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Neuroprostheses are becoming widespread clinical solutions, addressing
human nervous system at different levels. This technology can significantly
improve the quality of life of people who have suffered from different neu-
rological disabilities. Despite the large number of peripheral nervous system
(PNS) electrodes available and their good performances, the ever-growing
complexity of neuroprosthetic devices trying to mimic the natural hand
implies a constant need to improve electrode selectivity. This is particularly
true for stimulating electrodes whose aim is to mimic the natural sensory
feedback from the hand arising from a very dense network of afferents serving
different modalities (especially in the fingertips) by only stimulating at dis-
crete, restricted locations on a given nerve (Riso, 1999). Hence, an important
goal for a PNS electrode is to achieve the highest selectivity for a high
number of nerve fascicles while minimizing the invasiveness and potential
nerve damage. In this context, experimental studies have been conducted
in order to compare the selectivity performances of different types of PNS
electrodes (Badia et al., 2011). Animal models are common developmental
tools for testing peripheral nerve interfaces. However, the complexity of the
nerve tissue upon which stimulation is applied, as well as the anatomical
differences between animal models and humans, induce great variability
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regarding the neural response (Grinberg et al., 2008). Furthermore, the wide
range of design factors that can influence the outcome of the stimulation,
such as electrode type and position or the stimulation pattern (amplitude,
pulse width, frequency, monopolar, or multipolar stimulation), needs to be
explored in order to optimize a stimulation protocol and the neural interfaces
for a given application, thus requiring a large number of experimental trials
and subjects. Even so, the interaction with living tissue induces an inevitable
variability in experimental results due to several factors that cannot always be
identified, thus rendering the problem even more complicated.

The use of computer models to study the electrical stimulation of neural
systems appears to be an inexpensive and efficient way to tackle this issue and
thus assist in the development of neural devices or applications, by exploring
the high dimensional space of design parameters while minimizing animal
use. Among the first explorations of an influence of external electrical fields
on the neurons, by analytical modeling, was performed by McNeal (1976),
who developed the concept of so-called “activating function.” He used a fact
that even though neural devices and neurons have different communicating
currents, they both share same electric field. The modulation of it by the
injected electrical currents can depolarize the external membrane of neurons,
provoking the ionic currents flows, and finally the generation of spikes, which
are the basic carriers of information in the human nervous system. Activation
function is proposing that the likelihood of neural activation by external
stimulation is proportional to the second derivative of external field respect to
neuronal spatial extension. This idea is extended and analytically improved
in Rattay’s works (1986, 1989), which extended the concept from the point
sources of current to the realistic, similar-to-electrode sources. Although the
activation function is yet used as a most rapid and intuitive indicator of the
approximate estimation of axonal responses to electrical stimuli, the recent
works (Zierhofer, 2001; Moffitt et al., 2004) have shown that it is introducing
the important mistakes. The main reasons for these errors were that approach
based on the activation function, was neglecting of high nonlinearity present
in axonal answers and the realistic anisotropy of a medium in which neurons
are placed. Recent computational models do account for both the anisotropic
extracellular conductivity present in the nerves, and for the dynamic response
of neuronal cells and axons to the extracellular electrical stimulation. For
calculating the voltages induced by means of electrical stimuli injected by
electrode into the anisotropic medium, the finite element method (FEM) are
exploited. The estimation of the axonal responses to the external stimuli
was investigated by means of software dedicated for efficient calculus of
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neuronal dynamic (McIntyre, 2002) and cable equations, NEURON (Hines
and Carnevale, 1997). Finally, the FEM results are interpolated into the NEU-
RON model, obtaining together what can be called a “hybrid electro-neuronal
model.”

Initial concept of hybrid modeling was proposed in the studies regard-
ing the electrical epidural stimulation (EES) of spinal cord (Coburn, 1985;
Coburn and Sin, 1985). Then, similar idea has been exploited in works
that model extracellular stimulation of central nervous system neurons, and
in particular for the purpose of deep brain stimulation (DBS) modeling
(McIntyre and Grill, 2002; Miocinovic et al., 2006). In the recent past, it has
been also used in human peripheral nervous system to optimize the design of
extraneural cuff electrodes (Schiefer et al., 2016) for the neural stimulation
in effort to make a motor rehabilitation of spinal-cord-injured patients. Intra-
neural electrodes have been simulated (Raspopovic et al., 2011) and validated
(Raspopovicet et al., 2012) in the rat nervous implants, using the same hybrid
modeling approach. Successful translational use of models in the CNS, as
the development of software CICERONE (Frankemolle et al., 2010), which
is used in the DBS practice, or in model for spinal cord simulation (Moraud
et al., 2016), which was the fundamental for the development of sophisticated
stimulation paradigms, that enabled unseen level of mobility in fully Spinal
Cord Injured (SCI) rats. These models were not only important from the
translational viewpoint: by indicating the electrodes placement and paradigm
of optimal stimulation, but also enabled the deep understanding of interac-
tions, which is the fundamental of these intervention computer simulations
(Rattay et al., 2000; Capogrosso et al., 2013) provided evidence that EES
primarily engages large myelinated fibers associated with proprioceptive and
cutaneous feedback circuits during the SCI rehabilitation.

Pivotal role of modeling in all these complex systems, increases the need
for the implementation of similar realistic models also for the human PNS,
to be exploited within the neuroprostheses (Raspopovic et al., 2014; Tan
et al., 2014) development. Neural interfaces are an important component of
these systems, which allow direct communication with the nervous system.
Several neural interfaces for the PNS have been developed during the past
year. They range from epineural electrodes, having low invasiveness and low
selectivity, to regenerative electrodes, having higher selectivity but at the
same time, also higher invasiveness (Navarro et al., 2005). A good trade-
off between the two previous solutions can be found in intraneural interfaces
(as transverse intrafascicular multichannel electrode (TIME) (Boretius et al.,
2010) or self-opening intraneural peripheral interface electrode (SELINE)
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Figure 4.1 Hybrid modeling: nerves sections are taken at the appropriate level for the
implantation, and then used within the hybrid electroneuronal models for the development
of the optimized neural interfaces for selective, gradual, and minimally invasive use.

(Cutrone et al., 2015). Raspopovic and his collaborators (Raspopovic et al.,
2017) were depicting the prominent use of models of human median
and sciatic electrical nerves stimulation (ePNS) within the framework of
development of innovative neuroprostheses (Figure 4.1).

The efficacy of neuroprostheses can be improved by increasing the pos-
sibility of neural interfaces used to stimulate specific subsets of neurons,
while not stimulating the untargeted ones, the concept which is measured
by the electrode’s selectivity. Models could help to reach the scope of having
devices that are enhancing selectivity, while reducing invasiveness and also
decreasing the amount of current to be injected into the neural tissues.
Selectivity is mainly influenced by interface design, and more in particular
with dimensions of whole device, its shape, number, and distance of active
contacts, used for the stimulation of the neural tissue. Models can indicate
the optimal number of devices to be implanted into an individual nerve, and
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therefore they should give hints regarding how the neurosurgery should be
performed (Raspopovic et al., 2017).

In the past years, the neural interfaces were tested in vitro or in animal
preparation by single-channel stimulation and measurements of same type of
output measure (Badia et al., 2011). This conceptual framework together with
time limitation during the effective use, have restricted the clinical application
of peripheral nerve stimulation to continuous, single active sites injected
stimulation patterns. However, this strategy does not exploit optimally, all
the possible capability offered by implanted devices, particularly does not
allow to address subject-specific deficits which is pivotal to maximize the
outcome of rehabilitation protocols. The use of more sophisticated stimula-
tion paradigms (Fang and Mortimer, 1991; Grill and Mortimer, 1995, 1997;
Vuckovic et al., 2004; Hennings et al., 2005), or combinations of single
active sites stimulations into the complex multipolar stimulation, could be
promising, and should be extensively explored by use of models (Schiefer
et al., 2012; Saal and Bensmaia, 2015; Oddo et al., 2016; Saal et al., 2017).

Finally, among the biggest problems encountered during the use of differ-
ent neural interfaces, is the temporal change of charge necessary to guarantee
the therapeutic use. This is most probably due to the tissue complex reaction,
and some aspects of it can be interpreted by use of models, rather than
extensive animal sacrificing and following histological analysis.

Computer models can be useful for exploring the high dimensional
space of design parameters with the goal to provide guidelines for the
development of more efficient neural electrodes, with minimal animal use
and optimization of manufacturing processes.

4.1 Hybrid Model

The use of computer models to study the electrical stimulation of neural
systems appears to be an inexpensive and efficient way to assist in the devel-
opment of neural devices or applications. The state of art in models accounts
for anisotropy of extracellular conductivity, present in real nerves, and also
for the nonlinear response of cells to the extracellular stimulation. Those two
aspects are solved separately: by means of the FEM which solves the voltage
distribution generated by injected currents, and by using calculations of neu-
ronal dynamics to estimate the axonal response to the electrical stimulations.
This kind of model has been called hybrid field-neuron models (or hybrid
FEM/Neuron models). To couple the external electric fields with the fiber
or cell, proper models to account for external stimulation were developed.
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The state of the art most used approach is the so-called compartmental
modeling of fibers, which is based on the subdivision of fibers and cells into
elementary circuit representation used to model the different parts of the cell
or fiber, like axons, somas, and nodes of Ranvier.

4.2 Finite Elements Model

As a first step, the correct heights of the nerve for implantation have to
be determinate, and corresponding histological picture needs to be found.
Considering upper and lower limb implants, the correct height to consider is
above the elbow for the transradial (under-elbow) amputees, while the level
at the ischial tuberosity for transfemoral (thigh-level) leg amputees.

Secondly, anatomically shaped geometrical model of the nerve and fas-
cicles are segmented by using the freeware software ImageJ (by freeware
software ImageJ with NeuronJ plug-in) obtaining an anatomically shaped
geometrical model. Coordinates of the image segmentation are then exported
to MATLAB (livelink COMSOL-MATLAB), where a 2D recreation of the
nerve is constructed. Since the fascicles are surrounded with a connective
tissue sheath called perineurium and it can influence the final results of
potential distribution, it was crucial to separate it from the fascicles’ contour.
As reported in Grinberg et al. (2008) perineurium thickness being determined
by the size of fascicle and it is equal to 3% of fascicle’s radius. Then the coor-
dinates were interpolated with interpolation curve. The segmented geometry
is imported into the FEM software, COMSOL (COMSOL S.r.l., Italy) and
extruded along the longitudinal axis achieving a 3D structure (Figure 4.2).

Very important aspect is a correct assignment of different electrical values
to the separated tissue classes: epineurium, perineurium, and endoneurium.
These values are available from literature, however, need to be critically
revision, and adapted to the particular model. Indeed, the intrafasicular
endoneurium, debt to the longitudinal disposal of axon within, has an
anisotropic conductivity tensor with a longitudinal value of 0.571 S/m and
a transverse value of 0.0826 S/m. The epineurium is assumed to be an
isotropic medium with a conductivity of 0.0826 S/m (Schiefer et al., 2008).
The perineurium is modeled as an isotropic conductor taking into account
the thickness of the perineurium as 3% of the approximately diameter of the
fascicle (Grinberg et al., 2008), and the difference temperature between frog
and humans, with a value of 0.00088 S/m (Raspopovic et al., 2017). Gen-
erally, the surroundings of nerves are implemented as homogeneous saline
solution (2 S/m), which is emulating the intraoperative environment, with
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Figure 4.2 FEM solution. (a) Picture of cross-section of human median nerve. (b) 2D cross-
section in COMSOL. (c) Final mesh of the entire structure in 3D. (d) Solution of the fem.
Electric potential in plan xy (z = 0).

saline solution, but should be corrected in the future works about chronically
implanted interfaces.

Models of electrodes are implemented separately and merged with the
neural structure. Since the frequency range, which is of interest in sensing
prosthetic applications, is low, we can assume a quasistatic approximation
of Maxwell’s equations within the nerve volume (Bossetti et al., 2008).
Therefore, the electromagnetic problem can be expressed through Laplace
formulation for the extracellular electric potential (Veltink et al., 1988;
McIntyre and Grill, 2002):

∇ · σ∇Ve = 0 (4.1)

To optimize the model from the computational load standpoint, an infinite-
length/infinite-diameter to finite-length/finite-diameter approximation has to
be considered. While in physics the 0-voltage is defined in infinity, within
FEM model, in order to emulate the proper boundary conditions of the
problem, the ground condition is set to the outermost surface of a finite
model (McIntyre and Grill, 2002). Taking into account limited resources
and time constraints, a minimal sufficient boundary dimensions had to be
found calculating appropriated indexes (Raspopovic et al., 2011). Sufficient
meaning the solution needs to be electromagnetically correct.
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4.3 Neuron Fiber Model

To model the dynamics of nerve fiber, MRG (McIntyre Richardson Grill)
model was used (McIntyre, 2002). This model represents the nonlinear modi-
fied Hodgkin–Huxley equations for the active compartment of the axons (the
nodes of Ranvier) and a detailed realistic representation of the myelinated
tracts. The success of this model is debt to its capability to reproduce several
experimental aspects of cells dynamics, and to its availability: it can be found
in model repository of NEURON. The difference between state-of-the-art
models resides basically on two aspects: the first is the membrane dynam-
ics and the second is the representation of the compartments. Membrane
dynamics refers to differential equations of the membrane potential and extra-
cellular potential relation (i.e., numbers of ion channels implemented). While
compartment representations refer to the number and type of compartments.
In this case, MRG model introduced Na+, K+, leakage channel, and nap
channel for reproducing the hyperpolarization on the recovery cycle. The
sensory axons population were simulated in NEURON 7.3 as implemented
in (McIntyre, 2002). For a fiber of diameter D, a model made of 21 nodes of
Ranvier with internodal spacing L = 100 D was built.

On the other side, it is unknown where are placed the fibers groups, which
convey a specific sensation: either over the whole fascicle, or only within a
very limited area of it. Fibers vary in diameter and position within the fascicle.
To address this issue, multiple populations could be generated to account for
fascicles’ anatomical variability. In sensory human nerves, the probabilistic
distribution for fibers diameter resulted in two Gaussian distributions, which
differentiated nociceptive fibers from fibers responsible for pressure/touch
sensation. Furthermore, nodal length was fixed at 1 um and nodal diameter
was scaled from (McIntyre and Grill, 2002). A total amount of 100 fibers,
were placed randomly in the specific target fascicle (Figure 4.3). Finally, we
considered that fibers within a specific fascicle innervate the same portion of
the hand (Jabaley et al., 1980).

4.4 Hybrid Model Solution

The FEM was solved with a stationary solver considering the quasistatic
approximation for the electromagnetic problem, i.e., an electrostatic problem.
The linear system obtained by FEM is symmetric and positive definite, there-
fore it can be solved by the Conjugate gradients method which applicable to
sparse systems that are too large to be handled by a direct implementation.



4.4 Hybrid Model Solution 143

Fiber position

Electrode

Nerve

Fascicles

Fibers

Fascicle 1
Fascicle 2
Fascicle 3
Fascicle 4
Nerve

Ranvier Nodes
Ranvier Nodes with Z=0

*
*

z[
m

]

x10-4

6

6

-6 -8

-0.01

0.01

x[m]y[m]

x10-4

x10-4

3D fibers position

Figure 4.3 2D nerve cross-section with electrode and the fibers positioned inside the
fascicles (red; left). 3D placement of Ranvier nodes for each fiber inside the nerve (right).

This method is an iterative solver that requires a preconditioner in order to
improve its convergence. The preconditioner used was an algebraic multigrid,
which is a numerical method that increases the computational speed by
decreasing the complexity of the computations and then leading to a faster
convergence. The convergence criterion is reached when the relative error
becomes smaller than 1× 10−6.

Electric potentials generated inside the nerve by means of electrical
stimulation were computed for the whole structure and then interpolated
on the proper fibers positions and then neurons answer was computed
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Figure 4.4 Active site of TIME close to three fascicles. (a) Recruitment curves (%).
(b) Electric potential distribution (fixed 0–1.9 µV).

(Figure 4.4). Electric potentials were interpolated along the position of the
nodes of Ranvier for each fiber in the model. Then, they were extracted from
the FEM solutions and used as an extracellular mechanism for membrane
depolarization. Fibers were stimulated by cathodal bipolar square current
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pulses of variable pulse-width (this is correct under quasistatic approxima-
tion). A fiber was considered recruited when a generated action potential
traveled along its whole length (i.e., reached the last node of Ranvier).

4.5 Model-driven Electrode Design, Dimensions,
and Number of Implants

The first, straightforward exploitation of models is for understanding of
which type of electrode geometry is the most prominent for the selective
stimulation of the discrete sensations. To do so, it is possible to implement
different models of several electrodes type, which were successfully used
in human applications, as intraneural and epineural electrode (Figure 4.5).
Intraneural electrodes by design ensure closer distance to its targets then cuff-
type electrodes. Results indicate that the most striking advantage of use of
intraneural electrode is its one order of magnitude lower necessary charge
threshold to elicit any fiber response respect to the case of epineural electrode
(Raspopovic et al., 2017). On the other side, it is also possible to stimulate
selectively the deep target fascicle by means of intraneural stimulation, while
it is impossible to do so by means of epineural electrode. Finally, as regarding
the dynamic of elicitable axonal response, it is possible to fine-modulate

Figure 4.5 Different electrode geometries (top). FEM solutions according to different
electrodes type (bottom).
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Figure 4.6 Isopotential curves regarding different fibers dimensions related for each active
site inside the same fascicle (1–5).

the sensation by use of intraneural active site (TIME) and simple charge
modulation, while the same is not feasible by epineural electrodes.

Appropriate electrode dimensions, number of active sites and their
respective distances are essential for the manufacturing process. Models
are ideal candidates for the proper addressing of this set of dimensions of
electrodes. Total number of fascicles stimulated selectively is in a correlation
with a number of contact sites, although some of them are recruited by more
than one active site (Figure 4.6). The limiting factor, when having many active
sites, is that the leads, necessary to connect them to the stimulator, are making
the dimension of electrodes’ substrate bigger, and therefore more invasive.
The optimal number of electric active contacts for a neural electrode could be
obtain using hybrid neuron model (Raspopovic et al., 2017).

In order to achieve the maximal performance (defined as the maximal
possible number of fascicles elicited selectively) during the stimulation, with
limited nerve damage, it is crucial to understand the optimal number of elec-
trode for implant. This could be possible studying it with the models; indeed,
it is possible to simulate different possible scenarios of implantation at the
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Figure 4.7 Double TIME implant in the same nerve and example of different stimulation
positions.

same time (Figure 4.7). The most important goal is to reach the access to the
maximal number of the fascicles using different active sites of the electrode.
Technically, an implantation of many electrodes can be useful to stimulate
every fascicle within the nerve, but too many electrodes could damage the
nerve of the patient, put hard demand on the implantable electronics and
transcutaneous communication implementation, and therefore this outcome
of model is of essential value for neurosurgeon.

Using the hybrid computational model, it could be possible to design
optimal configuration to stimulate the target nerve. Traditionally, the neural
interface, even if having several stimulating contacts is generally used in
paradigms concerning a single-channel: monopolar use. Monopolar stimu-
lation consists in an activation of only one active site at time, while bipolar
protocol enables to use two contacts in any configuration (with opposite or
same polarity). This represents an example depicting the potentiality of the
stimulation protocol design, guided by model findings.

4.6 Simulation of Biological Reaction to Electrode
Optimization

Modeling framework is not only useful for the design of the neuroprostheses
and their use. It can be successfully exploited also for the interpretation and
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investigation of scientific questions, which are not easy, or are impossible to
face, by experimental empiric approach, that are of paramount importance for
successful chronic use of neural interfaces.

One among the biggest issues with long-term use of neural interfaces in
the neuroprosthetic devices is the decay/change of the stimulating capability
over the time (Liu et al., 1999; Grill and Mortimer, 2000; Huang et al., 2004;
McConnell et al., 2009; Polasek et al., 2009; Leach et al., 2010; Winslow

Figure 4.8 Modeling of the fibrotic tissue growth over weeks.



4.7 Discussion 149

and Tresco, 2010; Raspopovic et al., 2014; Tan et al., 2014). Even though
a significant amount of studies has been performed (Liu et al., 1999; Grill
and Mortimer, 2000; Huang et al., 2004; McConnell et al., 2009; Polasek
et al., 2009; Leach et al., 2010; Winslow and Tresco, 2010), the mechanisms
of the thresholds change during the chronic neural stimulation are yet not
elucidated. Between many possible hypothesis and interpretations, there is
no consensus about the main factors; however, the nerve model can be an
excellent instrument for testing some of these. It is possible to test several
plausible hypotheses, which aim to explain the change of charge necessary
to stimulate the nerve. For example: (i) Nerve fibers are in dysfunction/dying
when electrode is placed intrafasciculary. (ii) Fibrotic tissue pushes electrode
away from nerve fibers when electrode is placed intrafasciculary (Huang
et al., 2004). (iii) Fibrotic tissue shifts electrode away from fascicle when
placed extrafasciculary. (iv) Perturbation of the electric field by means of the
fibrotic tissue generates the change in the axonal recruitment (Miocinovic
et al., 2006). (v) Fibrotic encapsulation (Figure 4.8) changes over time the
resistivity around the electrode.

4.7 Discussion

The hybrid modeling is a mandatory step in order to propose the optimized
electrodes, and also to perform the most efficient manufacturing, avoid
unnecessary animal experimentation, understand the unexpected changes and
finally propose the hints for the neurosurgical procedure. It is of paramount
importance to understand that, when dealing with models, they can be used
properly only when addressing a clearly defined issue, and for what are
tailored: it cannot be intended to explain all the aspects of such a complex
system as neural system stimulation in every its aspect. Therefore, the models
have to be customized toward the peculiar application of feature of interest.
All of models account with specific limitations, and these should be clearly
studied and stated, since could help in the correct interpretation of model
results, their future exploitation and upgrading.

We believe that by the future development of the technologies, and spe-
cially imaging techniques, the sophisticated and widespread neuroprosthetic
devices will go toward the ad hoc, ad personam modeling-based approach:
starting from the high detailed images of structure of interest, and anatomical
knowledge, by use of powerful computers, and efficient modeling computa-
tion we could have the patient-specific neural interface, and protocol of use.



150 Modeling to Guide Implantable Electrode Design

References

Badia, J., Boretius, T., Andreu, D., Azevedo-Coste, C., Stieglitz, T. and
Navarro, X. (2011). Comparative analysis of transverse intrafascicular
multichannel, longitudinal intrafascicular and multipolar cuff electrodes
for the selective stimulation of nerve fascicles, Journal of Neural
Engineering, vol. 8, no. 3, p. 036023.

Boretius, T. et al. (2010). A transverse intrafascicular multichannel elec-
trode (TIME) to interface with the peripheral nerve, Biosensors and
Bioelectronics, vol. 26, no. 1, pp. 62–69.

Bossetti, C. A., Birdno, M. J. and Grill, W. M. (2008). Analysis of the
quasi-static approximation for calculating potentials generated by neural
stimulation, J. Neural Eng., vol. 5, no. 1, pp. 44–53.

Capogrosso, M. et al. (2013). A computational model for epidural electrical
stimulation of spinal sensorimotor circuits, J. Neurosci., vol. 33, no. 49,
pp. 19326–19340.

Coburn, B. and Sin, W. K. (1985). A theoretical study of epidural elec-
trical stimulation of the spinal cord part I: Finite element analysis of
stimulus fields, IEEE Transactions on Biomedical Engineering, vol. 11,
no. BME-32, pp. 971–977.

Coburn, B. (1985). A theoretical study of epidural electrical stimulation of
the spinal cord – Part II: Effects on long myelinated fibers, IEEE Trans-
actions on Biomedical Engineering, vol. 11, no. BME-32, pp. 978–986.

Cutrone, A. et al. (2015). A three-dimensional self-opening intraneural
peripheral interface (SELINE), J. Neural Eng., vol. 12, no. 1, p. 016016.

Fang, Z. P. and Mortimer, J. T. (1991). Selective activation of small motor
axons by quasi-trapezoidal current pulses, IEEE Trans. Biomed. Eng.,
vol. 38, no. 2, pp. 168–174.

Frankemolle, A. M. M. et al. (2010). Reversing cognitive-motor impair-
ments in Parkinson’s disease patients using a computational modelling
approach to deep brain stimulation programming, Brain, vol. 133, no.
Pt 3, pp. 746–761.

Grill, W. M. and Mortimer, J. T. (1995). Stimulus waveforms for selec-
tive neural stimulation, IEEE Engineering in Medicine and Biology
Magazine, vol. 14, no. 4, pp. 375–385.

Grill, W. M. and Mortimer, J. T. (1997). Inversion of the current-distance rela-
tionship by transient depolarization, IEEE Transactions on Biomedical
Engineering, vol. 44, no. 1, pp. 1–9.



References 151

Grill, W. M. and Mortimer, J. T. (2000). Neural and connective tissue
response to long-term implantation of multiple contact nerve cuff
electrodes, J. Biomed. Mater. Res., vol. 50, no. 2, pp. 215–226.

Grinberg, Y., Schiefer, M. A., Tyler, D. J. and Gustafson, K. J. (2008).
Fascicular perineurium thickness, size, and position affect model pre-
dictions of neural excitation, IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 16, no. 6, pp. 572–581.

Hennings, K., Arendt-Nielsen, L., Christensen, S. S. and Andersen, O. K.
(2005). Selective activation of small-diameter motor fibres using expo-
nentially rising waveforms: A theoretical study, Medical & Biological
Engineering & Computing, vol. 43, no. 4, pp. 493–500.

Hines, M. L. and Carnevale, N. T. (1997). The NEURON simulation
environment, Neural Computation, vol. 9, no. 6, pp. 1179–1209.

Huang, X., Nguyen, D., Greve, D. W. and Domach, M. M. (2004). Simulation
of microelectrode impedance changes due to cell growth, IEEE Sensors
Journal, vol. 4, no. 5, pp. 576–583.

Jabaley, M. E., Wallace, W. H. and Heckler, F. R. (1980). Internal topography
of major nerves of the forearm and hand: A current view, The Journal of
Hand Surgery, vol. 5, no. 1, pp. 1–18.

Leach, J. B., Achyuta, A. K. H. and Murthy, S. K. (2010). Bridging the divide
between neuroprosthetic design, tissue engineering and neurobiology,
Front. Neuroeng., vol. 2, p. 18.

Liu, X., McCreery, D. B., Carter, R. R., Bullara, L. A., Yuen, T. G. and
Agnew, W. F. (1999). Stability of the interface between neural tissue
and chronically implanted intracortical microelectrodes. IEEE Trans.
Rehabil. Eng., vol. 7, no. 3, pp. 315–326.

McConnell, G. C., Rees, H. D., Levey, A. I., Gutekunst, C.-A., Gross,
R. E., and Bellamkonda, R. V. (2009). Implanted neural electrodes cause
chronic, local inflammation that is correlated with local neurodegenera-
tion, J. Neural. Eng., vol. 6, no. 5, p. 056003.

McIntyre, C. C. and Grill, W. M. (2002). Extracellular stimulation of central
neurons: Influence of stimulus waveform and frequency on neuronal
output, Journal of Neurophysiology, vol. 88, no. 4, pp. 1592–1604.

McIntyre, C. C., Richardson, A. G. and Grill, W. M. (2002). Modeling the
excitability of mammalian nerve fibers: Influence of afterpotentials on
the recovery cycle, Journal of Neurophysiology, vol. 87, no. 2, pp. 995–
1006.



152 Modeling to Guide Implantable Electrode Design

McNeal, D. R. (1976). Analysis of a model for excitation of myelinated
nerve, IEEE Transactions on Biomedical Engineering, vol. BME-23,
no. 4, pp. 329–337.

Miocinovic, S. et al. (2006). Computational analysis of subthalamic nucleus
and lenticular fasciculus activation during therapeutic deep brain stimu-
lation, Journal of Neurophysiology, vol. 96, no. 3, pp. 1569–1580.

Moffitt, M. A., McIntyre, C. C. and Grill, W. M. (2004). Prediction of myeli-
nated nerve fiber stimulation thresholds: Limitations of linear models,
IEEE Trans. Biomed. Eng., vol. 51, no. 2, pp. 229–236.

Moraud, E. M. et al. (2016). Mechanisms underlying the neuromodulation of
spinal circuits for correcting gait and balance deficits after spinal cord
injury, Neuron, vol. 4, no. 89, pp. 814–828.

Navarro, X., Krueger, T. B., Lago, N., Micera, S., Stieglitz, T. and Dario, P.
(2005). A critical review of interfaces with the peripheral nervous system
for the control of neuroprostheses and hybrid bionic systems, J. Peripher.
Nerv. Syst., vol. 10, no. 3, pp. 229–258.

Oddo, C. M. et al. (2016). Intraneural stimulation elicits discrimination of
textural features by artificial fingertip in intact and amputee humans,
Elife, vol. 5, p. e09148.

Polasek, K. H., Hoyen, H. A., Keith, M. W., Kirsch, R. F. and Tyler, D. J.
(2009). Stimulation stability and selectivity of chronically implanted
multicontact nerve cuff electrodes in the human upper extremity, IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 5, pp. 428–437.

Raspopovic, S., Capogrosso, M. and Micera, S. (2011). A computational
model for the stimulation of rat sciatic nerve using a transverse intrafas-
cicular multichannel electrode. IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 19, no. 4, pp. 333–344.

Raspopovic, S., Capogrosso, M., Badia, J., Navarro, X. and Micera, S. (2012).
Experimental validation of a hybrid computational model for selec-
tive stimulation using transverse intrafascicular multichannel electrodes,
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 20, no. 3, pp. 395–404.

Raspopovic, S. et al. (2014). Restoring natural sensory feedback in real-time
bidirectional hand prostheses, Science Translational Medicine, vol. 6,
no. 222, p. 222ra19.

Raspopovic, S., Petrini, F. M., Zelechowski, M. and Valle, G. (2017).
Framework for the development of neuroprostheses: From basic under-
standing by sciatic and median nerves models to bionic legs and hands,
Proceedings of the IEEE, vol. 105, no. 1, pp. 34–49.



References 153

Rattay, F. (1986). Analysis of models for external stimulation of axons,
IEEE Transactions on Biomedical Engineering, vol. BME-33, no. 10,
pp. 974–977.

Rattay, F. (1989). Analysis of models for extracellular fiber stimulation, IEEE
Transactions on Biomedical Engineering, vol. 36, no. 7, pp. 676–682.

Rattay, F., Minassian, K. and Dimitrijevic, M. R. (2000). Epidural electrical
stimulation of posterior structures of the human lumbosacral cord: 2.
Quantitative analysis by computer modeling, Spinal Cord, vol. 38, no. 8,
pp. 473–489.

Riso, R. R. (1999). Strategies for providing upper extremity amputees with
tactile and hand position feedback – moving closer to the bionic arm,
Technol Health Care, vol. 7, no. 6, pp. 401–409.

Saal, H. P. and Bensmaia, S. J., (2015). Biomimetic approaches to bionic
touch through a peripheral nerve interface, Neuropsychologia, vol. 79,
pp. 344–353.

Saal, H. P., Delhaye, B. P., Rayhaun, B. C. and Bensmaia, S. J. (2017). Sim-
ulating tactile signals from the whole hand with millisecond precision,
Proceedings of the National Academy of Sciences, vol. 114, no. 28, pp.
E5693–E5702.

Schiefer, M. A., Triolo, R. J. and Tyler, D. J. (2008). A model of selective
activation of the femoral nerve with a flat interface nerve electrode for a
lower extremity neuroprosthesis, IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 16, no. 2, pp. 195–204.

Schiefer, M. A., Tyler, D. J. and Triolo, R. J. (2012). Probabilistic modeling
of selective stimulation of the human sciatic nerve with a flat interface
nerve electrode, J. Comput. Neurosci., vol. 33, no. 1, pp. 179–190.

Schiefer, M., Tan, D., Sidek, S. M. and Tyler, D. J. (2016). Sensory feedback
by peripheral nerve stimulation improves task performance in individu-
als with upper limb loss using a myoelectric prosthesis, J. Neural. Eng.,
vol. 13, no. 1, p. 016001.

Tan, D. W., Schiefer, M. A., Keith, M. W., Anderson, J. R., Tyler, J. and Tyler,
D. J. (2014). A neural interface provides long-term stable natural touch
perception, Sci. Transl. Med., vol. 6, no. 257, p. 257ra138.

Vuckovic, A., Rijkhoff, N., J. M. and Struijk, J. J. (2004). Different pulse
shapes to obtain small fiber selective activation by anodal blocking – A
simulation study, IEEE Transactions on Biomedical Engineering, vol.
51, no. 5, pp. 698–706.



154 Modeling to Guide Implantable Electrode Design

Veltink, P. H., van Alste, J. A. and Boom, H. B. K. (1988). Simulation of
intrafascicular and extraneural nerve stimulation, IEEE Trans. Biomed.
Eng., vol. 35, no. 1, pp. 69–75.

Winslow, B. D. and Tresco, P. A. (2010). Quantitative analysis of the tissue
response to chronically implanted microwire electrodes in rat cortex,
Biomaterials, vol. 31, no. 7, pp. 1558–1567, 2010.

Zierhofer, C. M. (2001). Analysis of a linear model for electrical stimulation
of axons – Critical remarks on the “activating function concept”, IEEE
Trans. Biomed. Eng., vol. 48, no. 2, pp. 173–184.


	Modeling to Guide Implantable Electrode Design
	Hybrid Model
	Finite Elements Model
	Neuron Fiber Model
	Hybrid Model Solution
	Model-driven Electrode Design, Dimensions, and Number of Implants
	Simulation of Biological Reaction to Electrode Optimization
	Discussion


