
1.3
Optimising Trajectories in Simulations with
Deep Reinforcement Learning for Industrial

Robots in Automotive Manufacturing

Noah Klarmann1∗, Mohammadhossein Malmir1∗, Josip Josifovski1∗,
Daniel Plorin2, Matthias Wagner2 and Alois C. Knoll1

1Technical University of Munich, Germany
2AUDI AG, Germany
∗These authors contributed equally to this work

Abstract

This paper outlines the concept of optimising trajectories for industrial robots
by applying deep reinforcement learning in simulations. An application
of high technical relevance is considered in a production line of an
autmotive manufacturer (AUDI AG), where industrial manipulators apply
sealant on a car body to prevent water intrusion and hence corrosion. A
methodology is proposed that supports the human expert in the tedious task
of programming the robot trajectories. A deep reinforcement learning agent
generates trajectories in virtual instances where the use case is simulated.
By making use of the automatically generated trajectories, the expert’s
task is reduced to minor changes instead of developing the trajectory from
scratch. This paper describes an appropriate way to model the agent in the
context of Markov decision processes and gives an overview of the employed
technologies. The use case outlined in this paper is a proof of concept
to demonstrate the applicability of reinforcement learning for industrial
robotics.

Keywords: deep reinforcement learning, automotive manufacturing,
simulation, industrial robotics, virtual learning platform, trajectory
optimisation, motion planning, offline programming, robot learning.
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Video: A video clip demonstrating the proposed methodology is available at:
https://vimeo.com/562948911.

1.3.1 Introduction

A concept for the automatic generation of trajectories for the control of
industrial robots is presented in this work. Data-based robotic control has
the potential to address two major shortcomings of conventional robot
programming [1]:

(i) The classic programming of industrial robots is done manually by a
specialist who precisely specifies the trajectory of the robotic arm Tool
Center Point (TCP). To this end, the programmer is in close contact with
the responsible plant engineer as well as the product owner to fulfill all
demands, restrictions, and requirements.

(ii) Conventional programming is deterministic and thus prevents the
flexible adaptation of the robot to changing environments (like varying
products). A variable control that adapts to different conditions cannot
be realized with classical programming.

Both shortcomings are addressed in this work by introducing a self-taught
and automated method for robot control programming. By adopting the
reinforcement learning methodology [2, 3], the control is learned based
on sampled experience from the interaction with a virtual environment.
In this context, a predefined reward function is optimised that steers the
action policy towards the desired outcome of the robotic manipulation.
Reinforcement learning combined with non-linear function approximators
(e.g., neural networks – referred to as Deep Reinforcement Learning DRL)
can generalize action policies on experience to solve problems with large
and complex state spaces (e.g., learning from unstructured data such as a
camera signal). Further advancements in the field of reinforcement learning
are algorithms that can deal with continuous action spaces enabling robotic
control [4, 5]. These developments have recently led to interesting milestones,
such as learning the locomotion of a four-legged robot [6] or robots that
have learned to open doors [7]. Well-known achievements in the field of
reinforcement learning are based on environments that allow the efficient
generation of an abundant amount of experience (e.g., video games [8] or
board games [9, 10]). However, robots require physical interaction with the
environment whereas training the agent in the real world is exceptionally
resource intense. As mentioned in [11], an agent that learns a simple
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grasping task requires experience from 800,000 episodes. The application of
reinforcement learning to industrial robotics requires a significant amount of
data due to the following two characteristics: (i) complex spaces for the state
(e.g., learning based on unstructured data such as images) and action spaces
(e.g., controlling the torques of each axis), and (ii) industrial requirements
regarding safety and precision of the robotic control.

An appealing alternative to real-world training is to simulate the agent-
environment interaction and transfer the control to the real world. For the use
case described by Rusu et al., a considerable speed increase by the factor of
50 could be achieved when a robot is trained in parallel virtual environments
instead of the real world [12]. Another advantage in the use of virtual methods
is the avoidance of accidents that could occur during the training of robots in
the real world [13].

In this work, DRL is employed to find the optimal trajectory of a robot
that is applying PVC sealant on a door frame of a car body to prevent
water intrusion and hence corrosion. Moreover, the robotic trajectory will be
optimised with respect to the following aspects: (i) providing smooth velocity
of the end effector, (ii) ensuring the optimal orientation of the end effector’s
nozzle to the car body surface, and (iii) avoiding collisions. Related work
from other groups in which DRL is used for trajectory planning exists. In
[14], a DRL agent learns to control a robot with six axes to solve the hot
wire game that is seen as the first step towards industrial applications like
welding, gluing, or cutting. A more practical application can be found in [15]
where the authors propose a simulated environment for learning the optimal
trajectories for applying paint on a car body. Besides learning a concrete task,
DRL can also be used for the online optimisation of trajectories for robots
with unknown/partially known dynamics that usually lead to control jumps
[15–17].

Beyond the application to manipulators, DRL can also be used to generate
trajectories for mobile robotics. The path planning for mobile robots with a
known map can be found in [18], whereas the navigation with simultaneous
map generation is proposed in [19–21]. The application of DRL to optimise
the data collection for an agent that explores the environment can be found
in [22]. Moreover, DRL to evaluate optimal trajectories for Unmanned Air
Vehicles (UAVs) providing access points to end-users is presented in [23].

A unique feature of this work is the advanced simulation environment
that can simulate the car body and robot with detailed geometry considering
realistic physical behavior and a high-end rendering pipeline. In addition,
the close collaboration with the industrial partner imposes high industrial
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Figure 1.3.1 (a) Manually predefined geometric model of the seam, (b) the path editor and
the robot jog in tecnomatix process simulate for manual trajectory programming, (c) multiple
training environments running in parallel and optimising the trajectory for a car door, and (d)
the robot following the learned trajectory.

requirements on this approach, and thus exceeds the usual academic proof-
of-concept state.

1.3.2 Background

AUDI AG employs a fully automated process for applying the sealant
material on car bodies using industrial manipulators. To program the
manipulator, a conventional procedure is adopted in which fixed trajectories
are specified by an expert. To this end, the creation of trajectories for the
automation of a new car body requires the following steps: (i) A three-
dimensional model of the seam that is supposed to be applied to the car body
is designed manually (see the green markers in Figure 1.3.1a). (ii) The expert
programs the final robot trajectories in a way that the manually predefined
geometric model of the seam will be followed by the manipulator. It is worth
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noting that there is a multitude of different nozzles and end effectors that
vary according to the task and need to be specified before starting to program
the robot. To create the robotic trajectory, the offline programming expert
manually defines a sequence of parameterized motions using software tools
(see Figure 1.3.1b). Two different ways are typically used to specify the
movement of the end-effector along a free or constrained path towards a
specific target. The first type is called Point-to-Point (PTP) motion that is used
when the target pose should be reached as fast as possible by maximizing
joint-level rotational speeds without specifying the TCP path. The second
option is referred to as Linear (LIN) motion and is used whenever the target
pose should be reached along a straight line with a specified velocity and
acceleration. PTP motions are mainly used in two scenarios: (i) The robot’s
TCP should be moved to an initial pose configuration that is a suitable starting
point and (ii) whenever there is a need to relocate or reorient the robot’s TCP
between the seam segments. The LIN motions are used whenever the nozzle
tool is applying the sealant material as the priority is on accurate motions to
guarantee a straight and uniform line.

It is worth noting that manual programming is a tedious and resource-
consuming process as time-optimal and collision-free trajectories are
complex and rely on many different parameters such as (i) quantitative
metrics (e.g., how much time it takes to complete the seaming process), (ii)
qualitative aspects (e.g., straight and uniform appearance of the seam), or (iii)
expert-subjective considerations that are based on experience.

To reduce the complexity and workload of the task, the programmer can
start with an existing trajectory from a different but similar scenario in which
a solution already exists. An existing case from which the trajectory can
be reused is called a brown field. By adopting a brown field, the manual
effort is typically reduced tremendously as only minor modifications are
necessary in most cases. In the so-called green field scenario, the car body
is significantly different from any existing scenarios with the implication
that the programmer must manually define the trajectories from scratch. In
the following section, a procedure is described in which brown fields are
generated by a DRL agent.

1.3.3 Methodology

The described problem is addressed by a DRL agent that finds an optimised
trajectory in simulation. Figure 1.3.2 depicts the agent’s state and action
spaces as well as the reward function in the context of a Markov Decision
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Figure 1.3.2 DRL agent in the MDP formalization for optimising a TCP trajectory by
minimizing the distance to a predefined moving target.

Process (MDP). The geometric model of the targeted seam is given in the
process as described in the previous section. An imaginary target location
is modeled that travels along the predefined path at a specified velocity
~vtrgt. The first term of the reward R is modeled as the negative distance

from the TCP to the target location
∥∥∥~det∥∥∥. By maximizing this term,

the agent controls the robot’s TCP to follow the target. When applying
the sealant, the predefined target velocity ~vtrgt is required to be at a
specific constant velocity to guarantee an optimally applied sealant. The
application of the sealant is required to occur in an orientation that is
orthogonal to the surface while aligned with the direction of the sealant
line. Based on this, a reference end-effector orientation can be defined;
the second term of the reward function penalizes the difference between
the actual and the reference orientation of the end-effector (namely, the
orientation error ~ooe, calculated based on the orientation of the target
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surface normal w.r.t. the end-effector ~oet). The third term of the reward R
measures the minimum distance of the manipulator to the car body to avoid
collisions. Moreover, three weights (a, b, c) are used to balance each term
individually.

Two different ways to define the action space are considered: (i) The
robot is controlled on the joint level with the agent controlling the speed (or
torque) of each joint individually. This results in a six-dimensional action
space (action space A0) for a robot that has six Degrees of Freedom (DoF).
(ii) By employing kinematics, the TCP can be controlled directly in the
operational space, e.g., by specifying a target delta for each Cartesian space
dimension dtcp,1, dtcp,2, dtcp,3 and for each orientation axis do1, do2, do3 (see
action space A1). The state description comprises the relative position and
orientation of the end-effector with respect to the current target point and
the angles of all joints θ1, θ2, . . . , θ6 of the manipulator. To simulate the
robot interacting with the environment, a simulation developed with the
commercial game engine Unity3D [24] is used (Figure 1.3.1c and d). Unity3D
is a suitable choice for the planned undertaking as it provides advanced
rendering capabilities (to potentially learn from pixels), the opportunity to
write user-defined functions, and it comes with an efficient GPU-accelerated
physics engine (Nvidia PhysX [25]).

To solve the MDP described above, the algorithm Proximal Policy
Optimization [26] (PPO) is employed. PPO is a policy gradient method that
trains both an actor and a critic function, whereas the policy update gradient is
clipped to prevent stability issues. An important feature of PPO is the support
of continuous action spaces that is achieved by training probability density
functions instead of discrete actions. In this work, the PPO implementation
of the Stable Baselines library is used (referred to as PPO2 [27]) that
allows running multiple workers updating the same policies. Each simulation
instance runs several robots at the same time (Figure 1.3.1c), whereas policy
gradient updates are gathered in batches for the periodic update of the two
policy networks.

The proposed methodology is applied to create brown fields. In a second
step, the final control can be derived from the brown fields by the offline
programmer. As mentioned before, a significant reduction of the workload
can be achieved when the final programming is done based on a brown
field provided by the agent. The simulation starts from scratch without any
knowledge (starting from a green field). A disadvantage in taking a previous
solution into account (e.g., starting the simulation from an existing but
incompatible brown field) is a potential bias regarding the solution and might
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lead to a local minimum. However, starting from another brown field comes
with the high potential to reduce the training time and can be investigated in
the future.

One might ask why brown fields are evaluated rather than directly
learning the final robotic programming. While it is indeed possible to let
the agent define the final trajectory, the human is kept in the loop as the
approximative nature of DRL as well as the difference between the real
world and the simulation (reality gap) occasionally lead to undesired control
behavior.

1.3.4 Conclusion and Outlook

The concept of optimising trajectories with DRL for industrial robots
in simulations is outlined in this paper. To this end, a possible MDP
formalization of the agent that has the potential to considerably reduce the
amount of the manual work that is involved in the offline programming of the
industrial robots is presented. For the further course of this undertaking, an
adoption of the methodology in three steps is envisioned: (i) The experts are
performing plausibility checks by comparing hand-crafted trajectories with
the solution from the DRL agent. (ii) The agent is used in production by
creating brown fields from which the expert derives the final solution. (iii)
The agent finds final robotic trajectories and the human experts verify the
solution without modifying it.

Beyond the specific application that is outlined in the paper, an end-to-
end learning platform is envisioned that satisfies the industrial requirements
of industrial robotic applications. A high degree of generalization is
targeted to address a wide variety of different tasks that are typical for
manufacturing.
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