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Abstract

We discuss the role and impact of AI on the Industrial Internet of Things
(IIoT) as envisioned by the European flagship project on 6G, Hexa-X. The
envisioned ecosystem of trustworthy collaborative digital twins (DTs) lays
the foundation for emergent intelligence (EI) and utilization of AI for indus-
trial scenarios. One important building block for utilization of AI in IIoT
is the inclusion of the human: we therefore provide insights on AI at the
intersection between DTs and human-machine interfaces (HMIs).
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7.1 Introduction to the Hexa-X Project

Hexa-X1 is the European flagship project on 6G. It defines the vision, use
cases, as well as key performance and value indicators for upcoming 6G
systems. The project studies technical enablers for novel 6G capabilities
and provides an initial end-to-end architecture for 6G systems. The key
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societal values of sustainability, trustworthiness, and inclusiveness drive the
contributions in the project [1].

Use cases considered in Hexa-X span seven families, as detailed in [1].
The use case families from robots to cobots and massive twinning capture key
characteristics of IIoT for which technical enablers and concepts are being
developed in the project. In the following, we focus on DTs and the use of
AI and novel HMIs as technical enablers and their impact on IIoT. First, we
outline an ecosystem concept for DT that highlights the relations between
twinned aspects of the IIoT and the underlying information flow enabled by
a 6G system with its novel sensing and processing capabilities. We discuss
the concept of EI being enabled by (collaborating) DTs and its impact on
IIoT and elaborate on the potential of collaboration among local and global
management entities and their respective DTs to benefit from additional local
insights in AI-based decision making and optimization. Before concluding
the discussion, we analyse the role of AI at the intersection between DTs and
novel HMIs.

7.2 An Ecosystem Concept for Digital Twins in IIoT

With the massive deployment of DTs, in the era of 6G, conventional cyber-
physical systems (CPSs) that have been widely used in industrial scenarios
is envisaged to evolve into a human-centric industrial ecosystem, which is
illustrated in Figure 7.1. With a generic framework to support constructing
and maintaining a digital replica for an arbitrary physical entity, it allows
every machine, every person, and every component of the data infrastructure
that is involved in the industrial process to offload its context information to
the digital intelligence (which is commonly deployed in the cloud or at the
network edge), analyse it online, and exchange such information with other
involved entities or DTs in an agile, efficient, and secured fashion.

To support such an ecosystem, future IIoT must leverage the numerous
advantages and conveniences provided by 6G DTs, which are including,
among others: the ubiquitous and ultra-dense connectivity to support massive
twinning; the timely status synchronization between the physical entities
and their DTs; the data-driven intelligence that generates empirical insights
on the physical environment and processes. Empowered by these technical
enablers, various novel use cases can be envisioned, which we have clustered
into eight categories upon the flow of information between the cyber and
physical/human worlds, as shown in Figure 0-1. In the following sections of
this chapter, we will focus on three selected technical aspects to demonstrate
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Figure 7.1 The ecosystem of 6G human-centric industrial DTs, with the arrows indicating
the direction of the information flow.

how the combination of AI and DT will impact these emerging use cases.
More specifically, we will introduce 1) what is Emergent Intelligence (EI)
and why it benefits from massive twinning; 2) how network-aware DTs can
be used to generate local insights to support smart factory applications; and
3) how AI-empowered DTs can be exploited in human-machine interface to
realize collaborative robots (cobots) and Extended Reality (XR).

7.3 Digital Twins for Emergent Intelligence

Future IIoT is envisaged to connect everything and everybody, not only the
physical entities but also their DTs. Rich physical and context information
can be therewith efficiently collected, shared, and exploited. Such ubiquitous
interconnection and universal information sharing among equipment, prod-
ucts, infrastructure, and human participants will help to deliver an immersive
AI capable of accomplishing future industrial tasks, which are not only
complex, but also polymorphic and flexible (e.g., the manufacturing process
may vary significantly from one product to another, and an occasional update
of the AI solution is demanded in the future flexible manufacturing scenario).

Nevertheless, while promising numerous new use cases, the immersive AI
in 6G IIoT is also raising concerns in safety, security, and data privacy. Most
conventional AI solutions require the aggregation of user data at a central unit
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that makes decisions for all users as the AI engine, which leads not only to a
concern of privacy leakage, but also a security risk of model manipulation
through malicious data injection. Over the recent years, technologies like
Federated Learning (FL) have been intensively studied and well developed to
address the privacy concern in AI by distributing the responsibilities of data
aggregation and model training to agents. Nevertheless, they cannot yet elim-
inate the risk of manipulation due to their central-model-based nature. As a
model-less mechanism to implement complex system behaviour, EI may play
an important role in future AI applications as a secured, privacy-intolerant
alternative and complement to conventional solutions such as FL.

The concept of EI was first proposed in the late 1980s as a biological term,
which describes the intelligence of animals originating spontaneously and
emergently from many simple units that are interconnected and interacting
with each other in a complex manner [3]. Thereafter, this phenomenon was
rapidly noticed in the engineering field and has inspired to develop bionic
intelligent approaches. The most typical and significant instance of artificial
EI is the family of approaches known as particle swarm optimization [2]. Dis-
tinguished from classical AI approaches that require the task-specific global
knowledge to be explicitly integrated into a problem solver, EI approaches
exploit the numerous agents involved in the task to opportunistically operate
upon their representation-specific local knowledge, whereas the task-specific
knowledge can be separated from the distributed problem solver, i.e., the
agents. A comparison is briefly illustrated in Figure 7.2. In the framework
of classical centralized ML, data are aggregated from users to a central
node, where a task-specific global model is trained and shared by all users.

Figure 7.2 Comparing the conventional AI solutions based on centralized AI (left) and FL
(middle) to EI (right).
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Decisions are also usually made at the central node and sent back to the users,
respectively. In the FL framework, instead of having one global model that
applies for all users, the central node keeps only a so-called central model.

This model is shared with the users, so that every user locally trains it with
own data and make decisions regarding the local model. The local model
parameters of different users (instead of the raw user data) are aggregated
and exploited at the central node to update the central model, which is then
distributed to the users again to assist improving their local models. The
framework of EI, in contrast, does not contain a central node, nor does it
set up any explicit task-specific model. Instead, it relies on the decentralized
information exchange among the users, which are architecturally equal and
have no knowledge of the global task. From the reaction of each user to the
information it collects from the others, some advanced behaviour pattern of
the “colony” of all users can spontaneously emerge.

On the one hand, this model-less and emergent nature grants EI
approaches several outstanding features that can benefit 6G IIoT, including
low computational complexity, minimized computation and communication
latencies, high robustness against local malfunction at arbitrary agent, data
privacy, security, and scalability. On the other hand, 6G will also be able to
enhance the performance of EI: it promises to deliver a ubiquitous, massive,
and reliable connectivity in the IIoT environment, which will support to
build a gigantic system with numerous agents networked with each other.
Enhancements will be therewith introduced regarding the dimension and
complexity of the networked system, as well as the efficiency of interaction
between different system components. All these aspects have been proven to
have critical impacts on the performance of EI solutions. In short words, 6G
and EI are match made in heaven.

Nevertheless, it shall be remarked that the requirements of system scale
and communication efficiency can be usually opposite each other. For exam-
ple, when the number of agents increases within a limited coverage, the
therewith increased access density may cause traffic congestion, resulting in
either a higher latency or a lower link reliability. In another case where the
access density remains consistent but the spatial dimension of the network
increases, the coverage of a single radio access point becomes an issue.
Message relaying will allow agents to interact over a long distance, but
significantly increases the latency. Alternatively, it can be an effective low-
latency solution to limit the communication range of agents but leads to a
degradation in convergence performance. Furthermore, in addition to the user
plane data exploited by the agents to make decisions, a significant signalling
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overhead must be generated to setup and accomplish the communication
sessions between agents, which significantly reduces the energy efficiency
and sustainability of the IIoT system.

To address these issues and support the deployment of EI in 6G IIoT,
DTs will play an important role. In a massive twinning scenario, every EI
agent can have not only its real-time status, context information and semantic
model stored, analysed, and maintained at its DT, but also its decision engine
migrated thereto as well. Thus, the information exchange between different
agents can be shifted from the physical radio environment to the cyber world,
and the radio link between every pair of agents can be replaced by an agent-
cloud link for each individual agent, which will not only dramatically reduce
the traffic load, but also mitigate the massive radio signalling overhead.
Therewith, DTs will improve the radio resource efficiency and reduce the
communication latency for EI applications.

7.4 Network-aware Digital Twins for Local Insight
Generation

Industrial DTs of machines, processes, or whole factories might contain
sensitive and business-critical information that needs to be retained within
a local management domain (e.g., a private network or locally managed
IT/OT systems). Traditionally, industrial DTs did not focus on the network,
but on the industrial application and machinery. With an increasing share of
wireless communication enabling novel Industry 4.0 scenarios and the vision
of 6G as a network of networks, supporting local, independently managed
network islands or sub-networks, this is changing significantly. One way to
allow industrial DTs to benefit from network-awareness and utilize additional
sources of data offered by novel capabilities of a 6G system (e.g., localization,
sensing, computation, or AI as a Service) is the collaboration of DTs as
illustrated in Figure 7.3.

The local DT on the left-hand side of the figure captures relevant aspects
of the Industry 4.0 application or process being executed by several collab-
orating machines and humans. Local network infrastructure (wireless and
wired) enabling this collaboration is also represented in the local DT to aid in
network management and optimization tasks. This local loop of configuration
and optimization based on the local DT is augmented with information from
the 6G DT and its capabilities. Relevant aspects include the joint optimiza-
tion of compute resources by utilizing the respective 6G services, or the
joint optimization of network resources across management domains. Both
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Figure 7.3 Illustration of collaborating DTs in IIoT.

domains could further benefit from a privacy-preserving exchange of sensing
information to increase, e.g., location accuracy or confidence in measurement
data for specific use cases. One example of such an exchange with mutual
benefit is the joint optimization of trajectories of automated guided vehicles
to increase process productivity while at the same time making better use
of available communication resources. Instead of sense-and-react, both sides
can benefit from the proactive exchange of information as foundation for
AI-based decision making in the respective processes.

Being able to limit the exchange of data to trustworthy entities and act in
a privacy-preserving fashion by sharing only the most relevant information
among DTs allows cross-layer optimization for both, local and global man-
agement domains while still maintaining full control over own processes and
data.

7.5 AI at the Intersection between DTs and HMI in
Industrial IoT

The idea behind DTs is to create intangible replicas of physical assets or
processes capable to capture key information that can be used to support
design and planning activities, as well as to help operation and supervision
tasks [4]. Initially developed in the context of, e.g., industrial plants and city
infrastructure, today are progressively widening to encompass any real entity,
including human beings [5].
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There are several technological enablers that are easy to recognize as key
to the implementation of DT solutions. One of them is indeed represented
by mobile communications. In particular, there is a great expectation for the
deployment of 6G networks, as their latencies and data rates are regarded as
capable to make applications such as, e.g., autonomous driving and remote
surgery, finally feasible [6].

The previous sections discussed the major role played in this context by
AI. In fact, with AI, insights gathered through DTs can allow humans to make
better operational decisions. AI can also make DTs more intelligent, to the
point that they can even get able to make decisions and prescribe actions to
the physical world on their own.

Using AI techniques, the DT of a city could, for instance, leverage
information about road works and closures, pollution levels, or even citizens’
habits to manage in real-time connected vehicles traffic [7]. Similarly, the
DT of an industrial plant could constantly monitor machines’ status and
use collected data to instantaneously reconfigure processes to mitigate, e.g.,
downtimes and bottlenecks [8]. In logistics, the AI abilities could allow DTs
to make fact-driven decisions regarding planning and scheduling based, e.g.,
on demand and distribution models, and support the implementation of opti-
mization and control strategies aimed to improve efficiency and, ultimately,
profitability [9].

Indeed, the traditional application domain for the DT paradigm is the
industrial one, within the context of IIoT. A recent review of the role of AI
in this context is reported in [10]. Within the commonly pictured scenarios
for digital twinning, an area in which AI is expected to foster important
developments is that of HMIs. Thanks also to forecasted advancement in
mobile networks and edge computing capabilities, ever new ways in which
the human and machine intelligences cooperate in CPSs can be envisaged.
A typical use case is that of robotics, in which computer vision technology
is essential for the navigation of mobile robots [11] or the interaction with
collaborative robots (or cobots) [12]. Another typical application of AI tech-
niques is that of human-action recognition from images and data collected
by other sensors (like depth cameras) to perform, e.g., trajectory forecasting
and path planning for safety assurance in scenarios involving the operation of
co-located human and robotic agents [13], [14].

A final family of technological tools that shall be mentioned in relation
to AI-powered DTs and HMI is that of XR, a term generally used to refer
to a blend of tools like Virtual Reality (VR), Augmented Reality (AR) and
Mixed Reality (MR). XR plays a primary role in the scenarios depicted above
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[15]. As a matter of example, VR-based simulations are commonly used
for visualization purposes in pre-production processes or in the planning of
surgery interventions, whereas AR is typically exploited in customer service
applications or in Head-up Displays typically mounted aboard autonomous
vehicles.

It is worth observing that DTs coupled with AI and XR are expected
to represent extremely powerful tools also towards sustainability. In fact,
the possibility to rely on virtual, distant copies of real-world entities means
avoiding unnecessary travels to the physical location of such entities. This
can be the case, e.g., of remote healthcare or maintenance applications [16].
It also means less energy consumption and waste since, as said, machine
failures can be predicted in advance, and designs validated and tested before
being realized [17].

7.6 Conclusion

In this chapter, we discussed the impact of AI on IIoT from the perspective
of the 6G European research project Hexa-X. We outlined an ecosystem of
collaborating DTs as a potential enabler for emergent intelligence and local
insight generation in a privacy-preserving and trustworthy way. We further
elaborated on the role of AI when it comes to the intersection between the
DT and the way humans interact with it by means of novel HMIs in an
industrial context. In Hexa-X, we study additional enablers for trustworthy,
collaborative DTs and the utilization of gathered data for flexible resource
allocation and dependable operation of applications and services as important
cornerstones for most IIoT use cases.
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