Ultra-Low Power FM-UWB Transceivers for IoT

Series Editors:

MASSIMO ALIOTO National University of Singapore

Singapore

KOFI MAKINWA

Delft University of Technology The Netherlands

DENNIS SYLVESTER

University of Michigan USA

Indexing: All books published in this series are submitted to the Web of Science Book Citation Index (BkCI), to SCOPUS, to CrossRef and to Google Scholar for evaluation and indexing.

The "River Publishers Series in Circuits and Systems" is a series of comprehensive academic and professional books which focus on theory and applications of Circuit and Systems. This includes analog and digital integrated circuits, memory technologies, system-on-chip and processor design. The series also includes books on electronic design automation and design methodology, as well as computer aided design tools.

Books published in the series include research monographs, edited volumes, handbooks and textbooks. The books provide professionals, researchers, educators, and advanced students in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

- Analog Integrated Circuits
- Digital Integrated Circuits
- Data Converters
- Processor Architecures
- System-on-Chip
- Memory Design
- Electronic Design Automation

For a list of other books in this series, visit www.riverpublishers.com

Ultra-Low Power FM-UWB Transceivers for IoT

Vladimir Kopta

CSEM SA Switzerland

Christian Enz

EPFL Switzerland

Published, sold and distributed by: River Publishers Alsbjergvej 10 9260 Gistrup Denmark

River Publishers Lange Geer 44 2611 PW Delft The Netherlands

Tel.: +45369953197 www.riverpublishers.com

ISBN: 978-87-7022-144-3 (Hardback) 978-87-7022-143-6 (Ebook)

©2019 River Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers.

Contents

Fo	rewoi	rd	ix
Pr	eface		xi
Li	st of F	ìgures	xiii
Li	st of T	àbles	xix
Li	st of A	bbreviations	xxi
1	Intro	oduction	1
	1.1	Wireless Communication	1
	1.2	CMOS Technology and Scaling	2
	1.3	IoT and WSN	3
	1.4	Energy Sources	5
	1.5	Work Outline	6
	Refe	rences	8
2	Low	Power Wireless Communications	9
	2.1	Introduction	9
	2.2	Narrowband Communications	12
		2.2.1 Bluetooth Low Energy	13
		2.2.2 Wake-up Receivers	18
	2.3	Ultra-Wideband Communications	23
		2.3.1 Impulse Radio UWB	24
	2.4	Concluding Remarks	29
	Refe	rences	31

3	FM-	UWB as a Low-Power, Robust Modulation Scheme	39
	3.1	Introduction	39
	3.2	Principles of FM-UWB	40
		3.2.1 FM-UWB Modulation	40
		3.2.2 Multi-User Communication and Narrowband	
		Interference	44
		3.2.3 Beyond Standard FM-UWB	51
	3.3	State-of-the-Art FM-UWB Transceivers	54
		3.3.1 FM-UWB Receivers	54
		3.3.2 FM-UWB Transmitters	58
		3.3.3 FM-UWB Against IR-UWB and Narrowband	
		Receivers	60
	3.4	Summary	63
	Refe	rences	64
4		Approximate Zero IF Receiver Architecture	67
	4.1	Introduction	67
	4.2	The Uncertain IF Architecture	68
	4.3	The Approximate Zero IF Receiver with Quadrature	
		Downconversion	70
	4.4	The Approximate Zero IF Receiver with Single-Ended	
		Downconversion	78
	4.5	Receiver Sensitivity Estimation	82
	4.6	Summary	86
	Refe	erences	87
5	Oua	drature Approximate Zero-IF FM-UWB Receiver	89
J	5.1		89
	5.2	Receiver Architecture	89
	5.3	Circuit Implementation	92
	0.0	5.3.1 RF Frontend	92
		5.3.2 IF Amplifier	95
		5.3.3 LO Generation and Calibration	98
		5.3.4 FM Demodulator	103
		5.3.5 LF Amplifier and Output Buffer	105
		5.3.6 Current Reference PTAT Circuit	104
	5.4	Measurement Results	100
	Ј.т	5.4.1 General Receiver Measurements	107
		5.4.2 Single User Measurements	107
			109

		5.4.3	Multi-User Measurements	116
		5.4.4	Multi-Channel Transmission	
			Measurements	119
	5.5	Summa	ury	120
	Refer	ences.		122
				105
6			ansceiver	125
	6.1		ction	125
	6.2		eiver Architecture	125
	6.3		itter Implementation	127
		6.3.1	Sub-Carrier Synthesis	128
		6.3.2	DCO Digital to Analog Converters	129
		6.3.3	DCO	132
		6.3.4	Preamplifier and Power Amplifier	134
	6.4	Receive	er Implementation	139
		6.4.1	RF Frontend	139
		6.4.2	IF Amplifiers	141
		6.4.3	Receiver DCO	143
		6.4.4	Demodulator	144
		6.4.5	N-Path Channel Filter	147
		6.4.6	LF Amplifier and Comparator	153
		6.4.7	FSK Demodulator and Clock Recovery	155
		6.4.8	SAR FLL Calibration	159
		6.4.9	Clock Reference	160
	6.5		rement Results	162
	0.5	6.5.1	Transmitter Measurements	163
		6.5.2	Receiver Measurements	170
	6.6			183
			· · · · · · · · · · · · · · · · · · ·	185
	110101	chees .		100
7	Conc	lusion		189
	7.1		ary of Achievements	190
	7.2	Future	of FM-UWB	192
	Refer	rences.		193
In	dex			195
At	out th	e Autho	rs	199

Low-power and ultra-low-power communication technology is enabling the internet of things (IoT). The technology described by Kopta and Enz in this book is energy-efficient, robust and offers the capability of license-free communication – all desirable attributes for future IoT devices. Wideband- and ultrawideband-FM (FM-UWB) radio transceivers have been pioneered by researchers affiliated with the Swiss Center for Electronics and Microtechnology (CSEM), and elsewhere in Europe, since 2002. The technology offers an elegant and simple solution to the energy and performance constraints for many IoT applications. Kopta and Enz continue the research tradition established by John Gerrits at CSEM in 2002–2003, and have brought UWB-FM even closer to its goal of commercial exploitation.

After a brief introduction outlining the constraints and motivation for transceivers integrated in silicon CMOS for wireless sensor networking applications, a survey of narrowband and wideband transceivers is presented in Chapter 2. Chapter 3 is devoted to a tutorial on FM-UWB, which gives the reader a concise overview of the principles behind the double-FM method of modulation/demodulation, and a review of the transceiver implementations reported in the recent literature based on FM-UWB schemes. A key advantage intrinsic to FM-UWB is network scalability. Multiple data sources can share the same RF band easily using separate FSK-modulated subcarriers. This multi-user concept was proposed by Gerrits early in his development of the FM-UWB concept, and the authors devote much of this book to their development of an experimental, low-power FM-UWB transceiver that supports multi-user scenarios.

Many of the radio technologies described in the book will be familiar to experienced CMOS practitioners. However, the authors have also provided sufficient details for the novice to easily follow their hardware demonstrator descriptions. The first designs outlined in Chapter 4 use direct conversion to baseband (i.e., zero-IF architecture) in the receiver. Rather than relying on a fixed intermediate frequency (IF), the concept of a sliding or *uncertain* IF is explained. The authors then propose an *approximate* IF receiver that

x Foreword

leverages the uncertain-IF concept to conserve power. Both single-ended and quadrature downconversion schemes are described, and system-level simulations are presented which estimate the expected performance of the two receivers. Chapter 5 describes implementation of the quadrature approximate-zero-IF receiver concept. Circuit blocks comprising the receiver are detailed and key simulation results are presented and compared with measurements. Performance is characterized with narrowband and wideband interferers present, allowing the unique features of the FM-UWB approach to be highlighted.

While simple in concept, implementation of a practical FM-UWB transceiver requires attention to many details, and Kopta does not disappoint the reader when describing prototype implementations in 65-nm bulk CMOS in Chapter 6. Sub-carrier synthesis, the digitally-controlled carrier oscillator, and antenna amplifiers are detailed for the transmitter, including calibration schemes used to ensure robustness of the final prototypes. On the receive side, each of the circuits blocks in the receive chain are presented in depth, including an N-path channel selection filter. The emphasis in Kopta's design is on robustness to narrowband interferers, in particular interference from the 2.4-GHz ISM band. Tolerance to frequency offsets is also considered. The final prototype is able to tolerate clock offsets large enough to obviate the need for a reference oscillator, making it the first FM-UWB transceiver that can be implemented without an external quartz crystal.

In summary, readers of this book will find a complete description of the current state-of-the-art in FM-UWB technology, including detailed circuit descriptions and convincing proof-of-concept verifications of CMOS prototypes within its covers.

> John R. Long Waterloo, Ontario November 11, 2019

This book is a result of more than four years of research work on a Ph.D. thesis at Swiss Federal Institute of Technology (EPFL) and Swiss Center for Electronics and Microtechnology (CSEM). The main motivation comes from the *WiseSkin* project, that had as a goal the integration of a sensory "skin", intended for use in prosthetic devices. Such skin would allow persons that have lost a limb to regain a natural sense of touch and perceive the artificial limb as part of their body. Tactile capability of the skin was provided by the means of a network of connected, highly miniaturized, sensor nodes, able to detect pressure and communicate data. FM-UWB imposed itself as an approach that suited all of the system needs and was quickly adopted for our solution. Beyond the scope of the *WiseSkin* project, the FM-UWB is considered here in a broader context of wireless sensor networks and IoT, topics still gaining on popularity today.

The aim of the book is to provide in depth coverage of FM-UWB as an efficient modulation scheme in the context of low-power, short range communications. It showcases FM-UWB as an alternative to commonly used narrowband radios, such as Bluetooth or ZigBee, and attempts to emphasize its potential in the IoT application space. The book also covers a design of a fully integrated FM-UWB transceiver, from high-level considerations and system specifications to transistor level design. Some of the basic concepts in circuit design are omitted in this book in order to focus on the topic of interest. The assumption is that the reader has a good foundation in analog and RF IC design, and that he is already familiar with fundamentals of communication theory. The book is intended for graduate students and academic staff engaged in electrical and electronic engineering, as well as more experienced engineers looking to expand their knowledge of low power transceivers.

The authors would like to acknowledge the members of the staff, present and past, of the Integrated and Wireless Systems Division at CSEM for their valuable contribution to this research work. It was through collaboration and many insightful discussions that the authors could benefit from their

xii Preface

knowledge and immense experience in RF circuit design. Their helpful advice, both theoretical and practical, has proven to be crucial for the success of this work, hence special thanks go to: David Barras, David Ruffieux, Franz Pengg, Erwan Le Roux, Alexandre Vouilloz, Nicola Scolari, Nicolas Raemy, Pascal Persechini, John Farserotu, Ricardo Caseiro and Pierre-Alain Beuchat of CSEM.

The authors would also like to thank the staff at River Publishers, particularly Junko Nakajima, for the support in making this book.

Vladimir Kopta Neuchatel, Switzerland November 2019

List of Figures

Figure 1.1	The WiseSkin concept (a) and a prototype sensor	
	node (b)	4
Figure 2.1	Power consumption and range of different wireless	
	technologies	10
Figure 2.2	Typical BLE transmitter block diagram	13
Figure 2.3	Low power BLE receiver block diagrams, low IF	
0	(a) and sliding IF (b) receiver	15
Figure 2.4	Typical WU receiver block diagram	19
Figure 2.5	Ultra wideband communication schemes, IR-UWB	
0	(a) FM-UWB (b)	24
Figure 2.6	IR-UWB transmitter block diagram	26
Figure 2.7	IR-UWB OOK/PPM receiver block diagram	26
Figure 2.8	Low power receivers, data rate vs. power	
0	consumption	29
Figure 2.9	Low power receivers, sensitivity vs. efficiency	30
Figure 3.1	Principle of FM-UWB signal modulation	40
Figure 3.2	Wideband FM demodulator	41
Figure 3.3	Comparison of standard orthogonal FSK and	
0	FM-UWB modulation	43
Figure 3.4	FM-UWB multi-user communication	46
Figure 3.5	FSK sub-channel frequency allocation and limits	
0	due to distortion	49
Figure 3.6	ACPR for filtered and non-filtered FSK signal, as a	
0	function of channel separation (100 kb/s data rate,	
	modulation index 1)	50
Figure 3.7	FM-UWB multi-channel broadcast	52
Figure 3.8	Example of transmission on two channels, time	
_	domain sub-carrier signal (a) and transmitted signal	
	spectrum (b)	53
Figure 3.9	FM-UWB receiver architectures reported in the	
_		55

xiv List of Figures

Figure 3.10	Frequency-to-amplitude conversion characteristic	-
	of reported FM demodulators	56
Figure 3.11	Comparison of FM-UWB receivers and other low	
	power receivers from Chapter 2, data-rate against	
	power consumption	62
Figure 3.12	Comparison of FM-UWB receivers and other low	
	power receivers from Chapter 2, efficiency against	
	sensitivity	62
Figure 3.13	FM-UWB transmitters and receivers, evolution of	
	power consumption. Type of demodulator used in	
	each receiver is indicated on the graph	64
Figure 4.1	Principle of operation of the uncertain IF receiver .	69
Figure 4.2	Block diagram of approximate zero IF receiver with	
	IQ downconversion	71
Figure 4.3	Principle of operation of approximate zero IF	
	receiver with IQ downconversion	73
Figure 4.4	Normalized fundamental C_1 and second harmonic	
_	amplitude C_2 at the output of the demodulator vs.	
	the offset frequency. First harmonic is proportional	
	to conversion gain. Four curves are plotted for four	
	different values of the demodulator bandwidth (or	
	equivalently different values of the delay τ)	75
Figure 4.5	Coefficient C_{MU} (a) and correction factor $ C_1 ^2/$	
0	C_{MU} for SIR (b) as functions of the frequency	
	offset. Four curves are correspond to three	
	different values of the demodulator bandwidth (or	
	equivalently values of the delay τ)	78
Figure 4.6	Block diagram of approximate zero IF receiver with	
0	single-ended downconversion	79
Figure 4.7	Principle of operation of the approximate zero IF	
0	receiver with single-ended downconversion	81
Figure 4.8	Normalized fundamental C_1 and second harmonic	
8	amplitude C_2 at the output of the demodulator	82
Figure 4.9	Simulated and calculated BER curves for the	
8	approximate zero IF receiver	83
Figure 4.10	Simulated and calculated BER curves with and	
8	without frequency offset for the approximate	
	zero-IF receiver with quadrature downconversion	
	(a) and single-ended downconversion (b)	85
		00

Figure 5.1	Receiver block diagram	91
Figure 5.2	Schematic of the LNA/Mixer	93
Figure 5.3	Schematic of the IF amplifier, and the equivalent	
_	small-signal schematic of half circuit	95
Figure 5.4	Simulated conversion gain and noise figure of the	
C	RF and IF stages	97
Figure 5.5	Simplified schematic of the quadrature DCO	99
Figure 5.6	Simulated frequency and current consumption of	
0	the DCO	100
Figure 5.7	Schematic of the frequency divider	101
Figure 5.8	Schematic of the buffer between the DCO and the	
0	frequency divider	101
Figure 5.9	Frequency divider, waveforms at different points	102
Figure 5.10	Schematic of the wideband FM demodulator	103
Figure 5.11	Wideband FM demodulator, input and output	
	waveforms	105
Figure 5.12	Schematic of the output buffer	106
Figure 5.13	Schematic of the PTAT current reference	107
Figure 5.14	Die photograph	107
Figure 5.15	Measured S_{11} parameter for different values of	
	input capacitance	108
Figure 5.16	Measured frequency and current consumption of the	
	DCO	109
Figure 5.17	Measurement setup	110
Figure 5.18	Measured BER curves for different carrier offset	112
Figure 5.19	Measured demodulator output waveform for different	
	carrier frequency offsets	113
Figure 5.20	BER curves for different data rates	113
Figure 5.21	BER curves for different modulation order	114
Figure 5.22	Spectrum of the demodulated sub-carrier signal	115
Figure 5.23	Sensitivity as a function of in-band interferer	
	power	116
Figure 5.24	BER curves for 2 FM-UWB users and varying input	
	level between the two users	117
Figure 5.25	BER curves for different number of FM-UWB	
	users	118
Figure 5.26	Spectrum of the demodulated sub-carrier signal, in	
	different multi-user scenarios	118

xvi List of Figures

Figure 5.27	BER curves for different number of broadcast	
	sub-channels	119
Figure 5.28	Spectrum of the transmitted signal, for the standard	
	FM-UWB and MC FM-UWB	120
Figure 5.29	Demodulated signal spectrum, with and without	
	spacing between adjacent sub-channels	120
Figure 6.1	Top-level block diagram of implemented	
	transceiver	126
Figure 6.2	Block diagram of the implemented transmitter	128
Figure 6.3	Digital sub-carrier synthesizer.	129
Figure 6.4	Static DCO current DAC	130
Figure 6.5	Dynamic DCO current steering DAC	131
Figure 6.6	Dynamic DAC test output buffer	131
Figure 6.7	Transmitter DCO with buffers	132
Figure 6.8	Schematic of the frequency divider buffer	133
Figure 6.9	Simulated DCO frequency, current consumption	
	and output voltage amplitude	133
Figure 6.10	Preamplifier and power amplifier schematic	136
Figure 6.11	Simulated S_{11} parameter at the RF IO	137
Figure 6.12	Simulated power amplifier output power (a),	
	consumption (b) and efficiency (c) including the	
	preamplifier	138
Figure 6.13	MU receiver LNA/mixer schematic.	140
Figure 6.14	LP receiver LNA/mixer schematic.	140
Figure 6.15	IFA schematic of MU and LP receiver	141
Figure 6.16	Simulated characteristics of the LP and MU Rx	
	frontend	142
Figure 6.17	LP receiver DCO schematic.	143
Figure 6.18	LP receiver DCO simulated frequency, current	
	consumption and output voltage	145
Figure 6.19	MU receiver demodulator schematic	145
Figure 6.20	LP receiver demodulator schematic	146
Figure 6.21	LP receiver demodulator input and output	
	waveforms.	147
Figure 6.22	Band-pass N-path filter schematic.	149
Figure 6.23	Transconductor of the N-path filter	151
Figure 6.24	Non-overlapping clock phases used to drive	
	switches and the differential switch-capacitor	
	array	151

Figure 6.25	Non-overlapping clock generator	152
Figure 6.26	Transfer function of the N-path filter	152
Figure 6.27	Schematic of the second order cell of the LP filter	
	and half circuit small signal schematic	153
Figure 6.28	Simulated frequency characteristic of the MU and	
	LP receiver LFA.	154
Figure 6.29	Comparator schematic.	155
Figure 6.30	Block diagram of the FSK demodulator and clock	
0	recovery circuit.	156
Figure 6.31	Simulated signals of the FSK demodulator and	
0	clock recovery circuit.	157
Figure 6.32	SAR FLL block diagram.	160
Figure 6.33	Example measured SAR FLL calibration cycle	161
Figure 6.34	Principle of clock generation and distribution	162
Figure 6.35	SEM die photograph of the transceiver	163
Figure 6.36	Measured sub-carrier DAC output (a) and measured	
8	frequency deviation of the transmitted signal (b).	164
Figure 6.37	Frequency and power consumption of the transmit	101
i iguite ole /	DCO.	165
Figure 6.38	Phase noise of the transmit DCO at 4 GHz.	166
Figure 6.39	Measured power amplifier output power (a),	100
- Bart out	consumption (b) and efficiency (c) including the	
	preamplifier.	167
Figure 6.40	Transmitted FM-UWB signal spectrum.	168
Figure 6.41	Transmit power vs. transmitter power	100
i igui e ori i	consumption.	169
Figure 6.42	Measured S_{11} parameter in transmit and receive	107
i igui e oriz	mode.	170
Figure 6.43	Measured frequency and power consumption of the	170
I igui e oi ie	MU Rx DCO.	171
Figure 6.44	Measured frequency and power consumption of the	1/1
I igui e 0.44	LP Rx DCO	172
Figure 6.45	N-path filter measured characteristic for center	1/2
I igui e 0.40	frequency of 1.25 MHz.	172
Figure 6.46	Demodulated signal spectrum before and after	1/2
1 iguit 0.40	N-path filter.	173
Figure 6.47	Test setup used for transceiver characterization.	175
Figure 6.48	Single user BER of the MU Rx with internal and	175
1 igui 0 0.40	external demodulator at 100 kb/s	176
	$\nabla A = 0$	1/0

xviii List of Figures

Figure 6.49	Single user BER of the LP Rx with internal and	
	external demodulator at 100 kb/s	177
Figure 6.50	Measurement setup and comparison of transmit and	
	received bits.	178
Figure 6.51	Sensitivity degradation due to the presence of an	
	in-band interferer.	178
Figure 6.52	Sensitivity degradation due to the presence of an out	
	of band interferer at 2.4 GHz	179
Figure 6.53	BER for a fixed input signal level with varying	
	reference clock frequency.	180
Figure 6.54	Measured BER curves for multiple FM-UWB users	
	of same power level, demodulated with external (a)	
	and internal (b) demodulator	181
Figure 6.55	Measured BER curves for two FM-UWB users of	
	different power levels, demodulated with external	
	(a) and internal (b) demodulator	182
Figure 7.1	Power consumption evolution of implemented	
	FM-UWB transmitters and receivers	190
Figure 7.2	Efficiency vs. sensitivity of implemented FM-UWB	
	receivers	191

List of Tables

Table 2.1	Performance comparison of BLE receivers	16
Table 2.2	Performance comparison of WU receivers	21
Table 2.3	Performance comparison of IR-UWB receivers	28
Table 3.1	Performance summary of state-of-the-art FM-UWB	
	receivers	57
Table 3.2	Performance summary of state-of-the-art FM-UWB	
	transmitters	61
Table 5.1	Power consumption breakdown	109
Table 5.2	Comparison with the state-of-the-art receivers	121
Table 6.1	Transmitter power consumption breakdown	170
Table 6.2	MU receiver power consumption breakdown	174
Table 6.3	LP receiver power consumption breakdown	174
Table 6.4	Comparison with the state-of-the-art transceivers	184

List of Abbreviations

ACLR	Adjacent Channel Leakage Ratio
ACPR	Adjacent Channel Power Ratio
ADC	Analog to Digital Converter
AM	Amplitude Modulation
AWG	Arbitrary Waveform Generator
AWGN	Additive White Gaussian Noise
AZ-IF	Approximate Zero Intermediary Frequency
BAN	Body Area Network
BAW	Bulk Acoustic Wave
BB	Baseband
BER	Bit Error Rate
BLE	Bluetooth Low Energy
BT	Bluetooth
C-UWB	Chirp Ultra Wideband
СН	Cherry-Hooper
Clk	Clock
CDMA	Code Division Multiple Access
CMOS	Complementary Metal Oxide Semiconductor
СР	Continuous Phase
DAC	Digital to Analog Converter
DBPF	Dual Band-Pass Filter
DCO	Digitally Controlled Oscillator
DDS	Direct Digital Synthesis
DL	Delay Line
DPSK	Differential Phase Shift Keying
DQPSK	Differential Quadrature Phase Shift Keying
ED	Envelope Detector
EDR	Enhanced Data Rate
FCC	Federal Communications Commission
FDMA	Frequency Division Multiple Access
FH	Frequency Hopping

FLL	Fraguency Locked Loop
fll FM	Frequency Locked Loop Frequency Modulation
FM	Field Programmable Gate Array
FSK	
	Frequency Shift Keying
GFSK	Gaussian Minimum Shift Keying
HD	High Density
I/Q	In-phase/Quadrature
IEEE	Institute of Electrical and Electronic Engineers
IF	Intermediary Frequency
IFA	Intermediary Frequency Amplifier
IO	Input-Output
IoT	Internet of Things
IR	Impulse Radio
ISM	Industrial Scientific Medical
LAN	Local Area Network
LF	Low Frequency
LNA	Low Noise Amplifier
LO	Local Oscillator
LP	Low Power
MEMS	Micro Electro-Mechanical System
MFC	Microbial Fuel Cell
MOS	Metal-Oxide Semiconductor
MPP	Maximum Power Point
MSO	Mixed Signal Oscilloscope
MU	Multi-User
NB	Narrowband
NF	Noise Figure
NFC	Near Field Communication
OFDM	Orthogonal Frequency Division Multiplex
OOK	On-Off Keying
PA	Power Amplifier
PCB	Printed Circuit Board
PDF	Probability Density Function
PHY	Physical Layer
PLL	Phase Locked Loop
PPA	Preamplifier
PPM	Pulse Position modulation
ppm	parts per million
PRR	Pulse Repetition Ratio
	1

PSD	Power Spectral Density
PSK	Phase Shift keying
PTAT	Proportional to Absolute Temperature
PVC	Photovoltaic Cell
PVT	Process Voltage Temperature
QPSK	Quadrature Phase Shift Keying
RA-OOK	Random Alternate On-Off Keying
RF	Radio Frequency
RFID	Radio Frequency Identification
S-OOK	Synchronous On-Off Keying
SAR	Successive Approximation Register
SAW	Surface Acoustic Wave
SC	Sub-Carrier
SIF	Sliding Intermediary Frequency
SIR	Signal to Interference Ratio
SMA	Sub-Miniature version-A
SNIR	Signal to Noise and Interference Ratio
SNR	Signal to Noise Ratio
SPI	Serial Peripheral Interface
TDMA	Time Division Multiple Access
TEG	Thermoelectric Generator
UNB	Ultra Narrowband
UWB	Ultra-Wideband
VCO	Voltage Controlled Oscillator
WBAN	Wireless Body Area Network
WLAN	Wireless Local Area Network
WSN	Wireless Sensor Network
WU	Wake-Up (Receiver)