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Abstract

Edge artificial intelligence and machine-learning algorithms increasingly
enter our day-to-day products and applications. This massive adoption of
data in all aspects of human activity will lead to unprecedented growth in
computational needs to process this data into useful information and actions.
The current approach to process this data in high-end cloud server parks is
no longer sustainable as it costs energy, latency, and poses privacy threats.
Realizing intelligent energy-efficient local processing is however extremely
challenging. Neuromorphic computing, modelled according to the human’s
brain nerve network, is often suggested to realize such processing. Building
such neuromorphic processing hardware however requires major advance-
ments at different levels. New technology platforms for emerging semicon-
ductor devices must be developed, levering emerging memory technologies
which show characteristics related to neuromorphic computation. MRAM
(Magnetoresistive Random Access Memory) could mimic the stochastic
behavior of synapses, FeRAM (Ferroelectric Random Access Memory) could
be tuned to emulate synaptic weight, and the temporal and analog qualities
of biological neurons and synapses could be mimicked RRAM’s (Resistive
Random Access Memory) memristors. We also present a 3D interconnection
roadmap suitable to integrate neural accelerators. Related to neuromorphic
hardware design and architectures, we optimize conventional neural network
algorithms like Deep Learning (DL) and Spiking Neural Networks (SNNs)
by focussing on their most critical parts in terms of power, performance,
and area. All this will be leveraged in use case demonstrators for different
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applications that need complex machine-learning algorithms in their mobile
devices. All these activities are executed in the TEMPO project aiming to
broaden the applicability of integrated neuromorphic hardware by means of
technological innovation.

Keywords: Neuromorphic computing, edge processing, spiking neural
networks, deep learning, hardware, silicon technologies.

2.1 Mobile Devices Call for Efficient Neuromorphic
Computing

Increasingly, edge artificial intelligence and machine-learning algorithms
enter our day-to-day products and applications such as smart home assistants
with natural-language processing, face-recognition-based security systems or
autonomous vehicles. In the coming years, the demand for these increasingly
complex computational algorithms will only grow further. At this moment,
high-end server parks process the data in the cloud.

However, sending data to the cloud costs energy, latency, and is often not
preferred for privacy reasons. As such, the ultimate edge artificial intelligence
applications require intelligent energy-efficient local processing.

Realizing such intelligent energy-efficient local processing is however
extremely challenging. Neuromorphic computing which is modelled accord-
ing to the sophisticated nerve network of our human brain is often suggested
as key technology to realize such processing. The project ECSEL TEMPO
(Technology and hardware for neuromorphic computing) [1] aims to progress
towards such processing. TEMPO collaboratively develops technology and
hardware platforms leveraging emerging memory technologies for neuromor-
phic computing. The goal is to develop a new way to support a diversity
of applications in mobile devices that need complex machine- learning
algorithms.

2.2 Neuromorphic Hardware Enables Next Generation AI

Neuromorphic engineering is a ground-breaking approach to the design
of computing technology that draws inspiration from the powerful and
efficient biological neural processing systems. Neuromorphic devices can
carry out sensing, processing, and motor control strategies with ultra-low
power performance. Today’s neuromorphic community in Europe is leading
the State-of-the-Art in this domain. The community counts an increasing
number of labs that work on theory, modelling, and implementation of
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neuromorphic computing systems using both conventional very large-scale
integration (VLSI) technologies, emerging memristive devices, photonics,
spin-based, and other nano-technological solutions. To enable the uptake of
this technology and to match the needs of real-world applications in future
products that solve real-world tasks in industry, healthcare, assistive systems,
and consumer devices, extensive work is needed in terms of neuromor-
phic algorithms, emerging technologies, hardware design and neuromorphic
applications respectively.

In the TEMPO project, we consider “neuromorphic” as brain-inspired
algorithms, and we focus specifically on conventional DL and SNNs. That
way, it is ensured that both established paradigms are covered in the greater
domain of brain-inspired computation. Given the slowdown of silicon-only
scaling, it is important to extend the roadmap of neuromorphic implementa-
tions by leveraging fitting technology innovations. Along these lines, TEMPO
sweep technology options, covering emerging memories and 3D integration,
and attempt to pair them with contemporary DL and exploratory (SNN)
neuromorphic computing paradigms.

Terms like Artificial Intelligence (AI) and Machine Learning (ML) enjoy
a popularity trend that is fuelled by a wide variety of applications. They
come in a wide variety of underlying algorithms. Regardless of the algorithm,
the goal of TEMPO is to implement accurate classifiers and/or predictors
of raw data that is either available in a pre-stored location or entering as a
stream (images, audio, video, etc). The local deployment of these algorithms,
exactly near the generation of raw data, is identified as one of the main
progress directions of the overall AI/ML trend [2], which assists the already
growing ecosystem that develops and applies neuromorphic algorithms on an
increasing number of end-user applications [3]. This observation is echoed
additionally by the increasing percentage of custom chips that are designed,
which follow the growing AI/ML trend and execute a wide variety of
neuromorphic algorithms [4].

To address this, TEMPO aims to broaden the applicability of integrated
neuromorphic hardware by improving energy efficiency with emerging
memory technologies in novel neuromorphic hardware implementations, and
to develop technology platforms for emerging semiconductor devices and
demonstrate them for the energy efficient hardware implementation of
neuromorphic workloads. To achieve this, TEMPO spreads over three
action areas as illustrated in Figure 2.1. These action areas cover (1) the
definition and the enablement to develop the emerging technologies, (2)
the architectural definition and the related neuromorphic hardware design,
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Figure 2.1 TEMPO spreads over three action areas.

and (3) the neuromorphic algorithm design and leverage the neuromorphic
technologies for future applications in mobile devices that need complex
machine-learning algorithms.

2.3 Building Neuromorphic Hardware

Neuromorphic hardware is the key to sustain the ability of mobile devices to
deal with complex machine-learning algorithms. Building such neuromorphic
solutions, however, comes with many diverse challenges. These challenges
can only be tackled through synergetic collaborations across the entire neu-
romorphic technology value chain covering major foundries, chip design,
system houses, application companies and research partners. TEMPO acts
as the umbrella to enable such synergetic activities to address the following
objectives:

• Enable the joint development of participating European Research and
Technology Organisations (RTOs), foundries and leading (application)
companies towards the identification of emerging semiconductor tech-
nologies that fit best to neuromorphic hardware and address relevant
applications indicated by participating end-user partner companies.

• Evaluate current concepts for the implementation of neuromorphic
hardware according to Key Performance Indicators (KPIs) at the device,
architecture and application level, like power consumption, silicon
area/cost, latency, throughput, energy for a given application task,
memory bottlenecks, manufacturing challenges, operating frameworks.

• Extend the technology roadmap that is driven by Integrated Circuits
(ICs) designed specifically for AI and ML applications by evaluating
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and demonstrating the applicability of emerging technologies that can
provide scalable power, performance, and area benefits.

• Broaden the applicability of neuromorphic hardware, by designing
energy efficient integrated neuromorphic implementations, by fabricat-
ing them in collaboration with European foundries and in European
cleanrooms, and by benchmarking them in terms of power, performance,
and area in the context of pervasive applications that are provided by the
end-user partners of the TEMPO project.

• Exchange wafers (where applicable) between foundries and the par-
ticipating RTOs to facilitate the demonstration of functional neuromor-
phic chips, combining concepts from different RTOs and technologies
from industrial companies. This will enable the use of the extensive
know-how of European RTOs for future products while maintaining
contamination free high-volume manufacturing.

• Quantify the capability of the most prevalent neuromorphic hard-
ware implementations by targeting a broad algorithmic spectrum and
isolating the critical sections of each algorithm. This includes DL infer-
ence (such as CNNs) and SNNs. This wide coverage will result into a
Convolutional Neural Network - technology-, design-, and system-aware
scorecard containing the most sought-after neuromorphic implementa-
tions and their coupling with emerging technologies and applications.

• Complement existing research and provide guidance for future direc-
tions in the domain of neuromorphic algorithms, design, and systems
by assessing the suitability of emerging technologies. The comparative
evaluation between implementations of different neuromorphic algo-
rithms can provide guidance to European neuro- morphic research,
placing each approach in the context of emerging technologies and
relevant applications.

• Enable the European industry to remain at the leading edge of
neuromorphic chip development.

More detailed approaches ang the three action areas defined in TEMPO and
illustrated in Figure 1.3.1 are described in the next sections.

2.3.1 Approach to Realise the Emerging Technologies

The core technology component of the TEMPO project is the development
of emerging technologies that can provide measurable efficiency benefits
to neuromorphic hardware implementations. The objectives with respect to
technology are to:
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• Align the process practices of involved partners, so that base wafers
can be optimally exchanged for the development of novel neuromorphic
hardware. This includes both the transfer of wafers from the foundries
to the involved RTOs and, where/when applicable, the transfer of wafers
between the cleanrooms of the RTOs.

• Match emerging memory technologies with the proper neuromorphic
algorithms, so that hardware integration of the former brings about
power, performance, area, and cost benefits.

• Adjust process practices so that the integrated emerging memory
modules are compatible with traditional semiconductor manufacturing
practices.

2.3.2 Approach to Derive the Hardware Architectures and
Designs

The core hardware component of the TEMPO project is the development of
processing hardware technologies which are efficient to support future AI-
intensive mobile applications. The objectives with respect to neuromorphic
hardware are to:

• Develop novel architectures and sub-system designs that help to reduce
the memory bottleneck and power consumption, allow for a minimiza-
tion of required memory space, and minimize the occupied silicon
area (i.e., chip cost) while maintaining target accuracy, latency, and
throughput.

• Extend basic architectures of CNN or SNN arrays with a scalable global
communication network to enable high throughput and high complexity
applications.

• Design modules that use emerging memory technologies to implement
the core workloads of the major neuromorphic algorithms.

• Ensure component- and system-level compatibility with traditional
electronic design flows.

• Estimate the power, performance, area, and cost of emerging memory
integration for neuromorphic algorithms at the system-on-chip level and
compare against contemporary implementations.

2.3.3 Approach Related to Neuromorphic Algorithms and
Applications

To put the TEMPO project into the general perspective of accelerated ML,
it is fundamental to identify the exact workloads that will be targeted for
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efficient and low power hardware integration with advanced technologies.
This is a major precondition, as it is of vital importance to optimally concen-
trate the effort of the project to the fundamental computational bottlenecks
identified in the target neuromorphic algorithms. The algorithmic objectives
of the TEMPO project are as follows:

• Profile target neuromorphic algorithms for computational/memory bot-
tlenecks

• Identify the algorithm regions that warrant hardware support
• Specify the complexity of the integrated neuromorphic implementations

TEMPO aims to allow applications to make easy use of the new neuromor-
phic technologies. The objectives to enable this are:

• Extend the range of applications to domains requiring (ultra-)high
throughput and high complexity such as high throughput imaging,
autonomous vehicles, vision enabled robots.

• Create a demonstration design flow and a tool flow that connects the
target neuromorphic algorithms with the target applications.

• Prototype the design and tool flows to illustrate real time charac-
teristics of the target neuromorphic applications, before the emerging
technology samples become available.

• Demonstrate the feasibility and efficacy of integrated neuromorphic
kernels on state-of-the-art benchmarks with functional demonstrators
that use or emulate the proposed neuromorphic building blocks.

2.4 Positioning Within the Neuromorphic Computing
Landscape

Neuromorphic computing comes in many flavours and forms of maturity.
Figure 2.2 gives a simplified but illustrative view of the greater landscape
of neuromorphic computing. In terms of implementation, neuromorphic
computing can rely in analog, digital or hybrid hardware technologies. In
terms of algorithms, the spectrum can range between the compute-intensive
deep learning algorithms towards event-based processing like spiking neural
network algorithms. The production level maturity is indicatively illustrated
in Figure 2.2. Digital processing units like CPU’s and GPU’s and readily
available on the market and are used for compute-intensive tasks in server
racks and in the cloud. Commercial solutions are, however, scarcer when
considering more analog implementations and/or more transient-based pro-
cessing. TEMPO covers the complete brain-inspired computation domain,



80 Technology and Hardware for Neuromorphic Computing

Figure 2.2 TEMPO positioned in the greater landscape of neuromorphic computing.

algorithmically ranging from DL inference engines to exploratory SNNs, and
implementation-wise from standard digital to mixed-signal or analog imple-
mentations. The quadrant uncovered by TEMPO aims at massively parallel
computer architectures. These architectures aim to mimic the implementa-
tion of human brains, which are composed of billions of simple computing
elements, communicating using unreliable spikes.

The TEMPO project will existing evaluate memory technologies at
device, architecture, and application level, and build and expand the tech-
nology roadmap for European AI hardware platforms. The project will
leverage MRAM, FeRAM and RRAM memory to implement both SNN and
Deep Neural Network (DNN) accelerators for 8 different use cases, rang-
ing from consumer electronics to automotive, digital industry and medical
applications.

MRAM is a type of memory that stores data magnetically but uses electrons
to read and write it. The magnetic character provides non-volatility, which
the electronics provides speed. A storage element is comprised of two ferro-
magnetic layers, consisting of a free layer and a pinned layer, sandwiching a
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non-magnetic oxide layer. It works by overcoming the resistance required to
switch the magnetization from one direction to the other. Multiple resistance
states can be achieved by incorporating domain walls in the free layer. The
stochastic nature of switching states in these devices can be employed to
mimic the stochastic behavior of synapses.

FeRAM memory uses ferroelectric materials that can switch rapidly between
two polarized states. This type of memory offers high performance at low
power, along with the added advantage of non- volatility. FeFET (Ferro-
electric Field-Effect Transistor) can be tuned to emulate synaptic weight,
an important element of neuromorphic computation. One big advantage of
FeFET is that some ferroelectric compounds are also Complementary Metal-
Oxide Semiconductor (CMOS)-compatible, making it easier to integrate into
standard computing platforms. The downside is that the technology also suf-
fers some of the limitations as DRAM (Dynamic Random-Access Memory),
including scaling, leakage, and reliability.

RRAM is a form of nonvolatile storage that operates by changing the
resistance of a specially formulated solid dielectric material. An RRAM
device contains a whose resistance varies when different voltages are imposed
across it. RRAM acts as an electronic switch that exhibits non- volatility,
i.e., will retain its resistance state even after the voltage is turned off. The
main advantages of this memory type are its scalability, CMOS compatibility,
low power consumption, and analog conductance modulation. Its suitability
for neuromorphic computing is related to the memristor’s ability to change
its state based on the history of voltages applied to it. As a result of this
behaviour, it has the temporal and analog qualities of biological neurons
and synapses. However, making these memristors more uniform so they will
operate reliably is challenging.

2.5 Targeted Use Cases and Application Domains

The TEMPO project leverages its developed technologies over 8 different
use cases over 5 application domains (automotive, food, digital industry,
consumer electronics, and medical health). Table 2.1 gives an overview of the
different use cases and the related neural network approach and technological
choices. The different use cases are driven by the key industry partners within
the consortium.
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Table 2.1 Edge AI use cases addresses in TEMPO covers five application domains

The following sections elaborate some of the envisioned use cases.

2.5.1 Food – Food Classification

This use case focusses on building a network and data pipeline for the
classification of western food as illustrated in Figure 2.3. This activity builds
a state-of-the-art DNN classifier based on the publicly available dataset
Food-101 [5]. The classifier is embedded onto the Edge Tensor Processing
Unit (TPU) of Coral [6], which is a low-power DNN accelerator. This
will enable to benchmark the developed technology against commercially
available hardware solutions.

2.5.2 Automotive – Object Recognition and Sound Localization

This use case focusses on localization and recognition of objects/sound
generators. A sound event localization, detection, and tracking network has
been developed and could be intended to be on an Field-Programmable
Gate Array (FPGA) which emulates the analogue parts of the circuit. A
simar demonstrator based on the same principle might be developed by
replacing the sound measurements by object visualization through a video
camera. Additionally, radar-based object detection might be developed based
on hardware developed in the project. Radar has the advantage over video as
its network size is considerably smaller.

2.5.3 Digital Industry – Pattern Recognition (Keyword Spotting)

Speech processing enables natural communication with smart phones or
smart home assistants. However, continuously performing speech recognition
is not energy-efficient and would drain batteries of smart devices. Instead,
speech recognition systems passively listen for utterances of certain wake
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Figure 2.3 Possible inputs for the western food classification DNN [5].

words to trigger the continuous speech recognition system on demand [8].
In the project, “speech command datasets” have been analysed and features
were extracted, and processing pipelines were implemented. The pipelines
were used to explore different SNN algorithm approaches. Hybrid variants
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will be specified and simulated. After the hybrid variants are evaluated, the
algorithms will be integrated into full SNNs.

2.5.4 Consumer – Coaching Biomechanical Assistance
(Running)

This use case focusses on real-time running coaching. From an optimized
database infrastructure of runners’ user data and an improved classification
neural networks will be trained. New software that will facilitate broader data
and image assimilation from users and classification will be developed of
additional input parameters.

2.5.5 Medical Health – Medical Image Denoising

Efficient medical image denoising is essential on mobile X-ray systems. To
facilitate this, dataset specification and analysis of the noise characteristics
are being made. This shows to be essential and challenging as part of the noise
is signal-dependent. Metrics are being proposed to measure and quantify
image quality comparisons, and specifications are set for the test cases to
be performed on the SNN implementations.

2.6 Neuromorphic Hardware Technologies Being
Developed

The developments in TEMPO are still ongoing; it is planned leverage the
developed hardware and application results into the envisioned use case
applications and related demonstrators by the end of 2022.

The project started with the process technology pathfinding work to
enable neuromorphic and AI applications to leverage embedded non- volatile
memories (eNVMs). This pathfinding work included the design of process
technology test vehicles and process flows. At the same time, core build-
ing blocks and accelerator architectures have been designed to leverage
the memory technologies in the application demonstrators. Basic neuromor-
phic building blocks were investigated with a focus on the development of
neuromorphic–ready NVM blocks, the modelling and simulation of eNVM,
the quantification of the technology features and neuromorphic implemen-
tation of eNVM. 3D specifications suited for DNN accelerators have been
defined and a design flow to be able to quantify performance and energy
impact of 3D interconnect has been set-up. Design and architecture explo-
ration, specification, and design of critical building blocks to enable full
accelerator IP blocks has been done.
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Later in the project, the first hardware and algorithms were leveraged
towards the applications via the different use cases. In the domain of
emerging technologies, basic neuromorphic building blocks (MRAM, Oxide
Random Access Memory - OxRAM and FeFET) were investigated, with a
focus the development of neuromorphic–ready NVM blocks, modelling and
simulation of eNVM, and the quantification of the technology features and
neuromorphic implementation of eNVM. Also features of embedded memory
for Neuromorphic Accelerators have been investigated, such as multi-level
memory and the synapticity/plasticity of the memories. In the domain of
technology integration, compact models were created based on the data
from first OxRAM, Phase-Change Random Access Memory (PCRAM) and
FeFET implementations. Also, 3D specifications suited for DNN accelerators
have been defined and the 3D place and route (PnR) design flow has been
created to quantify performance and energy impact of the 3D interconnects.
An illustration of an envisioned 3D interconnect roadmap suitable for typical
neural accelerators is illustrated in Figure 2.4. In the domain of neuromor-
phic hardware design and architectures, potential design, and architectures
of the most critical neuromorphic DNN and SNN building blocks in terms
of power, performance and area have been explored. Finally, in the domain
of application specification and demonstration, the use cases and related
data sets have been defined and the reference platform has been chosen and
benchmarked. These uses cases have been elaborated in section 2.5. Theses
use cases are being implemented towards demonstration.

TEMPO will continue to combine both the developed hardware and
application results to enable demonstration of energy efficient accelerators
for the different use cases defined in the project.

Figure 2.4 3D landscape, ordering of 3D technologies according to the system-level wiring
hierarchy [11, 12].
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2.7 Conclusion

In most application domains, the amount of data produced in sensors and
devices is exploding. Sending this data to the cloud costs energy, latency, and
is often not preferred for privacy reasons. Applications relying on artificial
intelligence in the edge require intelligent energy-efficient local processing.
The TEMPO project develops such energy efficiency neuromorphic hardware
with emerging memory technologies like MRAM, FeRAM and RRAM,
and develops technology platforms for emerging semiconductor devices. In
the domain of emerging technologies, the project investigated the different
memory types to confirm their suitability and limitations towards offering the
needed neuromorphic features and implementation. Compact models were
created based on the first memory implementations and a 3D interconnect
roadmap suitable for typical neural accelerators has been designed and pre-
sented. To enable neuromorphic hardware design, the architecture of the most
critical neuromorphic DNN and SNN building blocks have been explored in
terms of power, performance, and area. This paves the way to demonstrate
these technologies for the neuromorphic workloads required in the envisioned
use cases. These use cases and their dataset requirements have been specified
as discussed in this article. These use cases cover a broad range of application
fields within automotive, consumer electronics, digital industry, food, and
medical health. As such, the TEMPO project is successfully pursuing its goal
to broaden the applicability of integrated neuromorphic hardware.
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