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Preface

Phantom limb pain (PLP) is a frequent consequence of amputation, and
it is notoriously difficult to treat. Despite isolated reports of success, no
medical/non-medical treatments have been beneficial on more than a tem-
porary basis. While the majority of the treatments currently offered seek
to actively suppress the pain, we emabarked on a journey back in 2008 to
challenge the status-quo of PLP treatment by instead supplying meaningful
sensations that will restore the neuroplastic changes in the cortex and thereby
control and alleviate pain. We designed, implemented and tested a novel
‘human-machine interface’ that included a ‘first-in-human’ clinical trial of
the system. In this book we report on the first steps and results from this
journey to demonstrate and provide a proof of concept of our ideas.
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