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Abstract

This article outlines the construction of universal, user-friendly smart robot
system for manipulation in a dynamic environment through AI-based vision
system which incorporates processing on the edge. To successfully perform
complex tasks in changing conditions, robots require both intelligence
for adaptive decision-making and the ability to accurately perceive the
environment and interface with it. The proposed system is built in a way
that maximizes the modularity of the system. And thus, improves the ease
at which the system can be modified to other specific goals after it has
been operationalized. In this work, these characteristics are achieved by the
use of synthetically generated data and Robot Operating System (ROS) as
a middleware software. The first results prove the feasibility of training
object detection networks on synthetically generated data sets. And also a
combination of a 3D camera and industrial robot provides a convenient way
for adding new objects to the database.

Keywords: edge computing, artificial intelligence, smart robot, smart
manufacturing, synthetic data generation, robot operating system, computer
vision, object detection, verification and validation.
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3.2.1 Introduction and Background

Over the last decades, robots are increasingly used to off-load the physical
labour of workers and to perform tasks more efficiently and accurately.
This has resulted in a significant increase in productivity and quality of the
performed tasks and manufactured products [1]. At first, robots were mainly
used to take over the repetitive tasks of the workers. Today AI-based robotic
systems are becoming an increasingly important part of manufacturing
processes [2], [3], but industrial robots lack abilities to tackle the dynamic
environment of today’s manufacturing.

Manufacturing processes are equipped with a wide variety of sensors
and cameras for quality control, safety fields, object detection in the 2D
environment etc. Most of these processes are manually programmed for one
specific task with only little tolerance for changes or adaption to different
environments. Industrial robots in these systems are capable to manipulate
with objects very precisely and repeat tasks with high accuracy. However,
traditionally working in dynamic environments (especially with randomly
distributed objects) still requires either human resources or dedicated sorting
hardware. The latter one is usually spacious, expensive, and costly/time
consuming to adjust if product assortment changes.

Changes in the marketplace translate into uncertainty for the
manufacturing and end user mobility services. The way for business to
succeed is by being flexible, smart, and effective in the manufacturing process
[4]. However today many factories are still effectively designed for single
purpose, that means there is little or no room for flexibility in terms of
product design changes. In this article we propose a universal, user-friendly,
and modular system that enables robots to “see” and work with randomly
dropped objects that are overlapping with each other in a pile.

3.2.2 Challenges of Enabling Robots to “See”

The attention to picking and placing of arbitrarily placed objects that are
overlapping each other in a pile has increased in the last years [4], especially
in the context of Industry 4.0 and smart manufacturing [5]. The described
problem is not only challenging to solve but also to be adapted and deployed
to different manufacturing sectors.

3.2.2.1 Modularity

Different industries or manufacturing sectors have diverse conditions
especially in the context of vision, such as lightning conditions,
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environmental elements, and most importantly varied object types. The
challenge within modularity includes efficient adaption to changes in the
environment by respective component change such that a replacement of one
component has no (or only minimal) impact on other components within the
system.

3.2.2.2 Operability

Even though the modularity is a critical characteristic of a universal and
flexible system, the operability plays an important role as well. Whereas
the challenge with respect to operability includes user-friendliness and easy
adaptability to other specified goals should be doable/manageable without
any deep specific knowledge of the underlying target technology.

3.2.2.3 Computer Vision Algorithms

Two computer vision problems - object detection and instance segmentation
- are sufficient to automate many tasks of an industrial robot. The detection
indicates where in the camera’s frame an object is located, and which class
does this object belong to. Whereas segmentation determines which class
does every pixel of an image belongs to. Instance segmentation is a type of
segmentation that differentiates among pixels belonging to different instances
of the same class. With this information, one can acquire a visible shape of
a specific object and use it to determine an object’s pose, which in turn is
handy for picking up and manipulating the object. However, detection and
segmentation are challenging tasks in the case of randomly piled objects.
The objects are often only partially visible, and when the pile consists of
similar or even the same object types, the similar features that could be
used to detect the unobstructed objects are scattered all over the pile [6].
Similarly, an instance segmentation algorithm might struggle to distinguish
similar and partially overlapping objects. Thus, the AI-based methods depend
on annotated training data, where each new object requires numerous new
training examples of pile images and labelling of such data is a tedious
and very time-consuming manual labour, especially in the case of image
segmentation tasks.

3.2.2.4 Validation of Algorithms

Since the advent of deep AI algorithms not only the performance but
also the complexity of the respective algorithms has drastically increased.
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The increased complexity of these algorithms in turn poses a unique
set of challenges to both system designers and system validators. Since
laboratory-based testing and user validation often forms a very time-costly
and expensive task, simulation-based testing and user validation are often a
preferred method in this aspect to (a) shorten development cycle times and
(b) to reach a higher level of system maturity before testing and validating
the system under laboratory- and real-world conditions.

Simulation- as well as laboratory testing and validation methods in
general face both, a significant state space explosion problem as well as a
gap to the real-world environment. For vision-based systems, this may arise
from many aspects, for instance light conditions or dirty or distorted lenses
or sensors etc. It is therefore crucial to system testers and validators to design
their experiments not only as close as possible to the real-world conditions,
but they must also be aware about the coverage of representative corner
conditions and border cases which might affect the system in the field. Only
in this way experiments can be designed to address many issues as possible
beforehand, and to report valuable feedback to the systems designers during
development cycles.

3.2.3 Requirements

To successfully perform complex tasks in changing conditions, robots require
both intelligence for adaptive decision-making and the ability to accurately
perceive the environment and interface with it. Enabling robots to “see”
in terms of ability to work with objects that are different and unstructured
in piles where industrial robot movements cannot be pre-programmed can
support many workers in challenging working environments. However, this
ability requires specifically designed solutions which addresses the stated
challenges.

These needs introduce a sufficient degree of modularity to the system as a
strong requirement to keep a high operability in both changing environments
but also when changing system components: goal is to keep both the effort as
well as cost as low as possible when adapting the system to e.g. other types of
objects, changed environmental lighting conditions, but also when adapting
the system to use other hardware components like other types of sensors,
(which might feature different characteristics in terms of resolution, accuracy
and even sensor failures like lens distortions, which might have to be handled
differently for different sensors). To alleviate the training data acquisition
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process and simplify the use of computer vision methods in industry the
solutions require more efficient data preparation.

The extent to which a system can be decomposed into independent
interacting modules that can be separately understood is beneficial not only
with respect to Verification and Validation (V&V) efforts. Thus, to reduce
complexity, independent and interchangeable system component-modules
have to be defined that can be separately implemented, tested and validated
to achieve a specific functionality. I.e. when the robot should be retrained to
handle different kinds of objects under different environmental conditions,
it should not be required to redesign or revalidate the perception system
itself; when the perception system is being exchanged for another one, it
should not be required to redesign and revalidate the module handling the user
interaction or the module performing high level decision making. However,
in such a case it is still important to validate the proper integration of the new
module to provide assurance about the system as a whole.

The design of representative experiments featuring a high coverage of
potential issues arising in the field requires a comprehensive standardization
of the experiments with simultaneous preservation of degrees of freedom for
adapting the experiments to modified use case requirements as well as to
similar application domains. Thus, with respect to the proposed validation
framework, we aim at accompanying the AI algorithm design- and training
phase by providing a toolbox that allows for efficiently creating standardized
representative experiments while being easy to handle and by being as
intuitive as possible to the user.

Being based on existing, publicly available open source software building
blocks, the validation framework should form a software abstraction layer
easing the handling of a synthetic image generator to setup and conduct a
variety of simulation scenarios (including physics simulation), the rendering
of realistic image scenes as well as the generation of required ground truth
annotation information (i.e. segmentation- and depth images/information)
without having to directly deal with the complexity of the different underlying
lower level software modules.

Furthermore, the toolbox shall come with a set of helper methods trying
to ease (a) the generation of synthetic experiments (i.e. generated benchmark
datasets), (b) the evaluation of the system-under-test’s performance on
generated datasets, while supporting the usage of hardware accelerators (i.e.
GPUs) and to allow for parallel data processing using remote- and distributed
computing. In addition, by using generic interface types, the framework shall
be extendable with little effort to also incorporate other software modules
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later on, like, for instance style transform networks to further decrease
the simulation-reality gap or to also allow for applying adversarial dataset
generation techniques.

3.2.4 Proposed Solution

The architecture of the proposed solution, Figure 3.2.1, is built in such
a way that maximizes the modularity of the system and improves the
ease at which the system can be modified to other specific goals after it
has been operationalized. The experimental system is intended to be fully
functional by the use of at least two 3D cameras and respective edge
devices in a combination with an industrial robot. Moreover, the designed
architecture does not preclude adding an additional camera-edge-robot blocks
to supplement a pick and place process in scenarios when different objects
are mixed in one pile and requires different grasping strategies. In following
the sections hardware and software components will be described in more
detail.

Figure 3.2.1 Architecture of the proposed solution.
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3.2.4.1 Hardware and Interface Components

3.2.4.1.1 Robot Interface
Several interfaces are available to communicate with a robot [7]. The robot
operating system (ROS) [8] is a popular abstraction layer to interface
with a robot, and we propose that ROS is used for our proof-of-concept
demonstrator. Using ROS for interfacing allows easier re-use for other robot
types. A limitation of ROS is that no hard real-time constraints are supported.
This will be addressed in ROS-2, a major rewrite of the ROS code. For a
proof-of-concept, both ROS and ROS-2 are valid options, and over time it
is expected that ROS-2 will become the preferred option for commercial
products. ROS is supported for different operating systems – with Ubuntu
Linux the main supported operating system.

3.2.4.1.2 Industrial Robot
Using ROS as an abstraction layer, a wide range of devices can be supported.
For our proof-of-concept demonstrator, a Universal Robots UR5, 6 DOF
(degreed-of-freedom) robotic arm is considered as a hardware platform for
a smart robot. The maximum payload of UR5 can reach up to 5kg and the
default reach is 850mm. Thus, the reach of the robot can be improved by
gripper modifications. The repeatability of the UR5 robot is +/- 0.1mm.

3.2.4.1.3 3D Cameras
To enable robots to “see” we propose the usage of at least 2 3D cameras.
One camera is statically mounted above the robot, perceives the environment
around it and locates the region of the object of interest. The second camera
is mounted on the robot as gripper modification for closer and more precise
data acquisition from the object of interest. In this work, we have evaluated
two different cameras for this task: a Zivid One M stereo camera [9] and an
Intel RealSense D415 stereo camera [10]. The Zivid One M stereo camera
uses structured light as 3D technology, features a resolution of 1920x1200
and a common point precision of 60 µm and operates at up to 12 frames per
second. The main parameters of the D415 stereo camera are a resolution of
1280x720 for depth images and a frame rate of up to 90fps.

3.2.4.1.4 Deep Edge Device
The data acquired from the 3D cameras is then processed on deep edge
devices. The evaluation board ZCU102 [11] was utilized for prototyping and
verification purposes and to define the necessary parameters and interfaces
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for the carrier board. The carrier board is necessary for the “brains” of the
edge processing unit (image and ML algorithm – System-on-a-Module). In
essence, SoM is a bare-minimum board with all the necessary peripherals
(e.g., RAM, power supplies, etc.) forming a stand-alone system. The SoM is
connected to a carrier board, which has the necessary peripheral devices and
connections for the use-case. By utilizing a SoM, it is possible to reuse the
“brains” of the operation in different systems or to easily upgrade them in
case there is an increased demand for performance. Therefore, the computing
unit and its periphery is separated and can be upgraded independently. In our
use case, the aim is to perform image and ML algorithm processing at the
edge, therefore the developed carrier boards dimensions must be minimized.
To interface with the stereo camera and other USB peripherals, an USB3 hub
has been integrated into the carrier board. To forward the processed data to
the robot control unit, the carrier board has gigabit ethernet connectivity to
ensure a low latency connection with the control unit.

3.2.4.2 Software Components

3.2.4.2.1 Computer Vision Algorithms
The perception software module consists of an image and depth-map
processing AI that segments images, detects pickable objects, and determines
the orientation of the detected object. The detection is accomplished by a
YOLO deep neural network architecture [12] and the segmentation is done
by a Mask R CNN instance segmentation model [13]. To detect objects using
YOLO the data from the camera must be pre-processed. The main step of
pre-processing is object scaling regarding to the trained model, so that the
object proportions are the same. YOLO detects all the objects in one frame on
which the model has been trained on and then selects the best pickable object
by the highest confidence rating. Additionally, the object’s pick position is
determined in the same frame and a name/ID is defined for the object. Thus,
not all detected objects can potentially be picked by the robot arm, as the
object could be too close to the side of the container, or the approach angle
is too high. Therefore, different parameters are applied, and initial collision
checking is done to decrease the pick&place cycle time and increase the
picking success rate.

3.2.4.2.2 Synthetic Data Generation
Data preparation for machine-learning tasks plays an important role and
according to Cognilytica [14] on average more than 80% of time spent on AI



3.2.4 Proposed Solution 213

projects are based on the collection and the processing of the data. The data
collection techniques can be distinguished in several methods. The reviewed
techniques published in [15] varies for different use cases. For example, in
applications such as every-day object detection or machine translation there
are publicly available data sets that could be reused and adapted for one’s
needs for model training [16]. In the context of smart factories, the situation
is different, where product variety is changing more quickly, and algorithms
must be repeatedly trained on new data sets. In these cases, re-usability of
existing data sets is fairly low and manual labeling methods cannot meet
the requirements of agile production as it is time-consuming, expensive and
usually requires expert knowledge of the specific field. The most promising
technique in terms of flexibility and comparatively low cost is synthetic
data generation where time consumption is reduced depending on processing
power and how optimized the generation algorithms are implemented.

Our proposed data generator itself consists of a python library
encapsulating the 3D render engine specific commands for setting up and
rendering the synthetic images and forms an easy-to-use abstraction layer
supporting an application-specific set of image generation parameters. Since
a vast number of synthetic images will be generated, the data generator
library further provides hardware accelerator support (i.e. GPUs) wherever
applicable as well as support for remote deployment and execution to ease
massively parallel remote data generation. The current development version
is implemented using Python 3.7 [17] and interfaces the open-source 3D
render engine Blenderr [18] v2.92.

3.2.4.2.3 Object 3D Reconstruction
The synthetic data generation framework is intended to be used with object
3D models, whereas in some cases the 3D models of the objects of interest
are not available. For such situations object scanning software tools using
depth cameras are being developed. The scanning software uses a camera
mounted on the robot arm, capturing data from different viewpoints, to gather
data from all sides of the object. The point clouds gathered from different
viewpoints are aligned using the camera position information from the robot
system. The alignment is fine-tuned by estimating a transformation for point
to plane distance. After alignment, a 3D mesh is generated representing the
object.

3.2.4.2.4 Validation Framework
The purpose of the validation framework is to automate the standardized
procedure of performance evaluation (i.e., systematically carry out a vast
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number of deterministic test inferences using the AI algorithm under test)
on the generated datasets and to perform corresponding bookkeeping about
the achieved object detection results. The results further serve as valuable
information for the designers of the AI-based object detection algorithm
during repeatedly improved training- and testing iteration cycles.

The validation framework is being implemented in Python 3.7 featuring
a distributed master-worker architecture. It interfaces the synthetic data
generator and the AI algorithm under test, a bookkeeping module for storing
the validation results and an easily expandable plug-in system for applying
specific analytics to the device under test.

3.2.4.2.5 Robot Control
After the object’s pick position and orientation is determined a collision-free
trajectory is generated, including different pose generation for approaching
any detected object and for successfully picking it. A time optimal trajectory
generation is used for the generation of trajectories with smooth and
continuous velocity profiles. Moreover, several common ROS packages are
used for ensuring the modularity with different sensor types and robots. ROS-
Industrial is used to extend the advanced capabilities of ROS software to
industrial relevant hardware and applications. For example, for interfacing
with Universal Robot UR5 driver enabling ROS operation of UR robots is
used. Moreover, the MoveIt! [19] motion planning framework that runs on top
of ROS is utilized for robot arm navigation, motion and trajectory planning,
robot interaction etc.

3.2.4.3 Hardware/Software Partitioning

The main functions of the proposed solution - object detection and pose
estimation - will be performed on the deep edge device. Moreover, the pre-
processing will be done using an application processing unit APU, but neural
network models will be deployed on DPU. Furthermore, the object pose, and
type will be sent to the control unit for trajectory generation to pick up the
detected object. An additional application server will be used for application
interface/GUI, training and validation supervision, edge configurations and
implementation of the trained AI model and other applications. The object 3D
reconstruction utilizes an industrial robot in a combination with stereo camera
to precisely acquire data of the object of interest. The detailed HW/SW
partitioning can be seen in Figure 3.2.2.
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Figure 3.2.2 Hardware/Software partitioning.

3.2.5 Demonstrator Setup and Initial Results

Firstly, the following dataset is generated: for every individual (independent)
scene, we fill an initially empty box with 50 randomly placed objects
by making use of Blender’s physics simulation engine to achieve realistic
positioning and orientation. We use textures and Blender’s principled
BSDF shader nodes to achieve realistic renderings of the scenes including
reflections. After filling the box with the objects, we create a series of (data
dependent) renderings both varying 4 different light power levels and the
orientation of the camera, which orbits around the box and renders the scene
from 16 different angles, which can be seen in Figure 3.2.3. For every camera
orientation, we also generate a depth image and the segmentation images
of the individual objects (Figure 3.2.6) as seen by the camera and labelled
by the object ID. We further generate an annotation file for every camera
perspective which contains the individual object’s orientation and rotation in
camera coordinates together with the object’s visibility percentage.

First results of a successful implementation on EDGE device of the
trained YOLO model on synthetically generated data (Table 3.2.1) is achieved
by using only one object type, where the model has been trained to detect
only fully visible objects that are not obstructed by other objects. The test
data consists of real 300 images.
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Figure 3.2.3 Renderings with different light power levels and camera orientations.

Table 3.2.1 First object detection results, where the model has been trained on syntheticaly
generated data.

mAP@0.90 mAP@0.75 mAP@0.50 Synthetic data set Best result
Total Augmented (steps)

44.99 % 94.35 % 96.73 % 4000 16000 6400

Accordingly, the whole workflow of the system has been tested, as it
can be seen in Figure 3.2.4, where the AI is used to analyse the data of the
Intel RealSense camera, which incorporates processing on the edge (FPGA
based SoC). Currently the object detection is done on the edge device and
then the further processing such as: object segmentation, pose estimation and
communication with the robot is done separately on another processing unit
(application server).

Figure 3.2.4 Object detection and pick and place operation.
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Figure 3.2.5 Setup for object 3D reconstruction.

Furthermore, the first results on adding new objects to the scene have
been also achieved. The Zivid 3D camera mounted on the robot arm is
utilized to reconstruct the 3D model of the object of interest (marked in red in
Figure 3.2.5). Depending on the dimensions of the object, the robot moves
in a certain distance and angle around the object to precisely acquire a point
cloud and generate a 3D model.

The reconstructed 3D model is then added to the synthetic data generation
software by mixing different kind of object types in a pile. The next version
of the dataset will use 2 different 3D models of objects for filling the box,
where half of the objects are matt white plastic bottles, and the other half are
shiny aluminium metal cans Figure 3.2.6.
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Figure 3.2.6 Scene including the plastic bottle- and the reconstructed metal can 3D models
(middle) together with the and corresponding depth image (left) and segmentation masks
(right).

3.2.6 Conclusion and Future Work

The proposed system consists of several elements that tackles the challenges
of enabling robots to “see”. The first results prove the feasibility of the
proposed system and form the basis for further developments within the
AI4DI project. The proposed hardware and software components leverage
the modularity, operability, and the functional correctness of the system. Even
though the results of using only synthetic data for training AI-based computer
vision algorithms are promising, different combinations of synthetic and
real training data sets will be explored as well. Furthermore, future work
will include improvements of the object detection algorithms and continued
improvements on the used pose-estimation methods. In scenarios where
various objects are mixed in one pile different grasping strategies could
be required, a case for which multi-robot collaborations methods are being
explored and will be implemented during the project.

With respect to the synthetical data generation framework, in this
project we are developing a set of open-source software building blocks
to automatically generate a large amount of photorealistic training- and
validation data for our robotic bin picking use case. The dataset images
are fully annotated with position- and rotation information, including depth
images, a labelled segmentation mask as well as a visibility score for every
object visible in the scene. We believe that our set of software building
blocks can be easily adapted or extended and allow for a rapid creation of
similar datasets also for other industrial applications. The datasets created
during this project will finally be made publicly available on the project
website.
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