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Abstract

The European project ANDANTE [1] aims at providing neuro-inspired
and/or energy-efficient hardware accelerators for running AI applications at
the edge. Given the wealth of applications targeted, with various processing
needs and sensors involved, several implementations are pursued in parallel:
(1) fully digital or analog-mixed signal; (2) with classical coding or spike
coding; (3) leveraging different embedded Non-Volatile Memory (NVM)
technologies. However, what do all have all in common? it’s the need for
adequate tools and methodologies for training and deploying neural network
models, considering hardware constraints. This Chapter provides details on
what has been developed and used in the frame of the ECSEL ANDANTE
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project. Firstly, a neural network must be learnt, considering limited hardware
resources, thus exploiting quantization and sparsity for instance. When deal-
ing with Spiking Neural Networks (SNNs), the training phase is even more
critical, depending on the neuron model and making use of various strategies
(direct training versus conversion). Then, the network must be mapped on the
target accelerator, be it a spatially folded or spatially expanded architecture.
In the latter case, graph transformation might be needed using a compiler.
Finally, Key Performance Indicators (KPIs) must be extracted, underlying
the need for a simulator/profiler.

Keywords: Machine learning, deep learning, artificial neural networks,
spiking neural networks, optimisation, quantization, pruning, distillation,
NN model transformation, sparsity, ANN-to-SNN conversion, accuracy, NN
compiler, mapping strategy, simulation, profiling.

3.1 Introduction

3.1.1 Edge Computing Benefices and Challenges

Edge computing is creating new opportunities for Internet of Things (IoT)
applications. Through machine learning, objects become intelligent and can
process a large amount of information. However, most of this processing
today still takes place in the cloud, and it comes at several costs: infras-
tructure, reliability, security, speed, and energy. Firstly, the infrastructure to
process data from heterogeneous devices needs an extensive infrastructure
to gather, transform, and store the data and the devices themselves need
connectivity and the corresponding energy to send the data. Therefore, having
the data stored and analysed at the edge can reduce the infrastructural costs,
save energy, and increase globally data processing efficiency. Secondly, for
applications that are critical and need high availability (such as pipeline
monitoring), a reliable and secure connection is necessary.

Having devices that can decide at the edge can mitigate the risk associated
with the loss of connection and prevent data from being accessed by a
third party to ensure security and privacy. Moreover, intelligent edge devices
are also necessary for applications where decision speed (low latency) is
critical, such as autonomous driving, as having data transferred to the cloud
is inconceivable: the latency associated with the connection might result in
the life or death of people. Finally, the energy associated with the transfer
and data processing in the cloud is still enormous: 40% of the energy used
in mobile streaming comes from the mobile cellular network. Therefore, in
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the context of the climate crisis, edge machine learning can substantially
reduce the carbon footprint associated with data processing in the cloud.
The reduction of infrastructure costs, reduction of communication bandwidth,
improvement of security and privacy, and availability of services are by-
products of deploying efficient, intelligent, and cost-effective devices at the
edge.

With the wide acceptance of Deep Learning (DL) in the last decade, it
has become evident that classic deep learning cannot scale, as performant
networks use an enormous amount of energy and memory capacity, and the
models are becoming larger as their computational power needs increase.
Moreover, Moore’s law is ceasing to apply, and we need new computational
paradigms to increase computational performance with a reduced energy
budget. With the evolution of IoT devices, deep learning models are now
deployed at the edge, allowing local real-time decision-making, efficient pre-
processing, and privacy-preserving applications. Optimizations have been
developed in the past few years to allow the deployment of these networks
within restricted resource environments; quantization, pruning, distillation,
are some of them, which are either applied during training or post-training
of the neural network. While these techniques offer a partial solution for the
deployment on edge devices, a lot of engineering is still required to design
models that fit within the constraint of the hardware. An alternative emerging
machine learning technology to reduce energy relies on SNNs, which are
structures imitating the neurons in the brain. Their computational efficiency
is thought to be due to the coding style of the biological neurons, which
communicate using electrical discharges, called spikes, that travel from one
neuron to the other using synaptic connections.

While industry leaders Intel, ARM, Google, and NVIDIA are developing
systems targeting large-scale computation based on Graphics Processing
Units (GPUs) or specialised AI processors for generic AI applications in
the cloud, a parallel branch targets low-power applications at the edge, with
algorithmic solutions that will only be efficient if they can run on suitable
hardware solutions. Currently, much effort is put into developing low-power
accelerators for artificial neural networks, and to some extent, spiking neural
network. Academia is also putting effort into the development of technolo-
gies targeting edge processing: the recent development of memristors and
Ferroelectric Field-Effect Transistor (FeFET) technologies herald a new era
of ultra-low-power hardware to accelerate neural networks [21] [22].

While most accelerators target generic applications, there are still many
limitations on the hardware that make them suboptimal for specific tasks:
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limitation in speed, memory size, supported operations (spiking or digital), or
energy consumption. This wide choice of embedded systems makes it chal-
lenging to identify the relevant hardware suitable for a particular application.
This major challenge restricts the adoption and dissemination of ultra-low-
power applications, as many efforts are put into studying and researching the
most suitable device.

3.1.2 Artificial Neural Networks (ANNs) and Spiking Neural
Networks (SNNs)

In biology, neurons communicate through current inputs called action poten-
tials, or spikes. When a neuron receives input stimuli (spikes) from other
neurons, they depolarize the neuron cell membrane by changing the concen-
tration of ions inside and outside of the cell membrane, creating a potential.
The strength of the depolarization depends on the strength of the synaptic
connection between the pre- and post-synaptic neurons. The succession of
depolarizations events leads to an increase of the membrane potential. If the
cell membrane potential increases to a precise threshold voltage, it triggers a
cascade effect leading to the emission of a spike.

In 1958, Frank Rosenblatt created the first model of a neuron generating
binary decisions, simulating the emission of a spike, or not. The perceptron
was a single neuron model performing computation using multiple weighted
input values, simulating the strength of the synaptic connections, using a
weight matrix. When the weighted sum of input reached a certain value,
the neuron output switched. Current deep learning relies on variants of this
algorithm, by creating stacked structures (layers) of neurons that combine
and transform the information in a non-linear manner, resulting in impressive
performance in a wide variety of tasks.

Deep learning algorithms can be accelerated on dedicated hardware to
provide low-power solutions for edge applications. ASICs for deep learning
inference accelerators offer better area and energy efficiency than GPUs,
FPGAs or CPUs but at the cost of less flexibility [1]. Since ANNs perform
multiply and accumulate (MAC) operations, the hardware pursues to acceler-
ation such operations by parallelizing them. To overcome the von Neumann
bottleneck, ASIC architectures based on analog in-memory computing with
crossbar arrays to perform the MAC operation are pointed out as a relevant
solution when it comes to low latency and high energy efficiency. Such
inference accelerators have on-chip memory buffers as well as processing
elements where the weights are stored individually to avoid data movement
during inference.
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Although inspired by the biological nervous systems, ANNs are yet
unable to capture the sophisticated neurocomputational features of biological
neurons. To bridge this gap, DL community has come up with a third genera-
tion of ANNs known as SNNs. SNNs are more closely mimicking biological
neural networks than artificial neural networks that are rate-based. This type
of neuron is represented by a membrane state and therefore incorporates the
concept of time. Spiking neural networks, in contrast to artificial ones, only
send “spikes” and not digital values. However, they can represent values using
spike trains, which rate can be as equivalent to values processed by artificial
deep neural networks.

Research on spiking neural networks is still on-going. The recent devel-
opment of neuromorphic hardware platforms has allowed simulation of
large-scale brain models. However, how to perform deep learning using these
types of neurons is still unclear. In particular, a lot of different types of spiking
neurons exist, and no standard has been agreed on yet. This wide variety of
neurons must also be considered by designers of neuromorphic hardware, so
that researchers can assess the suitability of models.

The neurons in SNN are described on different abstraction levels start-
ing from the most realistic and complex model, Hodgkin-Huxley (HH)
model, to the leaky integrate-and-fire (LIF) model which is the simplest and
most computationally efficient model bearing the neurocomputational prop-
erties [23]. LIF introduces a leaky term to the integrate-and-fire (IF) model
that causes neuron potential decay over time making it more biologically
plausible.

With the advancement of research on spiking neural networks, academia
and industry have developed accelerators and processors specialized in sup-
porting this type of algorithm. A few research institutes and companies
develop large-scale hardware solutions to simulate spiking neural networks,
like SpiNNaker, IBM TrueNorth, and Intel Loihi and Loihi 2. While rea-
sonably accurate at simulating large-scale brain dynamics, these processors
do not target ultra-low-power edge applications and still use a considerable
amount of energy. As their primary purpose was to simulate SNN, the pro-
cessing happening in these accelerators is unsuitable for common industrial
applications, as developed nowadays using deep learning. Research is still
actively investigating suitable event-based device for industrial applications,
and now we observe the emergence of new hardware accelerator relying
on binary events computed in a synchronous manner, meeting halfway
between the pure asynchronous SNNs and the synchronous processing
of ANNs.
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In the ANDANTE project, this type of efficient hardware neuromorphic
accelerators is being addressed based on new embedded memory tech-
nologies such as PCM, OxRAM, MRAM and FeFET, novel ANN/SNN
architectures combining analog digital mixed-signal designs, which call for
dedicated tools and methodologies.

The rest of this Chapter is organized as follows: Section 1.2 provides the
state-of-the-art in neural network training, exploiting quantization, sparsity
and showing different strategies for training spiking neural networks. Section
1.3 presents further refinements to sparsity, to exploit temporal sparsity (in
addition to the weight and activation ones) by adding a new layer called
Temporal Delta Layer. Section 1.4 describes how to map a neural network
onto a spatially expanded, in memory computing-based architecture: in such
a case, the neural network weights must be adequately clustered or duplicated
on the various NVM arrays. Finally, Section 1.5 shows the mapping of
spiking neural networks on a hardware target implementing LIF neurons with
recurrent connections. Finally, Section 1.6 gives clues on why it is important
to profile a neural network topology.

3.2 State-of-the-art of key aspects of Neural Networks

3.2.1 ANN and SNN Hardware Aware Design

Hardware-aware design of artificial and spiking neural networks is still a
multistep process. Since no generic design and simulation tools are available
for custom neuromorphic hardware platforms, it is still required to deploy the
model on the physical devices to obtain the key performance indicators of
the application. As shown in Figure 3.1, the optimization of a neural network
for a specific edge device is an iterative process involving hardware/software
co-design. The first iterative cycle is the development of an accurate model
solving the task to which it is designed, and the second cycle consists in
the embedding and evaluation of the model. The model can then be further
optimized towards the optimization of edge KPIs, necessitating a new training
iteration phase followed by deployment. The process can be automatized
using automated search procedures like Network Architecture Search (NAS),
which have demonstrated to be suitable solutions for the design of a model
respecting the constraint of their end-deployment platform [77]. However,
this framework still contains major challenges. Indeed, the deployment on a
device is often complicated and requires a manual adaptation of the model to
allow the neural network to run on the device. Moreover, some platforms have
a specific instruction set or a variable data representation (float or integer),
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Figure 3.1 Networks to hardware workflow.

requiring a quantization step either during training (defined at the creation of
the model) or after training, usually impacting the overall performance of the
network. Finally, platforms are often behind the latest software developments
in the creation of layers in neural networks, which makes some architectures
impossible to deploy due to the existence of unsupported layers.

Regarding the automatic search of architectures for a certain platform,
the computational cost is still very intensive and usually must be replicated
for each new platform, despite recent improvements in this direction [69].
Therefore, flows and techniques have been developed to design efficient
neural networks for neuromorphic hardware platforms. Some of them are
described in the next paragraphs.

3.2.2 Sparsity

Reducing energy consumption is a critical point for neural network mod-
els running on edge devices. In this regard, reducing the number of MAC
operations of DNNs running on edge hardware accelerators will reduce the
energy consumption during inference. Optimizations have been developed
in the past few years to allow the deployment of these networks within
restricted resource environments; quantization [2], pruning [3], distillation
[4], are some of them, which are applied either during training or post-
training of the neural network. Great emphasis is also put on the development
of efficient accelerators, that reach competitive performance compared to
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CPUs and GPUs. Recent hardware accelerators include optimization tech-
niques such as computational reduction by zero-skipping [5–7], that skip zero
weight computation in and are therefore optimized for very sparse neural
networks.

Efforts have been made toward the sparsification of deep neural networks
to reduce the memory footprint of the models deployed at the edge. Pruning is
a method used to achieve weight [12] and feature map [13–15] sparsification
to remove redundant information and subsequently reduce network com-
putations. In SNNs, spikes and synaptic computation reduction are mostly
exploited through temporal and spatial sparsity. Temporal sparsity of SNNs
have inspired training techniques in deep learning [16, 17], targeting time-
series applications. Recently, regularization techniques have been applied to
SNN training [18, 19] to increase spatial sparsity, and during BP-trained
DNNs training prior to SNN conversion [11, 20, 79].

3.2.3 ANN-to-SNN Conversion

Spiking neural networks can potentially save much more energy than
continuous-valued Artificial Neural Networks due to their sparse nature
and event-driven computations. While SNNs may provide a large panel of
advantages, their training is still complicated, as the current hardware and
training algorithms are not suitable to train SNN in an asynchronous manner.
Therefore, one common technique to create performant SNNs is to convert
them from a previously trained ANN.

Early attempts to convert ANN to SSN comprise the work of [70] where
neurons of a Convolutional Neural Network were transformed to leaky-
integrate and fire (LIF) neurons with refractory periods. A similar technique
[71] used a weight normalization scheme in an ANN to regulate the firing rate
of the converted SNN. Another work [72] developed a conversion method
using spiking neurons that adapt their firing threshold to reduce the number
of spikes needed to encode information.

One largely used technique of conversion of ANN to SNN has been
developed by Rueckauer [10]. It is based on scaling of the weights of the
pretrained SNN such that the firing rate of the neurons match the activation
values of the ANN. While this technique supports a wide range of layers, it
requires a long simulation time for the model to reach competitive accuracy.
Recent methods [73–75] adjust the threshold values of the neurons to reduce
the inference latency.
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3.2.4 Surrogate Gradient Descent

Spiking neuron models commonly incorporate highly non-linear transfer
functions, such as the Heaviside function, to map from internal state variables
to binary output events.

S (Vmem) = H (Vmem − Vth) (3.1)

These functions often have poorly behaved or undefined derivatives. In
the example here dS/dVmem = 0 everywhere. When used in conjunction with
gradient-based optimisation methods such as error backpropagation [9], these
poorly behaved derivatives propagate to cause the gradients of parameters
to be not informative. Standard gradient-based training techniques cannot
therefore be directly applied to SNNs.

One method to work around this limitation is to define a surrogate
gradient for the SNN transfer function. In this approach the derivative of the
transfer function is defined using an auxiliary “surrogate” function, ideally
with similar behaviour to the true transfer function, but with better-behaved
derivatives. For example, instead of the non-linear Heaviside function, a
ReLU function can be used as an approximation for computing the gradient
in the backwards pass.

Ŝ (Vmem) = max (Vmem − Vth, 0) (3.2)

dS

dVmem
≡ dŜ

dVmem
= Vmem > Vth (3.3)

This method permits SNNs to be trained using gradient-based optimisa-
tion algorithms such as SGD [78–80] and Adam [81]. Recently this approach
has been used to integrate SNNs with industry-standard automatic differen-
tiation libraries such as PyTorch and Jax, to permit training of deep SNNs
[82]. In this way not only the weights of a network can be optimised, but in
addition all the auxiliary parameters of an SNN such as time constants and
thresholds [82].

3.2.5 Neural Engineering Object (Nengo) Simulator

The Neural Engineering Object (Nengo) is a neural network simulation tool
for large-scale neural systems with applications in cognitive science, psy-
chology, AI, and neuroscience [24]. Nengo offers NengoDL, a deep learning
simulator, which enables for easy integration of the TensorFlow library and
access to advanced features such as convolution connections. Using a neural
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engineering framework NEF. Nengo designs neural network models for appli-
cation in machine learning and deep learning such as inductive reasoning,
gesture sensing [25], action selection, speech production [26, 83] and image
classification [84], etc.

NengoDL uses NEF for building neuron models for building biologically
plausible neural networks. NEF provides the principles of representation,
transformation, and dynamics to construct a neural model. The NEF encodes
the incoming time varying input data of real numbers and based on the input
data; a specific amount of current is injected into a single neuron model. This
current causes the neuron to spike and the spiking behaviour is controlled by
the tuning the curve of the neuron models. The tuning curve is determined
by the bias, gain of the neuron and the encoding weights. In the decoding
stage, an exponentially decaying filter is applied to the spike train resulting in
a spike generating postsynaptic current [24].

The strength of the postsynaptic current is defined by its amplitude
which is affected by various factors. The NEF summarizes these factors
in the form of a connection weight matrix representing the strength of the
connection between two neural populations. These matrices can be factorized
into smaller matrices allowing to efficiently run large-scale neural models on
low commodity hardware [24].

An information is represented by a Nengo ensemble, and a connection
defines how the information is transformed. Nengo uses an object model
to translate the ensembles and their connections into a network of inter-
connected neurons. In this way, it acts as a “neural compiler”, converting
high-level functional models to low-level models. Nengo defines six core
objects as an object model: 1) ensemble, 2) node for non-neural information
such as sensory inputs, 3) connection, 4) probe for data collection during
simulation, 5) network for interconnected nodes and ensembles, and 6)
model. Because of the separation of model construction and simulation,
Nengo models can be used on a variety of simulators. [24].

In addition to the biological plausible neurons, nengoDL allows to use
rate-based neurons such as LIFRate, Rectified Linear, Sigmoid and Tanh
by converting them to their spiking version using wrappers that take some
function and return an instantaneous firing rate. These wrappers are:

1) Regular Spiking: takes the instantaneous firing rate and integrates it
multiplied by a timestep.

2) Poisson Spiking: Given an instantaneous rate, this wrapper draws a
sample from a Poisson distribution. The value of the distribution is this
instantaneous firing rate.
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3) Stochastic Spiking: is kind of a mix between the two, and the difference
mostly shows up when neurons can spike more than once per timestep.

In Figure 3.2, some conversion examples are illustrated. These neurons are
created by employing Regular Spiking to convert rate-based neurons to their
spiking counterparts. For example, Figure 3.2(a) is created τref = 0.0025
indicating that the firing will saturate at 400 Hz. The neuron begins in a blank
state (i.e., no input current, no membrane current, etc.), implying that the
neurons are doing nothing when the simulations begin, and it takes a few time
steps for the neuron to get going. The curve becomes a little noisy around
the middle because the neuron has modest firing rates and so few spikes in
that area. Moreover, it can be seen that the neuron is showing two kinds of
spikes, positive and negative. Because this type of spiking behaviour isn’t
biologically reasonable, it won’t operate on most neuromorphic technology.
Similarly, Figures 3.2(b), (c), and (d) represent the spiking version of Sig-
moid, Rectified Linear and LIFRate based neuron. It should be noted that the
curve’s slope is determined by the neuron’s gain. The gain of the neurons has
been modified in these cases to produce less noisy curves.

Figure 3.2 Spiking neuron models.
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3.3 NN Transformation: Temporal Delta Layer

This Section focuses on a transformation applicable to DNNs which generates
temporal activation sparsity during training and exploit it during inference.

The energy consumed by running DNNs on hardware accelerators is
dominated by the number of memory read/writes and multiply-accumulate
(MAC) operations. As a potential solution, the role of activation sparsity in
efficient DNN inference is proposed. i.e., as the predominant operation in
DNNs is matrix-vector multiplication of weights with activations, skipping
operations and memory fetches where (at least) one of them is zero can make
inference more energy efficient.

In this Section, a new DNN layer (called temporal delta layer) whose
primary objective is to induce temporal activation sparsity during training
is presented. The temporal delta layer promotes activation sparsity by per-
forming delta operation through activation quantization and l1 norm-based
penalty to the cost function. During inference, the resulting model acts as a
conventional quantized DNN with high temporal activation sparsity.

3.3.1 Temporal Delta Layer: Training Towards Brain Inspired
Temporal Sparsity for Energy Efficient Deep Neural
Networks

DNNs have lately managed to successfully analyses video data to perform
action recognition [27], object tracking [28], object detection [29], etc., with
human-like accuracy and robustness. Unfortunately, the high accuracy of
DNNs comes with high compute and memory costs, resulting in high energy
consumption. This makes them infeasible for always-on edge devices.

Over the years, techniques like network pruning, quantization, regular-
ization, and knowledge distillation [30–32] have helped in reducing the
model size footprint resulting in overall lesser computation and memory
consumption. Noticeably, sparsity is an underlying feature in all the solutions.
This is notable, as sparse tensors provide the potential to skip computations
that involve multiplication with zeroes. Also, they are easier to store and
access in memory. Structural sparsity (of weights) and spatial sparsity (of
activations) are well-researched topics in DNN literature [33]. However,
temporal activation sparsity is comparatively less explored in the context of
DNN, although it is a popular concept in neuromorphic computing.

The concept of change or delta-based processing is taken from the human
retina to the training and inference phases of deep neural networks [34].
DNN inference which processes each frame separately with no regard to the
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temporal correlation is dense and obscenely wasteful. Whereas processing
only the changes in the network can lead to zero-skipping in sparse tensor
operations reducing redundant operations and memory accesses.

Therefore, the proposed methodology in this work induces temporal
sparsity to potentially any DNN, by means of a new layer (called Temporal
Delta Layer), which can be introduced in a DNN at any phase (training,
refinement, or inference only). This new layer can be integrated into an
existing architecture by placing it after all or some of the ReLU activation
layers as deemed computationally beneficial (see Figure 3.3).

The inclusion of this layer does not require any change to the preceding
and following layers. Moreover, during the training phase, the new layer adds
a novel sparsity penalty to the overall cost function of the DNN. This l1
norm-based penalty minimizes the activation density of the delta maps (i.e.,
temporal difference between two consecutive feature maps). Apart from that,
two activation quantization methods, namely fixed-point quantization (FXP)
and learned step-size quantization (LSQ), are also compared in conjunction
with the new layer.

Figure 3.3 (a) Standard DNN and (b) DNN with temporal delta layer.
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The inclusion of this layer does not require any change to the preceding
and following layers. Moreover, during the training phase, the new layer adds
a novel sparsity penalty to the overall cost function of the DNN. This l1
norm-based penalty minimizes the activation density of the delta maps (i.e.,
temporal difference between two consecutive feature maps). Apart from that,
two activation quantization methods, namely fixed-point quantization (FXP)
and learned step-size quantization (LSQ), are also compared in conjunction
with the new layer.

3.3.2 Related Works

Although DNNs are in essence bio-inspired, they have not been able to find
the balance between power consumption and accuracy yet, especially while
dealing with computationally heavy streaming signals. On the other hand, the
brain’s neocortex handles complex tasks like sensory perception, planning,
attention, and motor control while consuming less than 20 W [35]. Scalable
architecture, in-memory computation, parallel processing, communication
using spikes, low precision computation, sparse distributed representation,
asynchronous execution, and fault tolerance are some of the characteristics
of the biological neural networks that can be leveraged to bridge the energy
consumption gap between the brain and DNNs [36]. Among these, the pro-
posed methodology focuses on the viability of using sparsity within DNNs
to achieve energy efficiency. During a matrix-vector multiplication between
a weight matrix and an activation vector, zero elements in the tensor can be
skipped leading to computational as well as memory access reduction (see
Figure 3.4).

There are broadly two types of sparsity available in DNNs: weight spar-
sity (related to the interconnect between neurons) and activation sparsity
(related to the number of neurons). Furthermore, activation sparsity can be
categorized into spatial and temporal sparsity, which exploits the spatial and
temporal correlation within the activations, respectively, [38]. Unlike weight
and spatial sparsity [39–44], exploiting the temporal redundancy of DNNs
while processing streaming data to reduce energy consumption is a relatively
less explored idea. Exploiting temporal sparsity translates to skipping re-
calculation of a function when its input remains unchanged since the last
update.

One of the methods to exploit temporal sparsity is to use the compressed
representation (like H.264, MPEG-4, etc.) of videos at the input stage itself.
These compression techniques only retain a few key-frames completely and
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Figure 3.4 Sparsity in ∆x can save multiplications between ∆x and columns of W that
correspond to zero [37].

reconstruct others using motion vectors and residual error, thus using tem-
poral redundancy [45, 46]. Another path includes finding a neuron model
which is somewhere in between “frame-based DNN” and “event-based spik-
ing neural networks”. This Section describes an attempt in the direction. A
similar work, CBInfer [7] proposes replacing all spatial convolution layers in
a network with change-based temporal convolution layers (or CBconv layers).
In this, a signal change is propagated forward only when a certain threshold is
exceeded. Likewise, [48] tapped into temporal sparsity by introducing Sigma-
Delta Networks, where neurons in one layer communicated with neurons in
the next layer through discretized delta activations. An issue when it comes
to CBInfer is the potential error accumulation over time as the method is
threshold-based. If the neuron states are not reset periodically, this threshold
can cause drift in the approximation of the activation signal and degrade the
accuracy. Whereas sigma-delta scheme experiments on smaller datasets like
temporal MNIST, which might not be a reliable confirmation of the method’s
effectiveness.

3.3.3 Methodology

In video-based applications, traditional deep neural networks rely on frame-
based processing. That is, each frame is processed entirely through all the
layers of the model. However, there is very little change in going from one
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frame to the next through time, which is called temporal locality. Therefore,
it is wasteful to perform computations to extract the features of the non-
changing parts of the individual frame. Taking that concept deeper into the
network, if feature maps of two consecutive frames are inspected after every
activation layer throughout the model, this temporal overlap can be observed.
Therefore, we postulate that temporal sparsity can be significantly increased
by focusing the inference of the model only on the changing pixels of the
feature maps (or deltas).

3.3.3.1 Delta inference
A new layer is introduced that calculates the delta (or difference) between
two temporally consecutive feature maps and quantifies the degree of these
changes at only relevant locations in the frame. Since zero changes are not
propagated through the layer, the role of this layer may be perceived as an
”analog event propagation”. It is considered an ”analog event” as it is not the
presence of change, but the magnitude of change that is propagated through.
To better understand it mathematically, in a standard DNN layer, the output
activation is related to its weights and input vector through Equations (3.4)
and (3.5).

Y t = WXt +B (3.4)

Zt = σ(Yt) (3.5)

where W and B represent the weights and bias parameters, Xt represents the
input vector, and Yt represents the transitional state. Then, Zt is the output
vector which is the result of s(.) - a non-linear activation function. t indicates
that the tensor has a temporal dimension. However, in the temporal delta
layer, weight-input multiplication transforms into,

∆Yt = W∆Xt = W (Xt −Xt−1) (3.6)

Y t = ∆Y t+ Y t− 1

= W (Xt −Xt−1) +W (Xt−1 −Xt−2) + · · ·+ Y0, where Y0 = B

= WXt +B, (3.7)

∆Zt = Zt − Zt−1 = σ(Yt)− σ(Yt−1), where σ(Y0) = 0 (3.8)

In Equation (3.4), instead of using Xt directly, only changes or ∆Xt are
multiplied with W. Using the resulting ∆Yt, the corresponding Yt can be
recursively calculated with Equation (3.5), where Yt−1 is the transitional
state obtained from the previous calculation. Equation (3.8) is the final delta
activation output that is passed onto the next layer.
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Another notable difference between the standard DNN layer and the
proposed layer is the role of bias. In delta-based inference, bias is only used
as an initialization for the transitional state, Y0 in Equation (1.4). However,
since bias tensors do not change over time, their temporal difference is zero
and is removed from Equation (3.6).

Now, as the input video is considered temporally correlated, the expec-
tation is that ∆Xt and by association ∆Zt are also temporally sparse. In
essence, the temporal sparsity between consecutive feature maps is cast on
the spatial sparsity of the delta map that is propagated. Additionally, Yt in
Equations (3.4) and (3.7) are always equal. This indicates that if the input is
the same, both standard DNN and temporal delta layer based DNN provide
the same result at any time step.

3.3.3.2 Activation quantization to induce sparsity
There is temporal redundancy evident in feature maps of two consecutive
frames. However, if looked closely, it can be observed that these feature maps
are similar but not identical as shown in Figure 3.5(a) and (b). Therefore, if
two such consecutive feature maps are subtracted, the resulting delta map
has many near zero values, thus restricting the potential increase in temporal
sparsity, Figure 3.5(c). This is mainly due to the higher precision available
in the floating-point representation (FP32) of the activations. For example, in
IEEE 754 representation, a single precision 32-bit floating point number has
1 bit for sign, 8 bits for the exponent and 23 bits for the significant. It not
only leads to a very high dynamic range, but also increases the resolution or
precision for numbers close to 0. The number nearest to 0 is about ±1.4 x
10−45. Therefore, due to high resolution, two similar floating-point values
have difficulty going to absolute zero when subtracted. A plausible solution
to decrease the precision of the activations is to use quantization.

A post-training quantization method (fixed point quantization [49]) and a
quantization aware training method (learnable step size quantization [50])
are considered for comparison as a temporal sparsity facilitator for the
new layer.

3.3.3.3 Fixed point quantization
In this method, the floating-point numbers are quantized to integer or fixed-
point representation [49]. Unlike floating point, in fixed point representation,
the integer and the fractional part have fixed length. This limits both range
and precision. That is, if more bits are used to represent the integer part, it
subsequently decreases the precision and vice versa.
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Figure 3.5 Demonstration of two consecutive activation maps leading to near zero deltas.

Method: firstly, a bit-width is defined to which the 32-bit floating parameter
is to be quantized, BW. Then, the number of bits required to represent
the unsigned integer part of the parameter (x) is calculated as shown in
Equation (3.9).

I = 1 + blog2(max|x|)c 1 < i < N (3.9)

A positive value of I means that I bits are required to represent the
absolute value of the integer part, while a negative value of I means that the
fractional part has I leading unused bits. Now, it is known that 1 bit is for
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sign, so the number of fractional bits, F, is given by Equation (3.10).

F = BW − I− 1 (3.10)

Considering the parameters, BW - bit-width, F - fractional bits, I - integer
bits, and S - sign bit, Equation (3.11) maps the floating-point parameter x to
the fixed point by,

Qx =
C(R(x · 2F ),−t, t)

2F
(3.11)

where R(.) is the round function, C(x,a,b) is the clipping function, and t is
defined as,

t =

{
2BW−S , BW > 1

0 BW ≤ 1

The fixed-point quantization, as shown above, is a straightforward map-
ping scheme and is easy to be included in the model training process during
the forward pass before the actual delta calculation. However, it poses a
limitation to the extent of quantization possible without sacrificing accuracy.
Typically, an 8-bit quantization can sustain floating point accuracy with this
method, but if the bit-width goes below 8 bits, the accuracy starts to deterio-
rate significantly. This is because, unlike weights, activations are dynamic and
activation patterns change from input to input making them more sensitive
to harsh quantization [51]. Also, quantizing the layers of a network to the
same bit-width can mean that the inter-channel behaviour of the feature
maps is not captured properly. Since the number of fractional bits is usually
selected depending on the maximum activation value in a layer, this type
of quantization tends to cause excessive information loss in channels with a
smaller range.

3.3.3.4 Learned step-size quantization
Quantization aware training is the most logical solution to the drawback as
it can potentially recover the accuracy in low bit tasks given enough time
to train. Therefore, a symmetric uniform quantization scheme is considered
called Learned Step size Quantization (LSQ). This method considers the
quantizer itself as a trainable parameter which is trying to minimize the task
loss using backpropagation and stochastic gradient descent. This serves two
purposes: (a) step size, which is the width of quantization bins, gets to be
adaptive through the training according to the activation distribution. It is
vital to find an optimum step size because, as shown in Figure 3.6, if the step
size is too small or too large, it can lead to the quantized data being a poor
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Figure 3.6 Importance of step size in quantization: on the right side, in all three cases, the
data is quantized to five bins with different uniform step sizes, but without optimum step size
value, the quantization can alter the range and resolution of the original.

representation of the raw data. (b) as the step size is a model parameter, it is
also directly seeking to improve the metric of interest, i.e., accuracy.

Method: given: x - the parameter to be quantized, s - step size, QN and QP
- number of negative and positive quantization levels respectively, and q(x;s)
is the quantized representation with the same scale as x,

q(x; s) =


[
x
s

]
· s if −QN ≤ x

s ≤ Qp

−QN,s
x
s ≤ −QN

−QP,s
x
s ≥ −QP

(3.12)

where bae rounds the value to the nearest integer. Considering the number of
bits, b, to which the data is to be quantized, QN = 0 for unsigned and QN

= 2b−1 for signed data. Similarly, QP = 2b−1 for unsigned and 2b−1 − 1 for
signed data.
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The original LSQ method is slightly modified to remove the clipping
function from the equations as (a) the bit-width, b, required to calculate
QN and QP is not known. This is because the bit-width is not pre-defined
and is determined using the activation statistics of each layer while training
which leads to a mixed precision model, which is more advantageous, and (b)
clipping leads to accuracy drop as it alters the range of the activation. That
is, if activations are clipped during training, there could be a significant dif-
ference between the real-valued activation value and the quantized activation
value, which in turn affects the gradient calculations and, therefore, the SGD
optimization.

Thus, in temporal delta layer, the forward pass of the quantization
includes only scaling, rounding and de-scaling and can be mathematically
expressed as,

q(x; s) =
[x
s

]
· s (3.13)

The gradient of the Equation (1.10) for backpropagation is given by
Equation (3.14.)

∇sq(x, s) =
[x
s

]
− x

s
(3.14)

3.3.3.5 Sparsity penalty
The quantized delta map, created using the above-mentioned methods, has
a fair number of absolute zeroes (or sparsity) available. However, like the
biological brain, learning can help in increasing this sparsity further. The
inspiration for this came from an elegant set of experiments performed by Y.
Yu et al. [52]. The experiment showed a particular 30 second video to rodent
specimens and tracked their activation density during each presentation. It
was found that activation density decreased as the number of trials increased,
i.e., as the learning increased, the active neurons required for inference
decreased. Adapting the said concept to this work, a l1 norm-based constraint
is introduced to the loss function. This is termed as the sparsity penalty.
Therefore, the new cost function can be mathematically expressed as cost
function = task loss + sparsity penalty, i.e,

Cost function

= Task loss+ λ

(
l1 norm of active neurons in delta map

total number of neurons in delta map

)
(3.15)

where task loss minimizes the error between the true value and the predicted
value and, sparsity penalty minimizes the overall temporal activation density.
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The λ mentioned in Equation (1.12) refers to the penalty co-efficient of the
cost function. If λ is too small, the sparsity penalty takes little effect and
model accuracy is given more priority and if λ is too large, sparsity becomes
the priority leading to very sparse models but with unacceptable accuracy.
The key is to find the balance between task loss and sparsity penalty.

3.3.3.6 Proposed algorithms
Putting it all together, two algorithms are presented. One uses delta calcu-
lations and sparsity penalty concepts with fixed point quantization, and the
other uses modified learned step size quantization. The flow charts of the
methodology are given in Figures 3.7 and 3.8.

3.3.4 Experiments and Results

The proposed methodology is analysed to study how it helps to achieve the
desired temporal sparsity and accuracy.

3.3.4.1 Baseline
For baseline, the two-stream architecture [53] was used with ResNet50 as
the feature extractor on both spatial and temporal streams. The dataset used
was UCF101, which is a widely used human action recognition dataset of
’in-the-wild’ action videos, having 101 action categories [54]. The spatial
stream used single-frame RGB images of size (224, 224, 3) as the input, while
the temporal stream used stacks of 10 RGB difference frames of size (224,
224, 10 × 3) as the input. Also, both these inputs were time distributed to
apply the same layer to multiple frames simultaneously and produce output
that has time as the fourth dimension. Both the streams were initialized with
pre-trained ImageNet weights and fine-tuned with an SGD optimizer.

Under the above-mentioned setup, spatial and temporal streams achieved
an accuracy of 75% and 70%, respectively. Then, both streams were average
fused to achieve a final classification accuracy of 82%. Also, in this scenario,
both streams were found to have an activation sparsity of about 47%.

3.3.4.2 Experiments
Scenario 1: The setup consecutively places the fixed-point based quantiza-
tion layer and temporal delta layer after every activation layer in the network.
The temporal delta layer here also includes a l1 norm-based penalty. Fixed
point quantization, in this setup, is used to decrease the precision of input
activation maps. Both techniques promote temporal sparsity
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Figure 3.7 Methodology flow of temporal delta layer with fixed point quantization.

The baseline weights were used as a starting point, and all the layers
including the temporal delta layer is fine-tuned until acceptable convergence.
The hyper-parameters specifically required for this setup were bit width (to
which the activations were to be quantized) and penalty co-efficient to balance
the tussle between task loss and sparsity penalty
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Figure 3.8 Methodology flow of temporal delta layer with learned step size quantization 

3.3.4 Experiments and Results 

The proposed methodology is analysed to study how it helps to achieve the desired 

temporal sparsity and accuracy. 

Figure 3.8 Methodology flow of temporal delta layer with learned step size quantization.
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Scenario 2: The setup is like the previous scenario except for the activation
quantization method used. The previous experiment used fixed precision
quantization where all the activation layers in the network were quantized
to the same bit width. However, this experiment uses learnable step-size
quantization (LSQ), which performs channel-wise quantization depending
on the activation distribution resulting in mixed-precision quantization of the
activation maps. The layer also introduces a hyperparameter during training
(apart from the penalty coefficient mentioned earlier) for the step size initial-
ization. Then, during training, the step size increases or decreases depending
on the activation distribution in each channel.

3.3.4.3 Accuracy v/s Activation sparsity
Tables 3.1 and 3.2 show the baseline accuracy and activation sparsity
compared against the two scenarios mentioned.

Firstly, when the temporal delta layers with fixed point quantized activa-
tions are included in the baseline model, it can be observed that the activation
sparsity increases considerably with a slight loss in accuracy. One interesting
observation is that, although the sparsity penalty in the temporal delta layer
does a good job of decreasing the activation density, quantizing the activations
from floating to fixed point representation pushes the activation sparsity of the
model even higher. This is because lowering the precision from 32 bits to 8
bits (or less) leads to temporal differences of activations going to absolute
zero.

Additionally, the reason for close-to baseline accuracy in the method
involving fixed point quantization can be attributed to fractional bit allocation
flexibility. That is, as the bit width is fixed, the number of integer bits required
is decided depending on the activation distribution within the layer, and
the rest of the bits are assigned as fractional bits. This makes sure that the
precision of the activation is compromised for range.

Also, another contributing factor for accuracy sustenance is that the first
and the last layers of the model are not quantized, similar to works like

Table 3.1 Spatial stream - comparison of accuracy and activation sparsity obtained
through the proposed scenarios against the benchmark. In the case of fixed-point
quantization, the reported results are for a bit width of 6 bits.

Model setup (Spatial stream) Accuracy Activation sparsity
Baseline 75% 48%
Temporal delta layer with fixed point quantization 73% 74%
Temporal delta layer with learned step-size
quantization

69% 86%
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Table 3.2 Temporal stream - comparison of accuracy and activation sparsity obtained
through the proposed scenarios against the benchmark. In the case of fixed-point
quantization, the reported results are for a bit-width of 7 bits.

Model setup (Temporal stream) Accuracy Activation sparsity

Baseline 70% 47%

Temporal delta layer with fixed point quantization 68% 67%

Temporal delta layer with learned step-size
quantization

65% 89%

[55–57]. This is because the first and last layer has a lot of information
density. Those are the layers where input pixels turn into features and features
turn into output probabilities, respectively, which makes them more sensitive
to quantization.

Although the activation sparsity gain in the case of the temporal delta
layer with fixed point quantization is better than the baseline, it is still not
sufficiently high as required. In this effort, the bit-width of the activations
are decreased in the expectation of increasing sparsity. However, as the bit-
width goes below a certain value (6 bits for spatial and 7 bits for temporal
stream), sparsity increases, but accuracy starts to deteriorate beyond recovery,
as shown in Table 3.3. This is because quantizing all layers of a network to
the same bit-width can mean that the inter-channel variations of the feature
maps are not fully accounted for. Since the number of fractional bits is usually
selected to cover the maximum activation value in a layer, the fixed bit-width
quantization tends to cause excessive information loss in channels with a
smaller dynamic range. Therefore, it can be inferred that mixed-precision
quantization of activations is a better approach to obtain good sparsity without
compromising accuracy.

Table 3.3 Result of decreasing activation bit-width to increase activation sparsity while
maintaining accuracy. For spatial stream, decreasing below 6 bits caused the accuracy
to drop considerably. For temporal stream, the same happened below 7 bits.

Spatial stream Temporal stream
Activation
bit-width

Accuracy
(%)

Activation
sparsity (%)

Accuracy
(%)

Activation
sparsity (%)

32 75 50 70 47
8 75 68 70 65
7 75 71 68 70
6 73 75 61 73
5 65 80 - -
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Figure 3.9 Evolution of step size from initialization to convergence. As step-size is a
learnable parameter, it gets re-adjusted during training to cause minimum information loss
in each layer.

Finally, using the temporal delta layer where incoming activations are
quantized using learnable step-size quantization (LSQ) gives the best results
for both spatial and temporal streams. As the step size is a learnable param-
eter, it gives the model enough flexibility to result in a mixed precision
model, where each channel in a layer has a bit-width that suits its activation
distribution. This kind of channel-wise quantization minimizes the impact of
low-precision rounding.

It is also evident in Figure 3.9 that as the training nears convergence,
the values of the step size differ according to the activation distribution and
bit width required to represent each layer. Moreover, consistent with the
literature [58], the first and last layers during training opts for smaller step
sizes implying they need more bandwidth for their representation.

The weights generated using this method was then average fused to find
the final two-stream network accuracy and activation sparsity (Table 3.3).
Finally, the proposed method can achieve 88% activation sparsity with a 5%
accuracy loss.

3.4 NN Compiler for Dedicated Inference Accelerator
Hardware with Analog In-Memory Computing

This section explains the role of NN compilers in inference hardware accel-
erator as well as the methodology to follow to implement and evaluate one.
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To map the tasks of an NN algorithm to a dedicated hardware with analog
in-memory computing for inference, a compiler is needed to automatically
generate the instruction set that would provide better performance on the
dedicated hardware. The input of such compiler is the trained NN algorithm
as well as the hardware architecture of the inference accelerator while the
output is the executable set of operations. Therefore, the NN algorithm can
only have the type of layers supported on the hardware.

NNs consist of large amounts of Multiplication-and-Accumulation
(MAC) operations. Therefore, analog in-memory computation accelerators
are ideal to perform such operations. However, different sizes, shapes and
bit resolutions make challenging to map NNs on analog crossbar arrays.
Nowadays multi-core analog accelerators are becoming very popular for NN
inference [64, 65]. Each accelerator core consists of an analog crossbar array
surrounded by ADCs, DACs and digital logic (FSMs, etc.). Multiple process-
ing cores are connected via NoC (Network-on-Chip), which is used to transfer
data between processing cores. Moreover, analog crossbar arrays are not fixed
anymore. State-of-the-art crossbar arrays consist of small crossbar elements
which can be horizontally or vertically concatenated using programmable
switches. The programmability of crossbar makes them very flexible. The
crossbar performs multiplications, and the digital logic configures the cross-
bar switches and controls data flow (weights and activations, etc.) to the
crossbar. However, the flexible architecture and constraints of modern ana-
log accelerators pose a challenge in terms of NN workload, mapping, and
scheduling. The traditional mapping techniques such as loop tiling, and
loop interchange are not efficient anymore [66]. Moreover, the digital FSMs
controlling the crossbar and NoC also require a complex instruction set. To
the best of our knowledge, there are no commercial compilers available which
can be used to map NN workloads and generate the instruction set for flexible
and multi-core analog in-memory accelerators.

3.4.1 Compiler Components

The compiler consists of three main components: hardware architecture,
parser, and mapper, see Figure 3.10. The unique architecture and constrains
of the dedicated inference accelerators require the compiler to consider hard-
ware specifications and constraints while mapping NN workloads. Therefore,
the compiler generates a hardware representation of the accelerator using the
specifications. The compiler also contains a parser that parses the information
of each NN node and converts it into a specific data structure. By using the
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Figure 3.10 Overview of Compiler Tool.

hardware representation and the parsed NN the mapper generates a mapping
in the form of instructions for the FSMs.

3.4.2 ONNX Parser

The trained networks are stored using ONNX with a custom export to store
additional information such as quantization. The custom ONNX file is parsed
by a custom ONNX Parser to extract the information needed by the mapper.
This parser parses every graph node of the ONNX model and creates a Python
data structure to ease access to information and attributes. The parsed model
is a list of nodes and each one stores relevant information. The list of nodes
includes:

• Input contains information about the input layer
• Conv contains information regarding convolution layers
• MatMul contains the parameters of fully connected layers
• Add is pointwise addition
• Mul is pointwise multiplication
• Div is a pointwise division
• Act contains activation functions
• Squeeze and Unsqueeze to remove or add singleton dimension when

needed.

Moreover, the parser allows the user to fuse the information of consecutive
nodes if these nodes follow a certain pattern, e.g., Conv layer followed by
one or more of Add, Mul, Div or Act layers are fused together, as shown
in Figure 3.11. The fused information is stored in the parsed fused model.
The layers are combined when their computations can/should be carried out
by same processing core in one computing cycle to minimize data exchange.
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The parsed fused model is used by the compiler to pre-process and generate
instructions to run the NN on the hardware.

3.4.3 Hardware Architecture Representation

The hardware architecture representation component allows the compiler to
support arbitrary number of processing cores and crossbar array configura-
tions. It generates blueprint of available computation resources for each core
according to the configurations and constraints.

The input parameters include the hardware specifications and constrains
like crossbar specifications, number of processing cores, memory sizes, etc.
When the architectural parser is invoked, it generates a blueprint of the
FSMs, the processing cores and the NoC controller. The NoC controller is
responsible for data transfer between processing cores and the FSMs for the
storage of the weights on the crossbar array, providing the input data to the
crossbar array according to the input specifications of each layer and handling
the output results of the crossbar array.
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3.4.4 Mapper

The mapper analyses the parsed NN and available computation resources on
the hardware to map the NN workload into the processing cores. Figure 3.12
shows the flow of the mapper.
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The mapper maps a NN workload layer by layer. Analog crossbars
perform computations using vector-matrix multiplications. Therefore, the
compiler converts different NN workloads into vector-matrix multiplications.
Moreover, the compiler also schedules the data transfers between processing
cores. The weights are converted into a matrix representation and stored in
crossbar memory columns and inputs are converted into vectors and fed to
crossbar rows using DACs. The mapper determines the required hardware
resources for every layer and then it checks how many filters of a layer can
be mapped on the current processing core. If there is enough space to map
all filters of a layer, then all filters are mapped to the current processing core.
Otherwise, a layer is partially mapped to a processing core and remaining
filters are mapped to the next core. Similarly, when all processing cores
are utilized, the mapper starts mapping again from the first processing core
for the next computation. The mapper keeps increasing the computation
cycle until the whole NN workload is mapped. When mapper maps the NN
workload to a part of processing core, that part is marked as utilized and the
parameter values in all FSMs are set according to the mapping. After mapping
a workload to each processing core, the compiler generates instructions sets
that can be decoded on the dedicated hardware to generate sets of parameters,
which are then used to configure the processing cores.

3.4.5 Mapping Strategy

The crossbar array of a processing core is composed of multiple rows and
columns of analog synaptic weights performing MAC operations. The cross-
bar allows to map either fully connected layers or convolutional layers with
different kernel sizes.

Figure 3.13 shows the mapping strategy of how a small CNN with two
convolution layers has been mapped to a crossbar array of a processing core.
Each black rectangle represents 16x4 synaptic weights. The input size is
13x64, the kernel sizes of Conv1 and Conv2 are 4x4x1, with 16 filters, and
3x3x16, with 8 filters, respectively, and the output size is 3x29x8. According
to the compiler flow, the compiler checks first for available resources in the
processing core and then determines how many synaptic weights are required
to map a layer. At the beginning, since the whole processing core is available
and the Conv1 filters are small, Conv1 layer can be fully mapped. The filters
of Conv1 are converted into vectors and mapped to crossbar like a matrix.
The Conv1 filters’ vectors are small, and each filter requires 4x4x16 synaptic
weights. Similarly, filters of Conv2 are also converted to a vector and mapped.
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Figure 3.13 Mapping of layers 1 and 2 on processing core 1.

Since Conv2 layer consists of large filters, it requires 3x3x16x8 synaptic
weights. The mapper will evaluate if enough synaptic weights are available
in the same processing core at which Conv1 was mapped. If it is not the case,
a new processing core will be used for mapping Conv2 layer.

3.4.6 Mapping of Deep Spiking NN Architectures to Digital SNN
Inference Devices

This section presents an approach for mapping arbitrary deep SNN network
architectures onto fixed-architecture inference devices. As example, a device
is considered with a single population of hidden neurons, supporting a fixed
number of synaptic inputs per neuron, and with a limited number of input and
output neurons (see Figure 3.14).
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kernel sizes of Conv1 and Conv2 are 4x4x1, with 16 filters, and 3x3x16, with 8 

filters, respectively, and the output size is 3x29x8. According to the compiler 

flow, the compiler checks first for available resources in the processing core and 

then determines how many synaptic weights are required to map a layer. At the 

beginning, since the whole processing core is available and the Conv1 filters are 

small, Conv1 layer can be fully mapped. The filters of Conv1 are converted into 

vectors and mapped to crossbar like a matrix. The Conv1 filters’ vectors are small, 

and each filter requires 4x4x16 synaptic weights. Similarly, filters of Conv2 are 

also converted to a vector and mapped. Since Conv2 layer consists of large filters, 

it requires 3x3x16x8 synaptic weights. The mapper will evaluate if enough 

synaptic weights are available in the same processing core at which Conv1 was 

mapped. If it is not the case, a new processing core will be used for mapping 

Conv2 layer. 

3.4.6 Mapping of deep spiking NN architectures to digital SNN inference 

devices 

This section presents an approach for mapping arbitrary deep SNN network 

architectures onto fixed-architecture inference devices. As example, a device is 

considered with a single population of hidden neurons, supporting a fixed number 

of synaptic inputs per neuron, and with a limited number of input and output 

neurons (see Figure 3.14). 

 

Figure 3.14 A HW architecture for SNN inference  

This architecture supports a fixed maximum number of input channels Nin; a fixed 

maximum number of hidden neurons Nhid; and a fixed maximum number of output 

neurons Nout. The neurons are LIF spiking neurons, supporting several synaptic 

inputs Nsyn. This architecture implements a single hidden population with the 

possibility of recurrent weights Wrec. Multi-layer networks must be mapped into 
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Figure 3.14 A HW architecture for SNN inference.

This architecture supports a fixed maximum number of input channels
Nin; a fixed maximum number of hidden neurons Nhid; and a fixed maximum
number of output neurons Nout. The neurons are LIF spiking neurons, sup-
porting several synaptic inputs Nsyn. This architecture implements a single
hidden population with the possibility of recurrent weights Wrec. Multi-
layer networks must be mapped into this single hidden population using
the recurrent weights. Other logical weight blocks are supported for input
weights Win and output weights Wout. These weight matrices are assumed
to be sparse, with a limited maximum fan-in NF per neuron. Only on-zero
weights are stored, with weights linearised into memory blocks of fixed
maximum size NF * N. Figure redrawn from [82].

A mapping system must be flexibly to accommodate a wide range of SNN
network architectures, including recurrent spiking populations (e.g., reservoir
networks and other recurrent architectures; deep feed-forward architectures;
and residual network architectures. An example of a deep spiking network
making use of all these architectural elements is shown in Figure 3.14. Several
LIF spiking neuron layers (“LIF”; orange) are connected via weight blocks
(“W”; blue). The first LIF layer “LIF1” is recurrently connected with weights
“Wrec”. Residual blocks (dashed) include additional connections bypassing
the blocks inside.
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Figure 3.15 An example of a deep spiking network that will be mapped to a HW
architecture.

To map the network onto the HW architecture shown in Figure 3.15,
several steps are taken.

1. Graph extraction: Convert the simulation modules from a high-level
representation to a standardised set of graph modules. These graph
modules individually represent the weights and neuron populations in
the network, as well as embodying a traversable graph that accurately
corresponds to the computations and information flow in the network.

2. DRC check: Perform a design-rule-check to ensure that the network is
compatible with the hardware architecture.

3. HW mapping: Assign the network logical resources to available hard-
ware resources.

4. Parameter configuration: Assign network parameters to appropriate HW
memory blocks and serialise to a bitstream to configure the HW.

3.5 Simulator/Profiler

When implementing a neural network topology on an embedded hardware
target, it is critical to do it being able to profile that network and to sim-
ulate it, by considering the hardware architecture for extracting the right
power/performance/latency figures. Profiling a network means extracting key
parameters of interest when fed with representative data. This obviously
relates to the number of parameters and number of operations, which is
readily available for a given topology, but not only. To choose the right
hardware target and optimize the mapping of the network or its graph trans-
formation, the data volume and data bandwidth per layer are also needed.
Counter intuitively, the highest data bandwidth does not occur in the layers
with the higher number of parameters. This is illustrated in the figures below,
considering a popular network topology for embedded applications, i.e., a
MobileNet V1.
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Figure 3.16 depicts the number of parameters per layer: the deeper the
layer, the higher the number of parameters. The depth wise convolution layers
use less parameters than the pointwise convolution layers since they use 2D
filters instead of 3D ones.

But, as can be seen in Figure 3.17, the first layers are the ones having
the biggest data volume. This is because there are more parameters reused on
those first layers.
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This profiling shows that it is more important to keep the data locally for layers 1 

to 12 to minimize data movement: thus, a data-flow architecture for those layers 

might be a good fit. 

Figure 3.18 also shows the impact of stride on data volume reduction. For 

instance, layers 1, 4, 8 and 24 have a stride of 2. 

 

Figure 3.18 MobileNet V1 bandwidth (Gb/s) at each layer 
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object detection, the most important layers are number 27 and 23. For 

segmentation, layers number 7 and 11 can be exploited, with layer 7 having a 
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Deployment) dedicated framework is used in ANDANTE for deploying neural 
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Figure 3.18 MobileNet V1 bandwidth (Gb/s) at each layer.

This profiling shows that it is more important to keep the data locally for
layers 1 to 12 to minimize data movement: thus, a data-flow architecture for
those layers might be a good fit.

Figure 3.18 also shows the impact of stride on data volume reduction. For
instance, layers 1, 4, 8 and 24 have a stride of 2.

The data bandwidth is obviously proportional to the size of the input
image and number of images per second. Figure 3.20 illustrates the band-
width for a 30FPS, 1280x720p, 8b RGB input. The intermediate layers use
4b activations in this case.

Depending on the application, i.e., segmentation, detection, classification,
different layers can be exploited. Those layers are highlighted in orange.
For object detection, the most important layers are number 27 and 23. For
segmentation, layers number 7 and 11 can be exploited, with layer 7 having
a higher bandwidth and thus a higher definition.

To obtain those figures, the N2D2 [67, 68] (Neural Network Design
& Deployment) dedicated framework is used in ANDANTE for deploying
neural networks on digital hardware targets, see Figure 3.19.

For optimizing a network, N2D2 considers applicative performance met-
rics to be achieved and the hardware target memory capacity. It exploits spar-
sity of weights by implementing state-of-the-art quantization-aware training
methods, such as SAT and LSQ. Finally, N2D2 can address several hardware
targets, generating bit streams or configuration files, but it can also be used
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Figure 3.20 shows the three steps needed for converting a topology to
target a pipelined DNN architecture:

1. The selection of the pre-templated architecture to be used for imple-
menting each layer type (sub-steps a and b in the figure below).
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Figure 3.20 Process flow: (a,b) conversion of the neural network to the hardware represen-
tation, (c) tuning of the layer parallelism at architectural level, (d) tuning of the buffer, (e)
post-processing.
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2. The configuration of the resources used, in each architecture, in terms of
parallelism and buffer (sub-steps c and d).

3. The network parameters post-process (sub-step e).

This enables to tune various architecture parameters, such as the parallelism
of each layer, the buffer, etc. and assess their impact.

The first two steps, architecture selection and hardware resource config-
uration, are performed using a ROI algorithm. Each layer of the network is
associated with a hardware architecture corresponding to the type of opera-
tion carried out in the layer. Several architectural models can be considered
for a given layer type; in which case the best suited architecture is selected
for that layer.

At the end of these steps, a graph of configured architectures is obtained,
that ensures the smooth running of the calculation throughout the pipeline.
Those “hardware-aware” simulations prove to be much more accurate in
terms of energy efficiency and latency, while being bit-equivalent to high level
simulations.

3.6 Conclusions

3.6.1 On NN Model Transformation

Intuitively, the new temporal delta layer [63] casts the temporal activation
sparsity between two consecutive feature maps into spatial activation sparsity
of their delta map. This spatial sparsity is then exploited to reduce compu-
tations and memory access when performing sparse tensor multiplications
in hardware. As shown in 3.4 proposed method resulted in 88% activation
sparsity with an accuracy drop of 5% on UCF-101 dataset for human action
recognition.

Table 3.4 Final results on 2 stream networks after average fusing the spatial and
temporal stream weights. With 5% accuracy loss, the proposed method almost doubles
the activation sparsity available in comparison to the baseline

Baseline Proposed method
Model type Accuracy

(%)
Activation

sparsity (%)
Accuracy

(%)
Activation

sparsity (%)
Spatial stream 75 50 69 86
Temporal stream 70 46 65 89
Two-stream
(Average fused)

82 47 77 88
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The collateral advantage of temporal sparsity is that the computations
does not increase linearly with the increase in frame rate. In standard DNN,
doubling the frame rate naturally would require double the computations.
However, in the case of temporal delta layer-based model, increasing the
frame rate would not only increase the temporal precision of the network but
also increase the temporal sparsity limiting the computations required [59].

The drawback of using temporal delta layer derives from its requirement
to keep track of the previous activations to perform delta operations. This
increases the overall memory footprint which in turn increases the reliance
on off-chip memory. For instance, external DRAM memory consumes two
orders of magnitude more energy than SRAM [60]. However, the increasing
popularity of new memory technologies (like resistive RAM [61], embedded
Flash memory [62], etc.) may improve the cost calculations in the near future.

3.6.2 On NN Compiler for Dedicated Inference Accelerator
Hardware with Analog In-Memory Computing Conclusion

The main objectives for a compiler tool are maximize hardware utilization,
maximize throughput, and minimize latency. However, there is always a
trade-off between these objectives since not all of them can be achieved at
the same time. Therefore, in the particular methodology described in Section
4 maximum utilization of hardware resources is the focus. The mapping
algorithm checks the resources needed for allocating each layer of the NN.
Afterwards checks for the available resources on the hardware and tries to
find the optimum mapping to fully utilize each processing core.

3.6.3 Simulator/Profiler

Profiling a neural network is essential when considering deploying it on an
embedded hardware target. Indeed, for choosing the right target and correctly
mapping the network on it, one obviously needs to know the number of
parameters (for the memory footprint), the number of operations (for the
number of processing elements in a latency-constrained implementation)
but also the data bandwidth and data volume. Such a simulation/profiling
environment is developed and used in the ANDANTE project. It allows to
assess the impact of quantization (even mixed quantization depending on
the layers), to identify the most adequate layers for e.g., object detection or
image segmentation (in terms of data bandwidth). It can also guide archi-
tecture exploration, with a mix of spatially expanded and spatially folded
architecture, and the needed graph transformations.
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