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Abstract

In this article, a soybean process optimisation solution using real-time
artificial intelligence of things (RT-AIoT) technology at the edge is presented.
Image classification, object detection and recognition are machine vision
techniques implemented into industrial internet of things (IIoT) devices to
determine variations in the morphological features in soybeans. Evaluating
soybean features, such as moisture and temperature combined with other
measurements, such as colour, size, shape, and texture, can improve the
utilisation of the raw material and the quality of the derived products,
thus reducing energy consumption. Implementing intelligent vision locally
on IIoT edge devices solves several issues faced by deploying it to the
cloud and brings further challenges posed by deep learning on resource-
constrained edge devices. Most deep neural networks are too complex to
be created and trained on most nowadays microcontrollers, but if optimised
in terms of memory, processing, and power capabilities, they can run on
them. With multi-image sensors, and IIoT devices under evaluation, the
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proposed production optimisation system is interfaced with the existing
industrial SCADA system, and analyses the IIoT sensor data at different edge
computing granularity levels. With the preliminary findings and results, we
show that the RT-AIoT, including machine vision technology, is now possible
on all micro, deep and meta edge levels with the advent of AI.

Keywords: production optimisation, artificial intelligence, smart sensors
systems, edge computing, industrial internet of things, industrial internet
of intelligent things, soybeans manufacturing, machine vision, machine
learning, deep learning, SCADA, PLC, real-time artificial intelligence of
things (RT-AIoT).

4.4.1 Introduction

The digitising industry brings about the integration of the physical and
digital systems of the production environments. It allows the collection of
vast amounts of information using supervised control and data acquisition
(SCADA) systems comprising programmable logic controllers (PLC),
sensors/actuators and industrial internet of things (IIoT) devices [1][2]. These
devices are connected to different equipment located in various production
facilities, measure and monitor several parameters and process the data in
on-premises servers and the cloud. The new technologies integrate people,
machines, and products, enabling faster and more targeted information
exchange. The information insights and analytics are increasing in value by
implementing artificial intelligence (AI) techniques and methods collected by
IIoT systems and processing at the edge close to the industrial production
line. The data intelligent edge processing can bring valuable information
and knowledge from the manufacturing process and system dynamics. By
applying analytics and AI-based approaches based on data collected from
IIoT devices, it is possible to obtain interpretive results for strategic decision
making for process optimisation, cost reduction and energy-efficient process
tuning.

Food processing and manufacturing include all processes intended to
transform raw food materials into products suitable for consumption, cooking
or resale. Implementing AI, IIoT and robotics solutions in the food processing
and manufacturing sector can assist in overcoming critical issues related
to production and execution by eliminating the possible chance of human
errors and reducing the work redundancy being performed by manual labour.
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Furthermore, innovation in production optimisation, production parameters
tuning, and equipment maintenance can be fuelled by AI.

In soybean production facilities, the benefits of AI can be leveraged
by using IIoT, neural networks (NNs), machine learning (ML) techniques,
advanced analytical tools, image, and pattern recognition technologies to
optimise production, equipment maintenance timely and less costly and
overall production flow. With AI and IIoT, the data received from sensors
are interpreted and recognised when action is needed. Aggregated data are
generated and sorted, and significant data points are identified by sensors
and AI techniques. These technologies are used to optimise processes, spot
anomalies, such as early warning signs that equipment or motors may fail
or require maintenance. AI technology is used to recognise patterns, expand
the knowledge base, identify cause-and-effect relationships, and use insights
related to likely outcomes or the next data point in the curve of the trend.

The Real-time Artificial Intelligence of Things (RT-AIoT) is the
combination of AI technologies with the IIoT devices and infrastructure to
achieve more efficient real-time IIoT operations, improve human-machine
interactions and enhance data management and analytics.

In this article, an approach to optimising an industrial soybean
manufacturing process using AI-based methods and RT-AIoT technology is
presented.

The article is organised as follows. This section provided the introduction
and the background for this research and innovation activity. The next three
sections give an overview and a description of soybean production process,
reference architectural conceptual framework, and process parameters
monitoring techniques. The micro, deep and meta edge concepts are
described in the next section. Afterwards, the section on embedded intelligent
vision and multi-sensors fusion approach describes the system requirements,
including an overview of relevant hardware architectures. The experimental
set-up section depicts the overall architecture and workflow, the specific
experiments performed and results. Finally, the last section concludes and
highlights the next steps.

4.4.2 Soybean Production Process Description

For the use case presented in this article, the soybean production starts with 30
000 tonnes of soybeans arriving at the manufacturing facility on ships every
three to four weeks.
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The ships are unloaded in 3–4 days into a flat storage container, where the
soybeans are stored until they are processed.

From the storage, the soybeans are transported on a conveyor belt into
the cleaning area of the plant. Here, the coarse fraction and dust from the
soybeans are cleaned out.

The cleaned soybeans are moved through a weight in which the budget
capacity is 59 tonnes per hour.

In the next step, the soybeans are cracked between two pairs of cracker
rolls, where each bean is broken into 6–8 pieces. The cracked soybeans are
transported in closed conveyors and through a conditioning phase where the
soybeans are heated and dried before flakers. The soybeans become more
elastic in this process, so they do not crack in the flaking step. The flakers
press the soybeans into thin flakes between a pair of hydraulic rollers.

The next phase is the expander process, where direct steam is added to
the flakes, pressing the soybean flakes to a conus with a high-pressure screw
to expand the oil cells in the soybeans. After the expander phase, the water
content is increased due to the added direct steam, and the expanded material
is dried with hot air before extraction.

In the extraction process, soybean oil is extracted from soybeans with
hexane. Then, the hexane and soybean oil mixture is pumped to the
distillation, and the soybean meal is transported to the toaster and heat
treatment.

During distillation, hexane is evaporated from the soybean oil in three
steps. After the hexane is removed, the soybean oil is pumped into a
degumming phase. Here, water is added to separate lecithin from soybean oil.

After separation, the two products are pumped into separate dryers to
evaporate the water, and then the products are pumped into storage tanks.

The soybean meal must be toasted and heated to evaporate hexane,
eliminate bacteria, and make the meal digestible. After toasting, the meal
is hot air-dried and transported to a storage container.

The soybeans production flow is presented in Figure 4.4.1.
The products resulted after different phases of the production are

illustrated in Figure 4.4.2.
The soybeans are shipped from Brazil and Canada, with temperatures

fluctuating from 5◦C to 35◦C. With the variation in raw material, product
yields and energy consumption in soybean production are affected.

Using sensors, IIoT devices, and AI-based techniques makes it possible
to control variations throughout the process to optimise product yields and
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Figure 4.4.1 Soybean production process flow.

Figure 4.4.2 Soybean products.

energy consumption. Typical parameters monitored during the manufacturing
process are temperature, moisture, colour, texture, weight, and volume.

Water content, also known as moisture, is the most critical parameter in
preparing soybeans before the extraction phase. If the water content is too
high, the residual oil in the soybean meal will increase, and the oil yield will
be reduced.

This process is crucial for optimisation, and suitable locations are
identified for instrumentation in cleaning, cracking and after-drying
production areas.

The cleaning and preparation environment are dusty and challenging for
moisture measurement and monitoring. Therefore, unique solutions must be
considered for implementation.
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4.4.3 Overall Manufacturing System Architecture and
Platform

The soybean process optimisation solution is developed in the AI4DI (ECSEL
JU) project [3]. The AI4DI reference architecture is defined at a high-level
abstraction with various functional domains that include different devices,
equipment on several communications networks, processing and storage
capabilities at the edge and in the cloud, and training/learning embedded
in different layers. The reference architectural conceptual framework
includes different views, functional domains, system properties, cross-cutting
functions, the description of interfaces and interactions between these
elements and the features located outside the reference architecture [4].

This article uses the proposed implementation of the optimisation
procedure for an industrial soybean manufacturing process using AI-based
methods and RT-AIoT technology for mapping it into the functional domains.
The high-level reference architecture includes six functional domains. A short
description of each functional domain is provided in the next paragraphs.

The physical systems domain consists of physical components such as IIoT
devices operating within soybean industrial manufacturing.

The control domain interfaces the physical systems using sensing and
actuation in soybean industrial manufacturing, and implements necessary
communication and means of execution. This domain includes the
communication function (e.g., abstraction of different types of physical/link
layer/networking technologies, Bluetooth, LoRa, Wi-Fi) with which the
different sensors, actuators, and support infrastructure (gateways, controllers,
routers, etc.) connect to exchange data, messages, and information.

The operations domain encompasses the provisioning, management,
monitoring, diagnostics and optimisation of sets or groups of devices in the
control domain, ensuring the continued operations of single devices and the
associated control systems for soybean manufacturing. The domain includes
provisioning, deployment, management, monitoring, diagnostic, predictive
and optimisation functions implemented in on-premises edge computing
facilities.

The information domain implements the collection, system-level data
fusion, transformation, storage, optimisation, and analysis of data from
several domains, and implements AI techniques and methods for intelligence
fusion at the system level during different soybean manufacturing and
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production stages. The analytics function includes data modelling, processing
and analysis and the rule engines for different feature implementations.

The application domain uses case-specific logic, rules, integration, human
interfaces, and models to deliver the system-wide optimisation of operations
and relies on intelligence from the information domain. The APIs/UI function
presents the application’s capabilities in the form of APIs for dashboards or
use by other applications.

The business domain integrates information from applications, business
system enterprises, human resources, customer relationships, assets, service
lifecycle, billing and payment, work planning and scheduling to achieve the
desired business objectives. The business domain for soybean manufacturing
implements the functionality for the integration of AI/IIoT-specific functions
and standard enterprise business support systems such as Enterprise Resource
Planning (ERP), Product Lifecycle Management (PLM), Supply Chain
Management (SCM).

4.4.4 Process Parameters Monitoring

The following section gives a short description of the measurement
techniques under evaluation for measuring soybean parameters and ambient
conditions.

The techniques and methods [8][9] evaluated for moisture, protein, oil
measurements, soybean colour, texture and pattern analysis, and ambient
parameters (e.g., temperature, pressure) are presented below.

Microwave non-destructive testing (MNDT) is a non-invasive, non-
destructive measurement technique in which microwaves penetrate a material
and can thus be used to measure its water content (moisture). The dielectric
constant of water changes with temperature and frequency, and is typically
20 times higher than that of other materials [5] at around 78.4 at ambient
condition of 25◦C and 1GHz [6]. This is resulting in a relatively strong
interaction between microwaves and water, which is measured as attenuation
and phase shift. The dielectric constant of soybeans thus influences
microwaves, and the water content can be accurately determined. The
equipment must use weak microwave power (typically 0.1mW) [7] so that
the soybeans themselves are not heated or altered.

Near-infrared (NIR) spectroscopy is a non-invasive, non-destructive
technique based on the absorption of electromagnetic radiation. NIR
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spectroscopy instruments produce a large amount of data, and chemometric
methods are used to extract useful information. Like many other
measurements, those for NIR spectroscopy rely on standard calibration
methods to achieve good results, and the instruments therefore need to be
calibrated for the specific measurements that you want to perform—typically,
a wide range of measurements, including highest and lowest levels of water,
oil, or protein content, are needed. The possible bottlenecks of calibration
versus the benefits to the demonstrator of the measurements are currently
under investigation and there is yet no conclusion.

NIR light is a portion of the electromagnetic spectrum close to visible red,
at about 750 to 2500 nanometres as illustrated in Figure 4.4.3, and can be
used to detect the chemical bonds between atoms in organic compounds
such as soybeans. Infrared absorption is caused by several effects, but the
most important is the transfer of electromagnetic energy into chemical bond
vibration, and absorption features may be related to specific molecular
structures [10].

Soybeans absorb, reflect, and transmit varying amounts of near-infrared
electromagnetic waves based on their composition. Each compound (e.g., oil,
lecithin, and water) responds to a particular NIR wavelength, which can be
measured to estimate the oil, water (moisture) and protein content in soybeans
used to produce soy oil, lecithin, and meal. The quality of soybeans can
be determined by their colour, shape, and chemical composition, and NIR
technology can therefore help to identify and distinguish soybean quality
based on chemical, oil, lecithin, and water composition.

Figure 4.4.3 The electromagnetic spectrum - regions of interest in the context of NIR
spectroscopy. Adapted from [10].
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Hyperspectral image analysis is a non-invasive, non-destructive technique
that is based on imaging of the electromagnetic spectrum, dividing it into
many bands, and can be extended to a wide range of wavelengths beyond
the visible range. Hyperspectral imaging measures continuous spectral bands
and depends on relatively high computing power to transform the acquired
pixelated images into readable data at an acceptable wavelength resolution.
Optical filters and light sources are optimised for the wavelengths (bands) in
the spectrum that reflect the levels of water, oil, and protein in soybeans. This
method is being evaluated considering the complexity, cost, and calibration
features.

Capacitive sensing is a non-destructive technique based on the same
principle as a capacitor, measuring the electric field between two electrodes
using a material placed between them as the dielectric. Applying an excitation
voltage (DC or AC) to the electrodes creates an electric field, and the current
flow in that field will change based on the conductivity of the material
between the electrodes. The current is measured and transformed into values
based on a physical model to give the moisture level of the material. This
method is being evaluated for accuracy and other features.

Cameras can capture images in visible, infrared, near-infrared, hyperspectral
spectrum to monitor the sizes and colours of whole soybeans and the texture
of crushed soybeans. The image processing of crushed soybeans is more
challenging than that of whole soybeans, thus requiring different types of
cameras. Solutions for good lighting conditions are also needed.

Temperature and pressure sensors are used to measure the temperature
in the different areas of the soybean processing line using wired/wireless
sensors temperature sensors with a temperature range of 0◦C to 55◦C. The
indoor ambient temperature and pressure vary according to location, weather
conditions and seasons, and depends on the process steps performed in
that area. Temperature and humidity are therefore critical parameters to
measure and consider when analysing data from different points in a soybean
production line.

AI and IIoT rely upon data generated at the sensor level, and data
must be consistent, accurate and reliable. Sensors must have the required
precision and embedded connectivity to pass measurement data for process
optimisation purposes to the edge computing data system.
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A common historian where information is aggregated for AI-based
analytics, reporting and visualisation is needed to aggregate the data from
the SCADA system and made it available for the edge server.

The value of AI and IIoT is limited by the ability to capture data from
sensors in the soybean manufacturing process. The wired/wireless sensors
must accurately measure moisture, temperature, humidity and other visual
constituents, and the system should provide a way to confirm that the readings
are accurate. This requires that the sensors are calibrated, and able to provide
information when their battery life is low and a diagnose action is needed.

The process parameters monitoring includes a modular design for reliable
sensing solutions in the harsh soybean manufacturing environment.

The sensor and related electronics are adequately packaged and placed in
secure locations so they are not exposed to overrated temperature, humidity,
dust, and other ambient conditions that can degrade and/or damage the
sensors, IoT devices, gateways prematurely.

Power consumption is critical for the lifetime of the wireless sensors,
the measurement precision of the sensors, and the AI-based algorithms
applied to them. Therefore, viable power monitoring and energy-efficient
communications capabilities must be integrated into the design.

4.4.5 Edge Processing and AI-based Framework for
Real-Time Monitoring

Intelligent edge computing architectures accelerate the move to more
processing and the value-creating process-optimisation use cases associated
with the edge. The approach used in this work for soybean process
optimisation addresses the granularity of the edge by providing intelligence
to the micro, deep and meta edge. A description of the micro, deep and meta
edge concepts are provided in the following paragraphs.

The micro edge describes the intelligent sensors, machine vision and
IIoT devices that generate data and are implemented using processors and
microcontrollers (e.g., ARM Cortex M4) due to constraints related to costs
and power consumption. The distance from the compute resource is minimal,
as the compute resources operate on the data they generate. The hardware
devices of the micro-edge physical sensors/actuators generate data and/or
actuate based on physical objects. Integrating AI-based elements into these
devices and running AI-based techniques for training/learning and inference



4.4.6 Embedded Intelligent Vision and Multi-sensors Fusion Approach 311

on these devices brings the intelligence and analytics closest to the physical
parameters measured.

The deep edge comprises intelligent controllers PLCs, SCADA elements,
machine vision connected embedded systems, networking equipment (IIoT
gateways) and computing units that aggregate data from the sensors/actuators
of the IIoT devices generating data. Deep edge processing resources are
implemented with performant processors and microcontrollers (e.g., Intel i-
series, Atom, ARM M7+, etc.) that include components such as CPUs, GPUs,
TPUs or ASICs.

The meta edge integrates processing resources, typically located on
premises, implemented with embedded high-performance computing units,
edge machine vision systems, edge servers (e.g., high-performance CPUs,
GPUs, FPGAs, etc.) that are designed to handle compute-intensive tasks,
such as processing, data analytics, AI-based functions, networking, and data
storage.

The edge analytics applications presented in this work enable new use
cases that rely on low-latency and high-data throughput. The demonstrator
developed use intelligent sensors, embedded machine vision and IIoT devices
integrated with edge computing to implement learning and inference on-
premises in the soybeans manufacturing facility.

4.4.6 Embedded Intelligent Vision and Multi-sensors
Fusion Approach

Image classification, object detection and recognition are machine vision
techniques using information collected from IIoT sensors. With such
information, it is possible to determine morphological features such as colour,
size, shape, texture, and moisture in soybeans for monitoring and improving
the utilisation of the raw material and the quality of the derived products, thus
reducing energy consumption. With the advent of AI, this capability is now
possible on all micro, deep and meta edge levels.

Intelligent devices are enabled by machine vision to grasp the visual
surroundings. Machine vision is integrated into the perception systems
in industrial sectors, including autonomous vehicles, food processing,
semiconductors and more, and is one of the areas that has benefitted the most
from the rapid advances in AI/ML. ML algorithms enable high performance
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in image segmentation, object detection, image classification, object tracking,
pattern and object recognition, image generation, and more.

Deep Learning (DL), a subset of ML, allows machines, robots and
intelligent IIoT devices to recognise objects with close to human-like ability.
At the lower levels, ML algorithms perform processing techniques on the
image, extract features from the image, access and intertwin multiple views.
At the higher level, they perform more advanced tasks, such as image
classification - making inferences about whether the object in the image
belongs to a specific class of objects. It is at the highest level that DL
is employed to build intelligent, scalable machine vision systems that can
recognise/identify and react/respond to objects in images and videos.

Convolutional neural network (CNN) is a class of DL networks and
has become increasingly powerful in large-scale image recognition on IIoT
devices by combining the feature extraction process and classifying the
extracted features in the same algorithm, relying on extracted features. When
DL technology is deployed in IIoT devices, it relies on pretrained DL models,
and transfer learning techniques are employed to retrain an existing image
classifier into a custom classifier by retraining a small image dataset using
minimal resources. CNN is under evaluation along with other DL models and
techniques.

Edge sensors and IIoT devices are increasingly becoming more
intelligent, generating a massive amount of data, often creating latency,
reliability, and privacy concerns. A shift in AI processing from the cloud
to the edge was triggered by such developments, made possible by recent
advances in microcontroller architectures and algorithm design. By deploying
intelligent vision locally on IIoT edge devices, most concerns related to
deploying to the cloud are addressed and answered:

• Bandwidth: ML algorithms need lots of data and transferring large
amounts to the cloud is costly and demands bandwidth. Therefore,
severe reductions must be applied, affecting the performance and
accuracy of the results from the algorithms. When algorithms run on
IIoT edge devices, the amount of data processed is limited only by IIoT
edge device capabilities.

• Latency: ML models on IIoT edge devices can respond in real-time to
inputs (as the round-trip to the cloud is no longer involved) enabling
real-time edge nodes to run in real-time and meet deadlines.

• Costs: By processing data on-device, the costs of transmitting data over
a network and processing it in the cloud are reduced. The cost of running
ML in the cloud can be expensive due to the complex infrastructure.
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• Reliability: Systems controlled by on-device models are inherently more
reliable, not least because they are no longer affected by outages in the
cloud.

• Privacy: User privacy is protected when data are processed locally on an
embedded system and are not transferred to the cloud.

Nonetheless, other concerns are posed by ML on machine vision IIoT edge
devices. Most deep NNs are too complex to be created and trained on most
nowadays microcontrollers, but if optimised in terms of memory, processing,
and power capabilities, they can run on them. The optimisation can be done
either by rewriting the models in low-level languages or by quantising to
improve the latency and the model size.

It is envisaged that it will be more common for machine vision IIoT edge
devices to embed deep NNs and other AI techniques in the future. For now,
thanks to interoperability efforts, tools and methods are available to optimise
deep NN that have been trained on standard platforms to do specific tasks.
Therefore, they can run on IIoT edge devices with limited capabilities. It is
a matter of balancing the goals of obtaining the most significant reduction in
the size of the original code with a minor accuracy loss.

Real-time monitoring and control are essential criteria for optimising
process parameters and maximising soybean manufacturing production
outcomes. The proposed process optimisation is built on an industrial real-
time data acquisition AI-based system (intelligent sensors and machine vision
IIoT devices) implemented into an on-premises edge computing environment
integrated with existing industrial SCADA system. The remote soybean
parameters are measured and collected by the intelligent data acquisition
and control system through reliable protocols and communication networks,
providing an interface with the existing SCADA system through a common
historian entity.

In this context, multi-sensor fusion is the process of achieving multi-
objective optimisation by combining data from multiple sensors, which, taken
separately, can only provide local optimums.

The data aggregation functionalities are integrated into the edge platform
components, whereas the IIoT gateway handles edge data collected from
different IIoT devices. The IIoT hardware platform and devices are integrated
with the existing SCADA system and open platform communications server
(OPC), interfaced with the ERP manufacturing facility and web and mobile
App solutions.
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Monitoring the moisture of soybeans before processing is critical,
and three process sub-systems are identified as possible locations in
the processing workflow and contain component sensor instrumentation
according to the sensor tag system developed for unique identification.

The moisture measurements and other monitoring measurements are
seen in conjunction with temperature and image analyses. The targeted
measurement parameters monitored are the moisture of soybeans before
processing at different locations in the processing workflow (e.g., on the
conveyor belt before cleaning, on the conveyor belt after cleaning and before
weight, and after crackers before conditioning). The aim is to measure
soybean water content, temperature and “quality of cracking,” to control the
changes and adjust the conditioning according to the variations.

Different communication protocols and gateways are used (BLE, LoRa
and Wi-Fi), depending on data rate, bandwidth, application, etc. Even in harsh
environments, communication with edge devices is facilitated by the seamless
integration of wireless connectivity, ensuring data storage, pre-processing in
real-time, visualisation, and possibilities to change parameters or effectuate
other necessary actions.

4.4.6.1 Embedded Vision IIoT Systems Evaluation

A broad spectrum of hardware architectures is available with various trade-
offs to deploy machine vision NN models. Several architectures are under
evaluation in terms of suitability for different machine vision applications
and placement on the three edge levels. They are illustrated in Figure 4.4.4
and briefly presented in the following paragraphs.

OpenMV [11] is a small camera module on a microcontroller board that can
be programmed in Python to implement applications using machine vision
in the real world. It can detect colour and shape, frame differencing, face
detection and more. For the experimental setup, the webcam capabilities have
been enhanced with infrared and global shutter camera modules.

The former is to easily interface with the flare left in thermal imaging
sensors for thermal vision applications. Combining machine vision with
thermal imaging allows for better identifying objects to measure the
temperature with great accuracy. Because of the modular design, the
swapping of the standard lens for the long-range infrared imager can be done
easily. The latter module allows the OpenMV Cam to capture high-quality
greyscale images and not be affected by motion blur. The module can take
snapshots on-demand with high frame-per-second speed.
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Figure 4.4.4 Hardware architectures under evaluation.

MPCam [12] is an intelligent camera system designed to bridge the
gap between the development and rapid deployment of machine vision
applications. The camera has, in addition to a Dual Armr Cortexr-A7 core
running up to 800 MHz and Cortexr-M4 at 209 MHz combined with a
dedicated 3D graphics processing unit (GPU) and MIPI-DSI display interface
and a CAN FD interface, an accelerator module that balances performance
and cost and is therefore suitable for lab experiments as well as in the
production line.

STM32MP1 [13] is a multiprocessor system that allows independent
firmware to run on two computer cores (MasterArm Cortex-A7 running
Linux based operation system and Arm Cortex-M4running RTOS). The latest
Linux includes TensorFlow Lite (TFLite), so the development kit can run
TFLite models. It has no dedicated computer unit for AI, and as such,
inferences can only be performed using its CPU unit. However, the board
can add an accelerator (such as Coral USB accelerator) to speed up the
inferences of AI models. STM32MP1 is compatible with the Deep Learning
STM32Cube.AI ecosystem.
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STM32H747I-DISCO kit [14] is designed with STM32Cube.AI, an
extension pack of the STM32CubeMX configuration and code generation
tool and function packs for high performance AI applications. It is
now possible to map and run pretrained networks on the board of the
microcontroller using several AI solutions. The function pack for computer
vision features examples of computer vision applications based on CNN,
including an application for food recognition.

Regardless of the type of hardware architecture, the solution allows the import
of trained neural networks and convert them into microcontroller code and
run the inference directly on the microcontroller on edge. This reflects the
AI paradigm shift, going from the cloud approach with high bandwidth,
high centralised processing power, high latency, to more distributed AI, with
lower bandwidth and reduced centralised computing power, more real-time
response, and improved privacy.

4.4.7 Experimental Setup

In the first phase of the soybeans production optimisation, the specific
objective is to evaluate variability in the morphological features of soybeans
and classify soybeans according to selected features. The concept is to
build an embedded intelligent vision system integrated into the production
line as part of an advanced IIoT concept that can detect soybeans (wholes
and fractions) and analyse their morphological features. The system can be
used to detect variations that can lead to production process adjustments to
improve final product quality and optimise the process in terms of energy
reduction.

The embedded vision system is a flexible machine vision platform
integrated into the IIoT system that will instantly, when powered on, display
interactive results in real-time.

The OpenMV-based experimental setup currently under evaluation is
illustrated in Figure 4.4.5. The system consists of multiple OpenMV nodes
acting as machine vision IIoT devices. The OpenMV comes with a removable
camera module, making the interface with different vision sensors possible.
Some nodes are equipped with a global shutter camera module to capture
fast action and eliminate motion blur, while others use the infrared camera
module for thermal machine vision.

The nodes are mounted strategically on the production line (before and
after the soybeans are cleaned out and after they are crushed). The machine
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Figure 4.4.5 Experimental setup.

vision IIoT devices will be placed over the conveyor belt or in places that
view the crushed soybeans.

The OpenMV machine vision IIoT devices are used not only as image
sensors but also as AI-based processing nodes. The OpenMV IDE includes
a Python-based interface to develop application code and programme the
machine vision functions. The IDE is a robust editor and offers a frame
buffer viewer to see what the camera sees, a serial terminal for debugging,
and a histogram display for making object detection and tracking easy. The
application is then sent as a script to the camera module, which is running
MicroPython.

The OpenMV machine vision IIoT devices can run NNs on images, and
deep learning NNs can run inference layers. As such, they do not need a
network connection for inferences for the AI functionality. Some nodes are
equipped with Wi-Fi modules using limited bandwidth to transmit via MQTT
all protocol-specific measurements and results to the higher edge layers (deep
and meta edge) for multi-sensor fusion and further processing.

The OpenMV offers competitive performance at low power consumption.
Still, the nodes have limited flash memory (2 MB) required to store the
firmware, and the NNs files. The memory can be expanded using an SD card,
resulting in a slower inference output.
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Figure 4.4.6 Training and inference workflow.

As the soybean application is relatively large, the approach is to
optimise the size, and the optimisation flow under evaluation is presented
in Figure 4.4.6.

The NN model’s creation, training, and validation are performed using
ML frameworks, and several tools are under evaluation (Keras, TensorFlow
and Cafee). The trained NN model is then input to the STM32Cube.AI
module and converted into optimised C code. Next, the firmware wrapped
with the generated files and NN library is compiled, and the binary file
is flashed onto the OpenMV target using IDE. The model is then used
to programme the board (using microPython) and call the NN prediction
function. The advantage of this workflow is that it performs the hardware
level optimisation, and it also provides access to the software stack.

Notably, if the resulting optimised code still does not follow the hardware
capabilities, the optimisation process is repeated with more compression.
The process is about reaching a balance between avoiding opting for more
performant hardware (resulting in increased costs) and not jeopardising the
application’s performance (e.g., results accuracy). Although not shown in the
Figure 4.4.6, it is envisaged to use the above flow in a feedback loop, where
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relevant runtime data is sent back to the framework to retrain the NN model
and redeploy it in real-time back onto the microcontroller.

4.4.7.1 Experimental Evaluation and Results

In real-time, soybeans will move in a bulk fashion on the conveyor belt
under machine vision IIoT devices. Both bulk and individual soybean samples
must be considered. The preliminary experiments were conducted mainly on
soybean samples to sense soybean colour, shape, and soybean amounts. The
following guidelines govern the machine vision objectives:

Origin - Soybean size in the same load can vary, for example, due to different
suppliers. There are relatively large variations in seed shape, size, and colour.
Shape varies from almost spherical to flat and elongated. Seed size ranges
from 5-11 mm and seed weight from 120-180 mg/seed. Soybean hulls can
be yellow, green, brown, or black, either all one colour or a pattern of two
colours [15]. For the use case presented in this article there are mainly two
types of soybeans (originating from Canada and Brazil), and the former tends
to be slightly larger than the latter.

Dockage fractions - A load also contains dockage fractions (including
split soybeans due to breakage) that must be removed during the cleaning
process. The percentage (%) of these fractions is an important indicator of
soybean quality. The amount of broken soybeans smaller than halves should
be determined.

Colour - Colour differences may relate to a moisture content variation.

Moisture - Investigating the impact of moisture content on the morphological
feature classification of soybeans, individual and bulk, is important at
different moisture content levels.

Crushed fractions - Soybeans are crushed and analysed. Each targeted
fraction present in the sample should be distinguished based on images.
Currently, this is performed manually based on three target values (3.36mm,
1.69mm, 0.84mm), resulting in four fractions: > 3.36 mm, > 1.69 mm,
> 0.84 mm, <0.84 mm. The results provide a measure of the decrease in
soybean oil quality with increasing soybean breakage.

The challenge is the variation in soybeans’ morphological features, which are
extracted as attributes for classification using image processing techniques
and neural networks. Around 50 data sets are collected with a fixed number
of soybeans (60) randomly arranged in an imaginary cell size of 80 x 80 mm.
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All images were captured with the OpenMV device and pre-processed
within the IDE before saving them. The camera can capture up to 320x240
RGB565 images. The saved images are split into training and testing data
sets and fed to training and validation. Various machine vision functions,
including neural networks, are performed, on the images, including the
following:

Boundary detection - This technique uses the Canny Edge Detector
algorithm and simple high-pass filtering followed by thresholding. Boundary
detection indicates the presence of dockage fractions before cleaning.

Colour tracking - The OpenMV device can detect up to 32 colours
simultaneously in an image, and each colour can have any number of distinct
blobs. OpenMV Cam will then determine the position, size, centroid, and
orientation of each blob. Using colour tracking, the OpenMV device is
programmed to track the soybeans on the belt, with colours set using the
Threshold Editor.

Colour classifier - Although distinct colour variances between soybeans with
different moisture content can be seen, preliminary results indicated that
colour classification alone does not adequately describe the variations among
different moisture content. NIR measurement is also needed.

Thermal and NIR water content analysis - The setup measures whole
or cracked soybeans before drying, using infrared and NIR cameras. An
infrared camera classifies soybeans at different moisture content levels using
the thermal approach. The moisture content effects on the classification
capability of colour, morphology, and textural features of imaged soybeans
are evaluated. An NIR camera classifies soybeans at different moisture
content levels using absorbance of water in the NIR spectrum.

The normal parameters measured on whole or cracked before drying
and expanded soybeans flakes after drying are presented in Table 4.4.1 and
Table 4.4.2, respectively..

Table 4.4.1 Normal parameters measured on whole or cracked soybeans before drying.
Parameter Value

Water content in soybeans 11,0 – 13,5 %
Oil content in soybeans 18,0 – 21,5 %
Accuracy of measure +/- 0,2 %
Temperature in the soybeans 5 – 30 ◦C
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Table 4.4.2 Normal parameters measured on expanded soybean flakes after drying.
Parameter Value

Target water content 9,5 %
Water content in soybeans 9,0 – 10,5 %
Oil content in soybeans 18,0 – 21,5 %
Accuracy of measure +/- 0,2 %
Temperature in the soybeans 55 – 65 ◦C

Classification to detect variations on the production line - A TensorFlow
NN for image classification has been trained, optimised, and deployed on
the OpenMV. A convolutional NN trained on the collected image data set
for detecting soybeans is investigated. This approach can give robust results
even with significant variations. CNN are exponentially more accurate and
efficient than traditional computer processing models for AI use cases like
recognition, identification, and classification tools.

The results of the machine vision functions applied on various soybeans
samples are shown in Figure 4.4.7 and Figure 4.4.8.

The soybeans images processed by a binary image filter are presented in
Figure 4.4.9.

4.4.8 Summary and Future Work

The soybean production flow is complex, and the many process steps of
soybeans impact the quality of the derived products and energy consumption.
These steps can be improved and optimised by monitoring morphological
features, such as moisture, size, shape, texture, and colour in soybeans and
using variations in these features to adjust in real-time.

Figure 4.4.7 Boundary tracking for samples with impurities and split soybeans (left) and
cleaned soybeans and crushed fractions (right).
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Figure 4.4.8 Image detection segmentation and processing for samples of cleaned soybeans
(left), soybeans with impurities (middle) and crushed fractions (right).

Figure 4.4.9 Soybeans images processed by a binary image filter.

This optimisation is made possible by employing RT-AIoT (a
combination of AI technologies with sensing and machine vision IoT devices
integrated into industrial infrastructure) to achieve more efficient real-time
IIoT operations. With such an integration, human-machine interactions are
improved, enhancing data management and analytics.

The system proposed for soybean process optimisation, based on RT-
AIoT, includes a flexible machine vision embedded platform that displays
results interactively into the IIoT system.
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A broad spectrum of hardware architectures is available with various
trade-offs to deploy machine vision IIoT devices at the edge. Several
architectures are under evaluation concerning the suitability for different
machine vision functions for the soybean optimisation process, such as
boundary detection, colour tracking, thermal analysis, classification, and
appropriateness for placement on the three edge levels.

Machine vision IIoT devices are used as image sensors, AI-based
processing nodes and communication devices to run neural networks on
images and transfer the information to the industrial process system.

The creation of the model, training and validation are performed
using standard ML frameworks. The generated models can run on the
microcontrollers if optimised in memory, processing, and power capabilities.
It is a matter of balancing the goals of obtaining the most significant reduction
in the size of the original code with a minor accuracy loss.

In preliminary results, it is assumed that by placing machine vision
IIoT devices at different locations in the processing workflow (e.g., on
the conveyor belt before cleaning, on the conveyor belt after cleaning and
before weight, and after crackers before conditioning), better sensor and AI
functionality can be obtained. In turn, an improvement in product quality and
process efficiency can be achieved with such a procedure.

Preliminary experiments are being conducted on an experimental test
bench, mainly on soybean samples, to sense temperature, moisture, colour,
weight and volume. The following steps are envisaged to adopt the same
AI functions for soybean bulk samples, validating the proposed machine
vision IIoT system and further integrating it into the soybean industrial
process. Another possible activity is identifying the optimal soybean
moisture measurement method considering precision, ease of calibration,
size, robustness, processing capabilities and cost. Thermal imaging for
moisture detection in soybeans to increase production efficiency and reduce
energy consumption is a challenging issue and will be explored in the
next steps. The camera functions like a microbolometer, i.e. multiple heat-
detecting sensors sensitive to infrared radiation from 700 nm to 1000
nm wavelength. By setting a maximum and minimum temperature range,
the thermal camera can be programmed in the IDE to function as a
sensor for seeing objects of a particular temperature. It is important to
note that the camera does not really “see” moisture in soybeans; it can
detect slight temperature differences and patterns that reveal the existence
of water.
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Finally, as the soybeans are moved in a bulk fashion on the conveyor
belt, further work will focus on ensuring that the system is equipped with
high-speed imaging cameras. Global shutter cameras, which are recording
all image data simultaneously, are used to take pictures of soybeans on a
conveyor belt. Preliminary simulations were performed with the OpenMV
global shutter. Provided the exposure is short enough, the image has no
motion blur on moving objects. However, the trend is to increase the exposure
time to obtain more lighting on the camera and the best signal to noise ratio.
The choice of the camera requires reaching a balance between increasing
exposure time as much as possible (resulting in slightly higher levels of noise)
and preserving the image accuracy, resolution and reliability, also allowing
the algorithm to be programmed within the IDE.
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