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Abstract

The article presents the proof of concept of a novel sensor system for
robotic HMI applications, mimicking the human sense of touch. An artificial
sensitive skin, consisting of a robust and simple part of the sensing hardware
based on electrical TDR, is mounted on the robot. In combination with
adaptive Al algorithms, it enables for localisation of touch events on the
sensor surface as well as determination of the touch-force magnitudes. Sensor
data, obtained from a robotised test stand, are utilised to train and validate
regressive DNNs for touch position recognition and classification DNNs for
discrete force level classification. The results demonstrate that a high level of
accuracy can be obtained, but some additional work is needed to reduce the
gap between training and validation accuracy.
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3.4.1 Introduction and Background

Robot-based processes have been indispensable in many branches of industry
for a long time. In addition to the typical application in autonomous
production lines, an increasing trend to use robot co-workers in interaction
with humans is currently recognizable. The robot assistance aims at relieving
the strain on physically strenuous, repetitive or particularly precise work
steps, enabling a significant improvement of working conditions, accelerating
of workflows, and enhancing the product quality.

While the kinematic, dynamic, and performance characteristics of today’s
robots are suitable for supporting a wide range of human activities, the biggest
challenge remains an appropriate control of the robots. Working hand in
hand between a person and a robot requires a high degree of compatibility
not only in terms of motor skills, but also in terms of communication
capabilities. This work addresses the communication-related aspect of the
human-machine interaction (HMI). It presents some ideas and development
steps of an artificial sensitive skin that — in combination with suitable Al
algorithms — enables a kind of tactile sense for robots. The goal is, on the
one hand, to provide the interacting human with a communication channel
for issuing commands through simple touches. On the other hand, the robot
should be able to recognize its environment and react accordingly, e.g. stop
in case of a collision.

3.4.2 State of the Art

Several projects use sensor systems based on the well-known capacitive
measurement principle to detect the approach and contact between humans
and objects with spatial resolution [1]. Furthermore, optical systems based
on Bragg grating sensors [2] or on the measurement of electrical resistance
changes [3] are often used to fulfill the same function. New sensors are
under development that originate from the field of elastic circuits. Such
sensors consist of multilayer micro channels in an elastomer matrix, which
is filled with a conductive liquid to detect multi-axial strains and contact
pressures [4]. Other scientific projects are analyzing the robot cell by multiple
high-resolution cameras that capture images from different directions and
continually create a three-dimensional representation of the scene [5]. Recent
advances in environmental modeling and navigation are in many ways
connected to the developments of high-precision laser or ultrasound scanning
systems [6], [7]. Such scanners are based on the time-of-flight principle, in
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which a transmitted light or sound pulse is reflected by an obstacle and the
echo is detected by the receiver.

Identification of user interactions and associated intentions is an
important task that is solved by interpreting raw sensor signals. In the field of
robot HMI, solutions for collision detection based on signals from joint force
sensors of smaller robots are known. The used algorithms range from analytic
or empirical approaches to the use of Al methods such as artificial neural
networks (ANN) and deep learning training algorithms [8], often referred
to as machine learning (ML). The goal is to detect collision events with
relatively low forces under constant presence of variable process forces. In
this context, the proposed large area touch sensor represents an input device
that outputs signals containing an implicit information about the contact
position and force. In literature, similar applications are mentioned where Al
methods are used for information extraction from sensor signals. An example
is the use of ANNS to detect touch position and force in multi-channel piezo-
based touch panels with intrinsic channel crosstalk [9]. Other works focus on
Al-based identification of more abstract features of the HMI with the goal of
implementing a running user authentication [10].

3.4.3 Problem Definition

High development and integration costs of the above mentioned sensor
systems, often coupled with inherent drawbacks such as dead zones
(laser scanning or ultrasonic systems) still prevent the widespread use
of sophisticated HMI concepts. Thus, the presented work addresses the
development of a touch sensor based on electrical time domain reflectometry
(TDR). TDR is a well-established measurement method that enables a
spatially resolved measurement of the electrical properties of a transmission
line based on propagation times and reflection characteristics of electrical
signals fed in at the beginning of the line [11]. The underlying idea for the
proposed touch sensor principle arises from the observation that physical
deformations of an elastic transmission line can cause significant local
changes of its electrical impedance that are well-measurable by means of
TDR. Such a solution promises several important advantages compared to
conventional touch sensor principles. A single, standard shielded electrical
connection is sufficient for interrogation of the sensor signal. The sensor
structure is simple and inexpensive to manufacture, and it shows high
mechanical robustness and electromagnetic compatibility, which is especially
important under harsh industrial conditions.
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The development of a functioning touch sensor according to the outlined
principle comprises two main tasks. The first task focuses on the elaboration
of an elastically compressible patch sensor with suitably designed and
distributed transmission lines. The distribution of the lines and the elastic
properties of the entire sensor structure should allow deformations related to
the touch force over the entire range of expected HMI forces. Moreover, the
deformations should be reliably detectable in the TDR signal, enabling the
identification of both touch position and touch force.

The second task concerns the reconstruction of touch positions and
forces from the TDR signals. The periodically triggered TDR measurement
provides a vector of discrete values describing the impedance profile along
the electromagnetic (EM) waveguide at each measurement. Because of the
complex path of the waveguide, even simple contacts can produce multiple
deformations. Due to the complexity of the wave phenomena and partly
unknown system parameters, the determination of an empirical or analytical
inverse model that converts the TDR vectors into contact positions and forces
would be very challenging. As a possible solution, an Al based approach is
developed, which achieves the preprocessing of TDR vectors by means of
established signal analysis methods and an identification using ANNSs.

3.4.4 Concepts and Methods

Figure 3.4.1 shows a generic application scenario of the focused touch sensor,
where it represents a component of the robot’s control loop. The combination
of signal processing algorithms with an Al-based recognition of touch events
and collisions enables a flexible and application-adapted behavior of the robot
when interacting with humans.

The structure-installed touch sensor is a purely passive part of the
system containing the compressible transmission lines. Once excited by
the radio frequency (RF) generator, it responses with EM wave reflections
that are analog-digital converted by the RF digitizer and carry information
sufficient for:

* Detection of touches and collisions,
* Identification of the touch force magnitudes,
* Geometric localization of touch points on the sensor surface.

Achieving of these functionalities depends on the information content of
the output signals, which in turn results from mechanical and geometrical
properties of the sensor. The required elastic, electrical and dielectric
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Figure 3.4.1 Overview of the HMI principle: Basic components of the sensing, computing
and control of touch events.

properties of the constitutive materials as well as the layout of the
transmission lines are determined in an iterative, model-based process. The
developed multi-physical model features a time-domain simulation of TDR
signals that takes into account the characteristics of the RF electronic
modules.

The Al-based signal analysis allows the above-mentioned detection and
localization of touch events as well as determination of the touch force
magnitude. The applied ML concepts assume the supervised training of ANN
based on labelled, experimentally acquired signal sequences.

3.4.5 Proof of Concept of the Novel Sensor System

In this section, the implementation and validation of the sensor system
functions described in the chapter 4 is shown step by step.

3.4.5.1 Experimental Acquisition of Training Data

The acquisition of training data is typically an important challenge in the
implementation of Al-based applications. For this purpose, an experimental
approach has been designed to capture TDR vectors that result from artificial
touch events occurring at different locations and force levels. A gantry robot,
adapted for this purpose, automatically carries out test series in which a
custom end-effector equipped with a soft, finger-like tip touches the sensor
surface in a force-controlled manner. A specially developed software runs
defined touch sequences whilst controlling the robot itself, triggering the
TDR device, and storing the TDR data together with labels identifying the
touch coordinates and forces as ground truth for the later learning stage.
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The stored raw signal sequences are preprocessed (averaging and
filtering) in order to reduce the noise content. A further pre-processing step is
a resampling of the averaged and filtered TDR vectors in order to reduce the
data dimensionality. The processed experimental data become training data
by labeling them using the information about touch coordinates and applied
forces. In the investigations carried out so far, different labeling schemes were
applied, which enable the training of both, regressive deep neural networks
(DNN) for continuous touch positions, and classification DNNs for discrete
force levels.

The presented approach allows the acquisition of large experimental data
sets, which are needed to obtain high quality training data. It would be
impossible to get an appropriate amount of data by a manual approach. A
further advantage is the high and reproducible precision of the generated
touch events in terms of contact coordinates and forces.

3.4.5.2 Training Procedure

In the proof-of-concept phase, a TensorFlow-based training procedure is used
on a data set generated from a thin and elastic surface sensor applied to a
flat metallic component. The data set consists of 6380 TDR sequences, each
containing 1000 values known as data set features and was labelled by six
labels (ON, 5N, 6 N, 7 N, 8 N, 9 N) for the force identification task and two
labels (x and y coordinates values) for the position identification task.

Before model training, the data was normalized, so that a distribution
with a mean of zero and a standard deviation of one results. Then the data
set is divided into three parts with 70% training, 15% validation, and 15%
testing data, respectively. Once the data set is divided, a DNN model is
trained to identify touch force and position. For the touch force identification
task, two hidden layers are used with Relu [12] as an activation function.
Furthermore, the Softmax [13] function is used in the output layer with the
categorical-cross entropy-based loss function. The first hidden layer contains
128 neurons, and the second hidden layer contains 64 neurons. The network
weights and biases are updated using stochastic gradient descent (SGD) [14]
based backpropagation algorithm.

Position identification is a regression task due to the continuous nature of
x and y coordinate values. Here, two hidden layers were used with Relu as
an activation function. The two hidden layers contain 128 and 64 neurons,
respectively. Moreover, in the output layer linear activation was used to
predict the x and y coordinate values and the mean absolute error (MAE) [15]
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is used for loss calculation. Here, a SGD based backpropagation algorithm is
used for biases and weight optimization of the network also.

Due to intensive investigations in regard to different network architectures
using different numbers of hidden layers and various numbers of neurons, the
architectures described above have found to be appropriate to predict force as
well as the position of occurring touch events.

The presented approach involves a single training process that bases on all
available training data. Further development steps should include procedures
for a continuous retraining and validation based on consecutively acquired
user feedback, leading to the improvement of the sensor functionalities.

3.4.6 Results

Selected results of the force and position prediction models acting as a proof
of concept are shown in Figure 3.4.2. There the results for force prediction,
especially the model accuracy [16] during the training procedure is presented
(Figure 3.4.2a). The accuracy is equal to the fraction of correctly predicted
instances.

Using the mentioned approaches for force and position determination, an
overall accuracy of 99.7% for training and 83.9% for validation are obtained.
The considerable gap between training and validation accuracy indicates
slight overfitting [17], which may be critical in a real-time human-machine
collaboration application. Currently, experiments using dropout layers, batch
normalization and the use of other deep learning architectures (temporal CNN
[18], LSTM [19]) are under consideration in order to reduce the gap between
training and validation accuracy.
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Figure 3.4.2  Network performance during the training: a) accuracy of the force
identification and b) loss of the position identification.
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Results for position identification are shown in (Figure 3.4.2b), where the
MAE loss is plotted as a function of the training epoch. This graph is used as
evaluation criteria rather than accuracy [16], because the discrete comparison
between actual and predicted coordinate (x, y) values are not possible. It
demonstrates that a significant decrease in both training and validation loss
is achieved between 1 and 50 epochs. At higher training epochs, there is
no significant decrease in validation loss, whereas training loss still show a
significant decrease. The final difference in loss between actual and predicted
validation cases is approximately 10.33 mm, which could be reduced by
predicting the region rather than the specific coordinate position, which is
currently under investigation.

3.4.7 Conclusions

The contribution reports on the concept, methods and early results of a large-
area touch sensor for robotic HMI applications. A robust and simple part
of the sensing hardware mounted on the robot enables in combination with
adaptive Al algorithms the implementation of an artificial sensitive skin that
mimics the human sense of touch. The results presented provide proof of
concept of the novel sensor system through a basic training and validation
of the touch position and force detection capability. This functionality can be
extended depending on the application — for example by means of incremental
learning — enabling a new quality of communication with collaborating
robots.
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