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Abstract

The semiconductor industry is a very cost sensitive industry and yield is
key to profitability. The ability to analyse and detect the faulty parts at
several manufacturing steps is also very important to ensure the quality
of the delivered integrated circuits. Several factors as alignments, shifts
or masks rotations can lead to errors during the front-end step (wafer
fabrication), or others causes such as fingerprints, scratches and stains
can cause cosmetic damage during the back-end step (silicon packaging).
Therefore, an automatic visual inspection is required to ensure that the parts
are free of any defects. In this chapter, we focus specifically on classifying
wafer maps according to predefined defaults. We propose a platform which
aims at making the classification process more energy efficient, by means of
the interconnection of two hardware parts. The first one, the microprocessor
STM32MP1, is responsible for image pre-processing and for offloading
inference to a dedicated hardware accelerator. The second one, the hardware
accelerator, is implemented in a Xilinx Zybo Z7-20 FPGA and uses a
quantized neural network model. Preliminary results show that, for this low
throughput applications that has a limited number of classes, the solution
presented in this article can classify in real-time with accuracy above 80%
using limited resources.
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2.2.1 Motivation: The Wafer Fault Classification Problem

Defect inspection and classification are significant steps of most
manufacturing processes in the semiconductor industry. These steps are
needed during the front-end process, when wafers come out of the foundry,
and during the back-end process, when packaging individual chips. Having a
proper inspection to partition wafers, dies, or packages in correct vs incorrect
items is needed not only to ensure delivering working packaged chips to
customers, but also to improve the quality of the manufacturing process.
Similarly, accurate classification of the defaults, be they during the front-
end or back-end process, is key to high yield. Indeed, yield management
and yield learning help the manufacturing process engineers in determining
the causes of abnormal fabrication. To ensure a high-level of quality and
yield, still today, many of the inspection phases are performed visually,
by humans [1]. Given the throughput on the production lines, the actual
inspection can only be done on samples, which leaves quite some room for
improvement.

In this chapter, we focus on the front-end process, and more specifically
on the detection and classification of wafer defects using deep neural
networks (DNN), which have proven to be efficient for classifying images.
Early detection of defects at the back-end process, during which wafers are
produced and electrically tested, can help to readjust certain parameters in
the production line, to increase yield and thus reduce costs. This explains
why a lot of effort has been devoted to this topic since the infancy of mass
production of integrated circuits.

Once wafers have been fabricated and the electrical inspection step
carried out, different 2D images are generated indicating which dies are
working properly and which are not. These images, known as wafer maps,
must then be inspected to extract their features and classified into different
categories. It will allow to determine if all chips on the wafer can go
to packaging, in the case of lack of defects, or if the wafer presents a
specific failure pattern indicating an issue during some of the production
stages. Specific failure patterns may indicate the root cause of a problem.
For instance, when several faulty dies appear randomly on a wafer without
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following any specific pattern, the problem may come from the presence
of dust particles transferred to the wafer surface; when a ring of faulty
dies is present, the issue is due to a misalignment of several layers during
photolithography; when defects are located in the centre of the wafer or
following a donut pattern they may indicate a non-uniform application
of forces to smooth and flatten, silicon wafer, a non-uniform temperature
distribution or also a problem during oxidation; when some streaks run across
the wafer surface it may be due to a human error in handling equipment or
due to an issue during the chemical-mechanical polishing stage; or even when
falling dies are located near to the edge of the wafer, this can indicate an issue
during etching or a non-uniform cleaning.

Wafer data, because it could leak information on the process and possibly
its yield, is very sensitive, and manufacturer are unwilling to share it. The
work presented in this chapter will therefore be based on a public and
open access dataset that has been “anonymized” and then donated to the
community by TSMC: the WM-811K wafer map dataset [2]. The wafer
production line throughput is low compared to general purpose computer
vision applications, and the construction of the wafer maps is the result
of a process which also involves test equipment [3]. However, since the
machines are working 24/7, 365 days a year for continuous monitoring of the
production quality, we seek solutions that are both accurate and low power.
In addition to these constraints, and given the confidentiality of the data
processed, being able to perform on-device classification instead of sending
the data to a remote server is also of importance. To that end, we choose
to investigate the use of highly quantized artificial neural networks to be
implemented on small industry grade micro-controllers, possibly enhanced
with hardware accelerators on FPGA. After having defined in this section the
problem at hand, we organize this chapter as follows. Section 2.2.2 presents
past works related to it while section 2.2.3 details the requirements and
functional specifications of the system. Section 2.2.4 presents the method
we propose and some preliminary results. Finally, section 2.2.5 wraps-up the
chapter and presents possible extensions to this work.

2.2.2 Related Works

Recently, many authors have proposed different techniques for automatic
detection and classification of failure wafer patterns, either using Machine
Learning (ML) or Deep Learning (DL) techniques.
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On the one hand, we find some approaches where a feature extraction
is performed on wafer maps to obtain a reduced representation ready to be
analysed and classified. In this context, different authors have highlighted
the use of ML techniques, generally applied in computer vision. Some
of these techniques allow for example the feature extraction using the
Hough transform, the generation of probability distributions used to define
specific-faulty regions, or the use of k-nearest-neighbour classifiers to
distinguish faulty patterns. A key research implementing ML techniques is
presented in [2]. It introduces a new set of features which, requiring low
computation and storage, is used to obtain a reduced representation of wafer
maps, to identify wafer maps failure patterns and to support recovery of
similar failures in other wafer maps. The proposed approach applies support
vector machines as classifier, preserves the rotation-invariant attribute in
wafers maps and reduces the computational cost with respect to different
approaches carrying spatial analysis between features maps. This work is
considered as a reference because it is at the origin of the WM-811K dataset
used for the experiments presented in this chapter.

On the other hand, we find several approaches implementing DL
techniques, which have seen an exponential growth in the last years. For
example, Alawieh et al. [4] propose a wafer map classification using deep
selective learning and implement a reject technique where model refrain
from predicting class label when the miss-risk is high. This can usually
happen when during classification some wafers show default patterns that
have never been seen during training. Also, Convolutional Neural Networks
(CNN) have demonstrated great potential to recognize and classify patterns
without carrying manual feature extractions. Using convolution layers,
they can perform automatic feature extraction; using pooling layers they
can summarize the last extraction by reducing the features maps size;
and using fully-connected layers they can efficiently classify patterns into
well-separated categories. As described below, several studies have been
conducted to detect and classify wafer defect patterns using CNN. Kyeong
and Kim [5] address the problem of detecting mixed-type defect patterns, this
means to have different defect patterns combined in the same wafer. Authors
propose a single approach building individual CNN-based classification
models for each pattern and determining the final class by combining the
results of multiple individual models. Jang et al. [6] implement a one-vs-
one model that uses a CNN as base classifier. Their technique consists of
determining a weighted mean score from failure bit count wafer maps (grey-
scale images) and then, based on this score, they determine the presence
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or absence of failures. Failure detection is performed calculating the score
proximity in relation to a data group learned in a feature space. In principle
to address a high-quality classification of wafers maps using CNN, having a
set of examples containing a large quantity of labelled patterns is required.
These patterns are the key to fit the parameters in DNN before inference.
Sometimes, even having a large quantity of patterns is still not enough, but
it is also required to have as much as possible a balanced dataset. That is, a
set of examples where the proportion of wafer maps in each class is almost
the same. As it is difficult to achieve, domain expert engineers are required
for labelling data coming from the manufacturing process in the form of
wafer maps. As this process represents a significant cost, several authors
[7], [8], [9], [10], [11] have worked on different techniques to avoid the use
of unbalanced datasets and to automatically increase the sets of examples
reducing the intervention of experts.

Although many of the presented solutions achieve high performance,
none of them have been specifically designed to be implemented on small
embedded devices. We are interested to address this challenge by using
quantized neural networks, which in our knowledge have never been used
for classifying faulty wafer maps.

2.2.3 Target Platform Requirements

Based on these experiences and considering the increasing need to detect
and classify defects in an automatic, real-time and power-efficient way, we
define the requirements for an automatic wafer defect detection platform
targeting high-power efficiency and real-time inference. While this platform
should be generic enough to support different applications, it will primarily
target detection and classification of faulty wafer maps. We rely on the
requirements presented below to enable industrial scanning equipment to
efficiently address the aforementioned problem.

* Define a deep learning classification platform that can be programmed
and its hardware partially reconfigured: When we refer to deep learning,
we evoke the new programming paradigm where humans provide input
data and expected responses, and a layered system, better known as
DNN, processes inputs and stores a meaningful representation that can
be later used to perform tasks automatically, for example recognizing
a set of images. The stage where the system transforms input data
and stores a representation of it in form of parameters, also known as
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weights, is called learning. The appropriate selection of the weights
associated with each neural network layer is performed by first assigning
random values and computing a temporal prediction of the network
from a set of inputs, then comparing that prediction with respect to
the expected response (through a loss function), and using a back-
propagation algorithm (usually implemented by an optimizer) to adjust
the weights in the correct direction [12]. Once the system has learned
an enough representative input dataset, it can be used to perform
automatic classification tasks also called inference. For learning, we
will follow the approach in which the neural network parameters are
computed and refined off-line, before implementing a HW/SW model in
the industrial equipment via micro-controllers and small reconfigurable
devices.

* Design an efficient DNN model to be implemented in hardware: We
will focus on neural network models with small number of parameters
and on quantization techniques to increase power efficiency during
classification, without neglecting high-throughput. On modern high-
end front-end equipment, the throughput in terms of wafer per hour
is between 150 and 300. Assuming that the electrical characterization
and test equipment is dimensioned to work at that same throughput,
this means that the analysis must be performed in a 20 s to 40 s
time frame. It is thus neither useful nor economically sensible to
reach for throughputs like those required by general purpose video
processing.

* Use real images which undergo classical linear time pre-processing
before being fed to a DNN implemented by the classification platform:
We will use the WM-811K public dataset provided by the Multimedia
Information Retrieval (MIR) laboratory. It contains 811457 real wafer
maps collected from 46393 lots of real-world fabrication. The 2D images
provided in this dataset have different sizes and 172951 (~20%) of
these images were manually labelled by domain experts using nine
patterns (Figure 2.2.1): no-defects (85.2%), edge-ring (5.6%), edge-
local (3.0%), center (2.5%), local (2.1%), scratch (0.7%), random
(0.5%), donut (0.3%) or near-full (0.1%). As observed by different
authors, the challenge with this dataset is that it is unbalanced, then
image pre-processing and data augmentation will be required to improve
classification accuracy.
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2.2.4 HW/SW System and Methodology
2.2.4.1 Industrial HW/SW System for On-Device Inference

We propose a platform allowing the integration, in a reconfigurable device, of
a neural network model trained upstream with a set of reference wafer maps,
as well as the classification of new faulty wafers by means of a dedicated
HW/SW architecture.

The hardware architecture of the platform consists of two main boards
(Figure 2.2.2). One STM32MP1 board interfacing with the physical world
(i.e., the wafer production line), and one Zybo-Z7 board for the wafer
fault classification. The STM32MP1 is an industrial grade master board
including an ARM dual-core Cortex-A7 and an additional Cortex-M4, DDR
memory and a good set of peripherals, in particular a 1GBps Ethernet
chipset, USB device connectors and an HDMI output connector. The Zybo-
Z7 embeds the XC7Z020 SoC from Xilinx, featuring 667MHz dual-core
Cortex-A9 processor, 1GB DDR3L memory, a 1GBps controller as well as an
FPGA. Both boards communicate through a GBps Ethernet link, allowing the
STM32MP1 to send input image to the Zybo-Z7 taking care of the inference
and sending back the results through the Ethernet link. An inference cycle
thus consists of: (1) receive an image from the test equipment, (2) apply scale
and crop filters to get the image to the correct dimensions, (3) send it to the
Zybo-77, (4) make the inference on the Zybo-Z7 and (5) get back the results
to the STM32MP1. The Zybo-Z7 is the heart of the inference process. It
integrates a hardware implementation of a neural network, taking advantage
of the high parallelisation capabilities the FPGA offers. The network is
integrated with a message-based interface consisting of a pair of RX/TX
FIFOs connected to high-performance Scatter-Gather (S/G) DMA engine.
These FIFOs are used by the network to receive configuration weights and
inputs as well as send inference outputs. The DMA engine is used by the
software to efficiently exchange those data and control and status commands
to drive the neural network.

Figure 2.2.1 Example of classified wafer maps.
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Figure 2.2.3 The platform software architecture.

The software architecture of the platform is also composed of two
parts (Figure 2.2.3). The STM32MP1 runs a Linux operating system pre-
configured by ST tools. It includes an application accessing the file system to
send inputs to the Zybo-Z7 through the Ethernet link. It also configures the
neural network by sending the weights to the Zybo-Z7. The Zybo-Z7 runs
a minimal Linux operating system built using PetalLinux tools. It includes
a custom driver integrating the neural network in the Linux environment,
allowing user applications to control it. To do so, the driver provides a char
device interface in which applications can read and write into to control the
neural network. The driver implements those read and writes by driving the
S/G DMA engine included in the neural network interface.

With the neural network accessible by user applications, the main
application configures the Ethernet link with the STM32MP1. Once the
communication with the STM32MP1 is established, the application forwards
weights and inputs to the neural network and receives outputs from it.
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Figure 2.2.4 System design and optimization process using N2D2.

2.2.4.2 Neural Network Building and Training Using N2D2

Current research on deep neural networks extensively uses different
frameworks, such as PyTorch [13] and Tensorflow [14], which allow the
development of neural networks and ML algorithms. Some other frameworks,
such as Keras [15], QKeras [16] or Larq [17], are interfaces to these
frameworks. Unfortunately, once a network has been designed and trained,
there is a gap towards its optimized deployment in an embedded and hardware
constrained system. The recent development of libraries built to ease the
deployment and optimization of DNN, such as TensorRT [18] or TFLite
[14], reflects the rising trend of hardware integration requirements. The main
weakness of these libraries remains the limitation to certain target platforms
and the possible optimizations that can be applied, which are greatly linked
to proprietary solutions. To train and generate a first neural model, we use the
N2D2 deep learning framework [19], which reduces this gap by providing an
innovative optimization method to the system designer.

N2D2 is hardware agnostic while being able to directly target most
common computing architectures and parallel run-time software. As shown
in the high-level view of the system design process enabled by N2D2
(Figure 2.2.4), this framework integrates a generic database handling and data
processing dataflow.

The N2D2 learning core is close to the standard deep learning frameworks
with the support of typical layers, operators and learning rules. Its execution
on x86 and ARM processor is accelerated thanks to C++/OpenMP kernels
while execution on NVidia GPUs is supported thanks to cuDNN and custom
CUDA Kernels. Moreover, the N2D2 core also supports spikes simulations
modelling. The input model representation of the N2D2 framework can be
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made through an INI description file or thanks to the Open Neural Network
Exchange (ONNX) format [20], allows the user to load a pre-trained neural
network from another deep learning framework.

Among the key features of the N2D2 framework, the integrated
quantization module remains one promising technique to optimize a deep
learning model for a wide range of hardware accelerators. Quantization
refers to the process of reducing the number of bits that represent a
number, without performance degradation. In the context of deep learning,
the predominant numerical format used for research and for deployment
has so far been 32-bit floating point, or FP32. However, the desire for
reduced bandwidth and compute requirements of models has driven research
into using lower-precision numerical formats. It has been extensively
demonstrated that weights and activations can be represented using 8-bit
integers (or INT8) without incurring significant loss in accuracy. The use of
even lower bit-widths, such as 4/2/1-bits, is an active field of research that
has also shown great progress. The more obvious benefit from quantization is
significantly reduced bandwidth and storage. For instance, using INT8 for
weights and activations consumes 4x less overall bandwidth compared to
FP32. Additionally, integer compute is faster than floating point compute.
It is also much more area and energy efficient. Note that very aggressive
quantization can yield even more efficiency. If weights are binary{-1, 1}
[21], [22] or ternary{-1, O, 1} [23], [24], then convolution and fully-
connected layers can be computed with additions and subtractions only,
removing multiplications completely. A lot of techniques have been proposed
recently to quantize neural networks. These techniques can be classified
into two types: Post Training Quantization (PTQ), which quantizes both
weights and activations for faster inference, without requiring to re-train
the model; Quantization Aware Training (QAT), which models quantization
during training and can provide higher accuracies than post quantization
training schemes. Both techniques are integrated into N2D2. However, QAT
is currently the best technique to provide highest accuracies for heavily
quantized networks, with bit-widths as low as 4/2/1-bits for weights and/or
activations. N2D2 integrates both Learned Step Size Quantization (LSQ) [25]
and Scale-Adjusted Training (SAT) [26] [27] state-of-the art QAT algorithms,
the latter one being one of the most promising solutions, both in term of
implementation complexity, flexibility and accuracy. The quantization aware
training in N2D2 is performed by a full precision learning phase with weights
clamping; and quantization learning phase, with the same hyperparameters
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by using a transfer learning method from the previously clamped
weights.

We use N2D2 to build and train a first neural network model. Three
kinds of networks are tested, all based on convolutional layers, with various
complexity. First, a simplified AlexNet made of 3 convolutional layers with
MaxPooling, followed by 2 fully connected layers and a SoftMax activation
layer. Second, a simplified VGG with 5 convolutional blocks (made of 2 or
3 convolutional layers) of increasing size, with MaxPooling, followed by 2
fully connected layers and a SoftMax activation layer. Third, a MobileNet
V1, which uses depthwise separable convolutions in place of the standard
convolutions to provide lighter models. The version used here has 27 layers
(26 groups of ‘convolution + batch normalization’ and 1 fully connected +
softmax layers).

Before training, the images in the WM-811K dataset are homogenized.
They are rescaled to a common size. Sizes of 42x42 pixels and 64x64
pixels were tested. As mentioned above, the dataset is very unbalanced,
as the ‘no defect’ class has much more images than the others. We then
decided to limit the scope of the application to the first eight classes and
discard this last class, for a total of 17625 training images and 7894 test
images. We help the network converge to a correct solution, by applying
data augmentation (Random rotation and horizontal/vertical image flipping)
during the training phase. To decrease the memory usage, images are also
transformed to Grayscale and normalized (colour range moved from 0-255 to
0-1) before applying the data augmentation strategy.

After training, we observed that although the topology of the simplified
AlexNet is much simpler, it uses much more weights and biases than the
other networks for a total of 2,478,632 numbers to store. The performances
were not better, so this network was abandoned. The simplified VGG network
requires around 600,000 parameter storage (depending on the presence
of batch normalization layers) which is much lighter. In comparison, the
MobileNet V1 requires a little bit more with 823,752 parameters. The best
performances were obtained with the VGG network with 98.2% recognition
on the training set and 81.0% on the test set (1 hour and 38 minutes training
and 2000 training epochs). After applying post-training quantization (8-bits),
the performance on the test set remained at 80.4% (0.6% loss) for images size
of 42x42 pixels.
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2.2.4.3 Neural Network Export and FPGA Implementation Used
for Inference

The inference platform is implemented in hardware, targeting an FPGA based
platform (the Zybo-Z7 board in our proposed platform). The implementation
is performed using Vivado-HLS, Xilinx’s High-Level-Synthesis tool from
C++ programs. The neural network implementation process is divided in
two phases. First, a C++ export, which could be for example the reference
N2D2 export. This export is expected to provide an implementation in which
the structural parameters of the layers, e.g., loop boundaries, are passed as
template parameters. This allows heavy compile-time inlining, optimization
and loop unrolling. Second, the neural network FPGA implementation,
which consists of modifying the C++ implementation to make it fit for
HLS synthesis. Indeed, the C++ implementation does not target HLS due
to language and library limitations such as dynamic memory allocation,
printfs, file system access. In addition, a set of pragmas must be added to
guide the synthesis tool in order to get a properly optimized network. The
most important pragmas are array modifiers and loop unrolling directives.
Array modifiers (called array_map, array_partition and array_reshape in
Vivado-HLS) are used to optimize the structure of arrays by splitting them
in smaller arrays. It also allows to merge small words, for instance our 2-
bit wide weights, into bigger words allowing to fetch several small words
in the same cycle. Having efficiently structured arrays, in particular the one
storing weights in Block RAMs (BRAMs), allows to completely unroll some
loops as data contained in these arrays can be accessed in one clock cycle by
all the parallelized iterations. Unrolling loops is performed using the unroll
pragma. It requires reordering the nested loops in a way that will allow the
synthesis tool to properly unroll and take advantage of the array structures we
defined. Optimizing the usage of BRAM is key to make a network fit entirely
in an FPGA, even with low parallelization settings, to avoid time and power
consuming external memory accesses.

We report the resource usage for a preliminary experiment on a fully-
connected input layer for 42x42 wafer maps (Figure 2.2.5). These results
show the evolution of resource usage against the bit-size of weights. The
important point enlighten by these experiments is that lowering the size of
weight is key to make a network fit inside a given FPGA. Of course, reducing
the weight size leads to a loss of accuracy, though this loss can be mitigated
by increasing the number of neurons in the network. For instance, reducing
the weight size on a 100-neuron network with 8-bit weights to a 2-bit weights
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network allows to increase the number of neurons to 400 while occupying the
same amount of BRAMs (Figure 2.2.6).

2.2.5 Conclusion

Process control in the semiconductor industry is a major issue. In this article,
we present the approach we propose, that is suited to the low throughput of the
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wafer production line. It is an Al hardware/software based solution running
on a small industry grade device which aims at analysing wafer maps in real-
time. We report preliminary experiments showing first that highly quantized
neural networks, when trained appropriately, can reach high accuracy, and
second, that the hardware implementation of these networks can be very
resource efficient.

The next step is to smooth the integration between the tools and generalize
hardware support to larger classes of network layers.
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