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Preface

Intelligent Edge-Embedded Technologies for Digitising Industry

Industrial intelligent edge systems are designed with more computing power
and sensors to enable analytics, Al inferencing, and natural user interfaces.
These new capabilities enhance their behaviour and provide new func-
tionalities based on sensing, actuating, programming, and connectivity to
dynamically interact and autonomously function.

Intelligent edge architectures are complementary to embedded systems,
bringing scalable computing nearer to resource-constrained embedded sys-
tems and enabling these systems to leverage more complex, computing-
intensive processes (including machine and deep learning) and local process-
ing of historical data.

Intelligent edge devices are often resource-constrained by design. Such
fixed-function systems are highly optimised for performance (speed, reliabil-
ity, safety) and cost.

By making additional computing resources available to these systems,
intelligent edge deployments enable diverse decision-making processes in the
local industrial environment. These include system-level optimisations across
devices, changes to the programming of specific devices, and other forms of
control.

Al algorithms are processed locally, directly on the device, on the gate-
way, or on-premises servers near the edge devices. The algorithms utilise the
data generated by the devices themselves. Industrial edge IIoT devices can
make independent decisions in a matter of milliseconds without having to
connect to the cloud.

As the computing and microcontroller architectures evolve, they support
edge Al on embedded industrial systems and make the most of the limited
computing resources there. The ARM Cortex cores, and Al accelerator’s
developments are pushing forward Al in resource-constrained environments.
Several chip manufacturers are directly enabling machine learning-based Al
on their microcontrollers. The increased hardware support for Al, including

XV



XVi  Preface

tools for edge Al, opens new opportunities for industrial edge Al imple-
mentations and deployments with new Al configurations that can operate in
real-time and be integrated into the industrial manufacturing process.

This book provides a valuable resource for researchers working with
intelligent edge-embedded technologies for digitising industry and industry
professionals, machine and deep learning engineers, front-end developers,
IIoT developers, and back-end developers looking to deploy intelligent
solutions at the industrial edge.
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