME-3 and TIME-3H designs	123
Table 5.1	Estimated thickness of the fibrotic capsule formed	
	around nine TIME electrodes implanted in seven pigs	165
Table 7.1	Stimulator specifications	195
Table 7.2	Instruction set of the Stim'ND micromachine	199
Table 7.3	Parameters of the monitoring module	202
Table 8.1	A list of stimulation parameters implemented in SEC	
	software	224

List of Abbreviations

AG	assembly groups
AP	action potential
API	application programming interface
AS	active sites
ASICS	acid sensing channels
ASIP	application-specific instruction-set processor
BOLD	Blood oxygen level dependent
BPA	brachial plexus avulsion
BPI	brief pain inventory
BPI-IS	Brief Pain Inventory – Interference Scale
BPI-SF	brief pain inventory – short form
CES-D	Center for Epidemiological Studies - depression
	questionnaire
CGRP	calcitonin gene-related peptide
CMAP	compound muscle action potentials
CNAP	compount nerve action potentials
CNS	Central nervous system
CPG	chronic pain grade
CRPS	complex regional pain syndrome
cVLM	caudal ventrolateral medulla
cw	constant weigthing
d	device
DACC	digital to analog current converter
DBS	deep brain stimulation
Deg/ENaC	degenerin family
DN4	the neuropathic pain four questions
DNIC	diffuse noxious inhibitory control
DRt	dorsal reticular nucleus
EDM	electrical discharge machining
EEG	electroencephalogram
EES	epidural eletrical stimulation
EIS	electrochemical impedance spectroscopy

xxxvi List of Abbreviations

EMG	electromyogram
ES	electrical stimulation
FBR	foreign body response
FEM	finite element method
FEP	flourinated ethylene propylene
FES	functional electrical stimulation
FFC	flexible flat cable
FIR	finite impulse response
fMRI	functional magnetic resonance imaging
FPGA	programmable electronic device
FRAP	non-peptidergic ones possess fluoride-resistant acid
1 IU II	phosphatase
FTIR	fourier transform infrared spectroscopy
GALS	Globally Asynchronous Locally Synchronous
GDNF	glial cell line-derived neurotrophic factor
GM	gastrocnemious medialis
GMI	Graded motor imagery
GND	ground
GQPAA	Groningen questionnaire problems after arm amputation
GUI	graphical user interface
H&E	Hematoxylin and Eosin
HCNS	heterotopic noxious conditioning stimulation
HCP	health care provider
HMI	Human machine interface
HRF	hemodynamic response function
IASP	International Association for the Study of Pain
ICA	indpendent component analysis
IMMPACT	the initiative on methods, measurement and pain assessment
	in clinical trails
IPA	isopropyl alcohol
ISI	interactive subject interface
LANSS	Leeds assessment of neuropathic symptoms and signs
LEF	laboratory for electrode manufacturing
LEP	laser evoked potential
LIFE	Longitudinal Intrafascicular electrode
LTD	long-term depression
LTP	long-term potentiation
M1	primary motor cortex
MAC	medium access control

MFImicroflex interconnectorMPmicro programMPIWest Haven-Yale multidimensional pain inventoryMPQMcGill pain questionNGFnerve growth factorNMDAN-methyl D-aspartateNOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain scaleNPSNeuropathic pain scaleNPSIneuropathic pain scaleNPSIneuropathic pain scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb painPLSplantar intensityPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruiment levelRLPResidual limb painRMSroot mean squareROIregion of interestRSreferred sensation	MAV	mean absolute value
MPIWest Haven-Yale multidimensional pain inventoryMPQMcGill pain questionNGFnerve growth factorNMDAN-methyl D-aspartateNOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSIneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMSroot mean squareROIregion of interest		
MPIWest Haven-Yale multidimensional pain inventoryMPQMcGill pain questionNGFnerve growth factorNMDAN-methyl D-aspartateNOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSIneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	MP	micro program
MPQMcGill pain questionNGFnerve growth factorNMDAN-methyl D-aspartateNOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSphantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	MPI	
NGFnerve growth factorNMDAN-methyl D-aspartateNOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSIneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSphantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest		· · ·
NMDAN-methyl D-aspartateNOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSIneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	•	
NOSNO synthaseNPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest		
NPneuropathic painNPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKCγprotein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest		• •
NPCnano plastic circularNPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpateroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMSroot mean squareROIregion of interest	NP	•
NPQneuropathic pain questionnaireNPSNeuropathic pain scaleNPSIneuropathic pain scaleNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMSroot mean squareROIregion of interest		
NPSNeuropathic pain scaleNPSIneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKCγprotein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	NPO	
NPSIneuropathic pain symptom inventoryNRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	-	
NRSnumeric rating scalePAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplastinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	NPSI	
PAGperiaqueductal gray matterPAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKCγprotein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIErecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	NRS	
PAPPost amputation painPBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIErecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PAG	-
PBSphosphate buffered salinePECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKCγprotein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIErecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PAP	
PECVDplasma enhanced chemical vapour depositionPEIpolyesterimidePEQprosthesis evaluation questionnairePKCγprotein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIErecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PBS	
PEIpolyesterimidePEQprosthesis evaluation questionnairePKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIErecruitment levelRLrecruitment levelRLNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PECVD	
PKC γ protein kinase CgammaPLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PEI	
PLplantar interosseusPLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PEQ	prosthesis evaluation questionnaire
PLPPhantom limb painPLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	$PKC\gamma$	protein kinase Cgamma
PLSPhantom limb sensationPNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIErecruitment levelRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PL	plantar interosseus
PNpetri netsPNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PLP	Phantom limb pain
PNSperipheral nervous systemPOMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PLS	Phantom limb sensation
POMS-SFprofile of mood states – short formPPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PN	petri nets
PPIpresent pain intensityPtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PNS	peripheral nervous system
PtplatinumPVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	POMS-SF	profile of mood states – short form
PVCNposteroventral cochlear nucleusQMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PPI	present pain intensity
QMSquality management systemRCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	Pt	platinum
RCTrandomized controlled trialsRIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	PVCN	posteroventral cochlear nucleus
RIEreactive ion etchingRLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	QMS	quality management system
RLrecruitment levelRLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	RCT	randomized controlled trials
RLPResidual limb painRMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	RIE	reactive ion etching
RMNraphe magnocellular nucleusRMSroot mean squareROIregion of interest	RL	recruitment level
RMSroot mean squareROIregion of interest	RLP	Residual limb pain
ROI region of interest	RMN	raphe magnocellular nucleus
	RMS	-
RS referred sensation	ROI	region of interest
	RS	referred sensation

xxxviii List of Abbreviations

S1	Primary somatosensory cortex
S1 S2	Secondary somatosensory cortex
SEC	stimulator and experiment control
	*
SEP	somatosensory evoked potential
SEP	somatosensory evoked potential
sfMcGill	McGill pain questionnarie
SF-MPQ	short-form McGill pain questionnaire
Sias	best active site in each electrode
Sid	Selectivity index – device
SIDNE	stimulation-induced depression of neuronal excitability
SiNx	silicon nitride
SIROF	sputtered iridium oxide films
Slas	selectivity index
sLORETA	standardized Low Resolution Electromagnetic Tomography
	Algorithm
SMA	shape memory alloys
SNR	signal-to-noise ratio
SOM	somatostatin
SP	substance P
SVM	support vector machine
TA	tibialis anterior
TENS	transcutaneous electrical nerve stimulation
TEP	tactile evoked potential
tf-LIFE	thin-polymer-based electrodes longitudinally in the nerve
tf-LIFE	Thin-film Intrafascicular Multichannel electrode
TIME	Thin-film Intrafascicular Multichannel electrode
TIME	Transversal intrafascicular multichannel electrodes
TIME-3H	Transversal intrafascicular multichannel electrodes – human
TMR	targeted muscle reinnervation
TNF- α	tumor-necrosis factor- α
tr	training set
TRP	transient receptor potential
TRPV1	vanilloid receptor
USEA	Utah slanted electrode array
VAS	visual analog scale
VE	multi site stimulation
VPL	ventral posterior lateral
WDR	wide dynamic range neurons
ZIF	zero insertion force