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Abstract

This introductory article opens the section on “Applications of AI in
Transportation Industry”, giving a broad overview of the latest AI
technologies in the transportation industry, with an additional focus on the
developments enabling automated Mobility-as-a-Service (MaaS). It presents
future capabilities and opportunities for AI, together with covering state-of-
the-art Intelligent Transport Systems (ITS) trends, including advancements
on the vehicle, infrastructure, and management level. Finally, the article
outlines the two papers included in this section, highlighting concepts and
challenges of using AI for automated, optimised, and individual passenger
transport.

Keywords: intelligent transport systems (ITS), mobility-as-a-service
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5.0.1 Introduction and Background

Transportation industry is a crucial element to guarantee our daily lives.
Following the previous trends of the last decade, the transportation industry
has pioneered by digitising its processes by introducing extensive data
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systems and automated agents, spanning from the vehicle up to traffic
systems.

To understand and control this data, it became mandatory to optimise
processes on the micro- and macroscopic level in this complex, ever-
changing ecosystem. However, since data alone does not enable higher
efficiency, safety or automation, the demand for data processing is constantly
increasing. Thereby, specific use cases, e.g., in the field of automated driving,
require high demands in terms of latency. Decentralised, intelligent systems
leveraging efficient AI models and suitable edge computation platforms
are currently being investigated to close the gap. These developments will
contribute to the European Commission long-term strategies “Vision Zero”
(reduce road fatalities to almost zero) and “European Green Deal” (climate-
neutrality), which should be reached by 2050.

In this introduction article, we will introduce the state-of-the-art for
automated passenger transport. Thereby, we will elaborate on recent trends
on AI-enabled automated MaaS in the field of ITS and envision possible
opportunities. Finally, the article outlines ongoing activities concerning the
AI4DI project that are presented in two separate articles.

5.0.2 AI Developments in Transportation Industry

In recent years, AI progressively became an imperative approach for
processing ITS related data. This trend, reinforced by wide industrial support,
establishes a solid foundation to build an efficient MaaS architecture.
Accordingly, the latest progress for Machine Learning (ML) applications is
discussed based on the survey by Yuan et al. [1]. The authors of this paper
structure ML applications in three primary tasks: perception, prediction, and
management. This differentiation corresponds to the processing architecture
for automated driving, namely perception, planning, and control, which by
itself is an expansive research field [2] [3].

Perception – Nowadays, due to the broad usage of different sensors
such as cameras, LiDARs, and radars, traffic perception data’s variety
and quantity increased exponentially. Accordingly, ML approaches are
progressively leveraged as a first step to process this data to retrieve valuable
information. Perception aspects deal with the physical world (road, vehicles,
and pedestrians) and the monitoring of the digital components (reliability and
security of the communication network).
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Whereas earlier work for object classification, detection, and segmentation
leverages mainly supervised ML algorithms such as Support Vector
Machines (SVM) utilising hand-crafted features, recent trends aim to harness
deep-learning (DL) models, capable of embedding features in their neural
network architecture. Common approaches include Convolutional Neural
Network (CNN), and implementations such as YoloV4 [4]. In contrast to
traditional algorithms, these models tend to be more versatile (resolution,
orientation, scene) and robust against anomalies or external conditions
(daylight or weather). Besides perception algorithms relying on a single
sensor-type input, data-fusion approaches are currently under development.
These operate either low-level (a single model uses all raw sensor inputs
for inference) or high-level (multiple networks are used, and outputs are
concatenated at a later stage) [5] and further improve the overall reliability
of the perception module. Moreover, perception algorithms fusing the output
of multiple agents generating HD-maps and digital twins [6] are research
fields.

Prediction – Diverse ML approaches are investigated for ITS to fulfil
prediction purposes, including anticipating traffic, travel times, vehicle
behaviour, and road occupancy. These methods improve the decision-making
fleet management, e.g., regarding the last mile support use case. Traffic
flow prediction methods are applied based on the results of the presented
perception models and are used to determine travel times for vehicles and
passengers. Subsequently, the results are leveraged to eventually optimise
the vehicle and route selection on a global scale. Since these tasks require
the model of temporal-spatial changes, Recurrent Neural Network (RNN)
architectures and derivates, such as Long Short-Term Memory (LSTM) [7],
are employed.

Management – ML for management tasks is considered to raise efficiency
on vehicle-, infrastructure-, and resource-level. This includes control of traffic
lights and a trajectory or route selection for the automated fleet. Secondary
tasks, such as networking and computation problems, are tackled, comprising
resource management for V2X communication [8] and mobility-aware edge
computing offloading [9].

In contrast to the previous domain, ML often investigates deep
reinforcement learning (DRL) techniques for management decisions. For
instance, Deep Q-Learning (DQN) is considered to optimise traffic light
management to minimise queue waiting times [10]. Besides, Proximal
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Policy Optimization (PPO) is leveraged for steering and speed control of an
automated vehicle [11].

5.0.3 Future Trends for Applications in Transportation
Industry

The following paragraphs elaborate on two future applications utilising the
introduced ML technologies in detail.

Automated driving – In recent years, AI has been used commercially
in passenger cars’ Advanced Driver Assistance Systems (ADAS). In
addition, lately, AI has also been used in the development of automated
driving functionalities. CNN and DRL are the most common deep learning
methodologies, which have been successfully applied to automated driving
solutions. Developing a reliable and robust fully Automated Driving System
(ADS) often needs that several AI methods are used together.

Training data is one of the essential requirements and challenges to
develop deep learning solutions. Many ADS developers have done the
collection of large data sets for autonomous driving and environment
perception. Luckily, more and more open data sets have been published
for the research community. One of the best-recognized data sets for ADS
development is the KITTI benchmark suite [12], which includes several data
sets to evaluate various ADS functions [3]. There are also other similar open
data sets such as Waymo Open data set [13], Cityscapes [14], Berkeley
DeepDrive [15], etc. The training data is always limited as it is impossible
to cover all scenarios that an automated vehicle could encounter in the real
world. However, the rapid progress in collecting larger and larger data sets
will enable more advanced deep learning systems on automated vehicles.

The environment perception and scene understanding around the vehicle
is crucial for automated driving. This includes detection of other road users,
road markings and other road furniture. Deep neural networks, such as
CNNs, are today very accurate for detecting, tracking, and classifying various
road user types, including cars, trucks, busses, pedestrians, cyclists, etc.
A breakthrough has been achieved in pedestrian detection solutions with
deep learning [1]. However, there are still some challenges in the pedestrian
detection task from camera data, such as substantial occlusions and bad
weather conditions. Deep learning-based methods are also widely used for
detecting and tracking positions and geometries of moving obstacles (e.g.,
other vehicles) based on camera data [16]. Image segmentation is used to
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classify the pixels of an image into the road and non-road parts [1]. Road
marking detection and recognition involves detecting the marking positions
and recognizing their types (e.g., lane markings, road markings, messages,
and crosswalks) [16]. Other road furniture detection includes, for example,
traffic sign recognition.

AI-based environment perception algorithms utilize only two dimensions
(2D). However, 2D models are not enough in all cases to describe 3D real-
world objects. The 3D perception is based on LiDAR or stereo cameras. 3D
tracking and behaviour prediction of other road users is required in automated
driving. Vehicle behaviour corresponds to braking, steering, lane change and
moving trajectory [1]. Pedestrian behaviour includes actions like running or
crossing the street [1]. In future years, AI and ML will gradually enable better
prediction of the behaviour and intent of other road users.

Traffic flow and public transport travel time prediction – Various
combinations of AI algorithms have been used in predicting traffic flow and
travel time. Travel time predictions enable, for example for vehicle routing,
guide vehicle dispatching, as well as congestion and traffic management.
Forecasting traffic flows and travel time is a complex and challenging
problem, which is affected by diverse factors, including spatial correlations,
temporal dependencies, and external conditions (e.g., events, holidays,
weather, and traffic lights) [1]. For travel time prediction, there are segment
and path-based estimation approaches. Lately, integrated DL methods,
which utilize both segment-based and path-based approaches, have also
been studied. Recently researchers have also combined deep learning with
traditional methods with some success [1].

One problem with AI-based prediction development is that training data
is not readily available as most road networks are not equipped with traffic
measurement sensors. Traffic data can be collected from mobile devices,
and this data is often available from global map data providers such as
Google or Here. In many cases, multiple data sources are used together
to get better results. High-quality public data sets from the real-world are
essential for accurate traffic forecasting. These are progressively available
from some cities in Europe as open public data. For example, the open public
transport data from a city may provide many opportunities to develop new AI-
based tools. Today, most public transport vehicles are fitted with positioning
systems (e.g., Global Navigation Satellite System - GNSS), which provides
accurate real-time information about the current location and movements of
the vehicles. Typically, open public transport data from a city includes vehicle
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Figure 5.0.1 Transportation research areas in AI4DI.

positions, public transport schedules and route identifiers, etc. This kind
of continuous open data stream has enabled the development of Estimated
Times of Arrival (ETA) prediction methods utilising ML. Recently, in many
studies, several external data sources such as weather, traffic and information
about the passengers have been combined for machine learning model
development [17].

5.0.4 AI-Based Applications

AI4DI partners are developing AI and Industrial Internet of Things (IIoT)
technologies with applications in different areas of the transportation industry
sector. This section introduces two articles covering how AI and IIoT are
used in the transportation sector. They present challenges and technological
developments for perception, prediction, and management in the context of
automated MaaS.

The article “AI-Based Vehicle Systems for Mobility-as-a-Service
Application” describes the safe operation of automated vehicles in urban
environments, attempting to improve the environmental perception to detect
other road users by proposing a novel method for data fusion between an
in-vehicle camera and a LiDAR sensor. Accurate 3D object detection and
tracking is achieved by employing deep models (high-level, deterministic,
supervised, and reinforcement learning). The KITTI benchmark suite has
been used for development and validation, with promising results. The gap
between simulated and real environments continuously diminishes with the
rapid advances in autonomous control technology that offer improved visual
and physical experiences.

The article “Open Traffic Data for Mobility-as-a-Service Applications -
Architecture and Challenges” addresses the need for high-quality public data
sets from the real world with advancing digitisation in the domain of ITS and
hence the need for data pre-processing from multiple sources, including raw
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sensor data, to prepare for AI-based modelling. While current pre-processing
is often implemented as a cloud solution, a system architecture is proposed
where computations are scaled and distributed to different layers in the edge–
cloud continuum. A set of data refinement strategies has been developed to
improve data quality and integrity, which refine the data into becoming more
suitable for AI-based MaaS applications.
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