1.5

Real-Time Predictive Maintenance —
Model-Based, Simulation-Based and
Machine Learning Based Diagnosis

Franz Wotawa!, David Kaufmann', Adil Amukhtar!, Iulia Nica!,
Florian Kliick?, Hermann Felbinger?, Petr Blaha?, Matus Kozovsky?,
Zdenek Havranek?® and Martin Dosedel®

!Graz University of Technology, Austria
2AVL List GmbH, Austria
3Brno University of Technology CEITEC, Czech Republic

Abstract

Predictive maintenance focuses on forecasting faulty or unwanted behaviour
and defines appropriate countermeasures to be taken. Diagnosis, i.e., the
detection of failures, the identification of faults, and repair provides useful
foundations for predictive maintenance. In this article, we show how
diagnosis, and in particular model-based, simulation-based and machine
learning based diagnosis, can be used in practice. For this purpose, we
introduce a simplified DC e-motor simulation model with the capability of
fault injection to be used to show the efficiency of the introduced diagnosis
methods based on the model’s behaviour. A simulation run of the system
under test with pre-defined injected faults during runtime is used to validate
the results obtained by the diagnosis methods. The results outline a promising
application of these diagnosis methods for industrial applications, since each
algorithm shows a time efficient and reliable diagnosis in relation to find the
root cause of an observed faulty behaviour within the model. Further, the root
cause analysis, performed with the introduced diagnosis methods, offers an
excellent starting point for future development of self-adapting systems.

63

64 Real-Time Predictive Maintenance

Keywords: abstract model, Al based diagnosis, Al based predictive
maintenance, digital twin, model-based diagnosis, machine learning,
simulation-based diagnosis, reliability, validation, fault model, fault injection,
root cause analysis.

1.5.1 Introduction and Background

In this article, we focus on the application of model-based and machine
learning-based diagnosis outlined in the article “Foundations of Real-Time
Predictive Maintenance with Root Cause Analysis” making use of an e-
motor use case. In the foundations, we already discussed the underlying
background, and an architecture of a real-time diagnosis tool for detecting
root causes of faults based on different diagnosis methods, which distinguish
in the applied methodologies.

Besides providing more information regarding the application of the
different diagnosis methods, we want to solve the question of whether model-
based reasoning can be used for obtaining explanations for the given models,
a simplified DC motor model with the capability of fault injection was
developed to capture the individual ideas of diagnosis tools.

The first approach, model-based diagnosis, considers an abstract model
that can be represented as logical rules for diagnosis. This model captures
the abstract values for quantities/signals. Using an abstraction function, it
is possible to map given values to their abstract representation. The second
approach, simulation-based diagnosis, utilizes simulation models directly. A
pre-requisite is that the models not only capture the correct behaviour but also
faulty behaviour like the influence of different parameters on the behaviour.
The last approach, an Al-based diagnosis model also uses simulation models
to gather information about the behaviour based on different parameters of
the system. The produced knowledge base is further used to train a model.
After the training, it is plausible to evaluate the feasibility of the diagnosis
model in terms of decision process optimization in real time.

In summary, we deal with the following diagnosis methods in this article:

* Model-based diagnosis

o Abstract model represented with logic rules.

o Diagnosis based on state change observations.

o Classify the model in components and identify a normal or
abnormal behaviour of each.

* Simulation-based diagnosis

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 65

o Detailed simulated system model (“digital twin”) with the
capability of fault injection.

o Use of simulation models directly.

o Generate labelled reference data by simulating the model with
health and fault condition in different scenarios.

o Real-time diagnosis of observed model values based on pre-
simulated reference data.

* Al-based diagnosis

o Machine learning to diagnose unexpected behaviour.

o Artificial neural networks to diagnose and predict fault
behaviour.

o Physical model (digital twin) with the capability of fault injection
to produce training data.

o Train and evaluate an Al based model on collected labelled
reference data to detect fault behaviour in real-time within cyber-
physical systems.

For all diagnosis methods, the assumption is to find faults occurring at
runtime. To show the architecture and applicability of these approaches,
the focus is on describing the mechanism and show the results based on
examples to highlight the idea, the problems, and solutions. In the following
section a simplified DC e-motor model with the capability of fault injection
is described and the obtained results based on different diagnosis method
implementations are demonstrated.

1.5.2 Application of Diagnosis Systems Based on
Simplified DC e-Motor Model

In this section we introduce a developed simplified DC e-motor model with
fault injection capability in all used components which comprises the battery,
switch, resistor, load on the motor and the e-motor parts. The ability of fault
injection is used to discuss three different diagnosis algorithms to detect
faults in a system based on the simplified DC e-motor. The first promising
approach is the model-based diagnosis algorithm. The model-based diagnosis
system uses logic to represent the e-motor to perform model-based reasoning
to search for diagnosis candidates given an unexpected behaviour caused
by faults in the system. The second introduced diagnosis system is based
on simulation which uses digital twin models of the e-motor directly to
simulate faults in advance to use the generated data to find correlations with

66 Real-Time Predictive Maintenance

the original system. The last approach deals with machine learning using
gathered fault data of the e-motor model to train the system to detect faulty
behaviour.

1.5.2.1 Simplified DC e-Motor Model With Fault Injection
Capabilities

The proposed use case of a DC e-motor comprises a battery, a switch
for turning the motor on and off, a resistor, which we may use to adapt
the voltage provided to the motor, the e-motor, and a load attached to
the motor. In Figure 1.5.1, we find the schematics of the motor that also
comprises the internals of the battery and the motor. We assume that the
battery comprises an internal resistance, the motor resistance, inductance,
as well as a part coupling the electric components to mechanic ones. For
the model we consider a brushed e-motor comprising a wound rotor and a
permanent-magnetic stator. The rotational speed of the motor is proportional
to the voltage applied and its torque is proportional to the applied current.
Table 1.5.1 shows a list of all components with the applicable health states
including faults that can be set during runtime to simulate different behaviour
of the e-motor. The DC e-motor simulation model is built with the equation-
based language Modelica to simulate the complex physical system. For the
diagnosis approaches based on this model, we use the simulated outputs

S
Rp Ry
Ry L,
Buttery || || -
Motor w, T
“== Bat

Figure 1.5.1 Simplified DC e-motor circuit.

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 67

Table 1.5.1 Simplified DC motor component state description.

Component Health state Description
Motor ok Ordinary behaviour of a motor given by its internal
components and the equations provided for DC
motors allowing to map electrical quantities to
mechanical ones.
fi In this fault mode we assume that 1/3 of the resistor
and inductivity values is lost.
fa In this fault mode we assume that 2/3 of the resistor
and inductivity values is lost.
Load ok The load applied to the motor is set to its normal
value.
empty There is no load anymore applied to the motor.
fi The load is 50% higher than its normal value.
f2 The load is 50% lower than its normal value.

directly or a generated FMU (Functional Mockup Unit) from the model
to be able to run simulations of the DC e-motor in other programming
environments.

1.5.2.2 Model-based Diagnosis for Simplified DC e-Motor

In the following, we outline the use of model-based diagnosis for the
identification of root causes. For this purpose, we discuss the necessary
steps required to diagnose the simplified DC motor use case depicted in
Figure 1.5.1. Specifically, we consider the following faulty case where a
certain load is higher than expected, indicated as load fault f; in Table 1.5.1.
In Figure 1.5.2 we depict the behaviour of the e-motor when switching it on
without load (empty), with the expected load (ok), and the higher load (f;).
We see that when switching on the motor during time 0.5 and 1.5 seconds,
there is a deviation between the observed rotational velocity and the current
drawn to drive the e-motor in all three cases. Although this deviation is not
that high between the ordinary “normal load” scenario and the “high load”
scenario, as it can be observed.

We require observations and a logic model for computing diagnoses. The
observations in the case of model-based diagnosis are assumed to be available
at certain points in time where we probe the system. In Figure 1.5.2, we
consider 3 probing time points), @, and €) at time steps 0.25, 1.00, and
1.75 seconds respectively. In @) there is no difference between the three
observed signals. In @ we see that both the rotational velocity as well as
the current are different when comparing “normal load” with the “high load”
scenario. In the “high load” scenario, the velocity is lower and the absolute

68 Real-Time Predictive Maintenance

"No load" scenario

switch

/ "Nomal load" scenario

L —Tot. velocity

\ e

"High load" scenario

© © ©rimincmi

Figure 1.5.2 Simplified DC e-motor diagnosis observations used for model-based diagnosis.

value of the current is slightly higher. In time step @), only the velocity is still
lower for “high load”.

Such deviations can be obtained automatically comparing a simulation
run considering the e-motor to work as expected with observations obtained
from monitoring the real e-motor implementation. Deviations trigger
diagnosis and the question is how a model of the e-motor example can
be utilized for obtaining the root cause responsible for the behavioural
differences observed. For diagnosis, we will map the deviations or values
to their corresponding logic representation. But before discussing this issue,
we have a look at modelling for diagnosis.

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 69

We have to formalize the behaviour of components and their
interconnections. For the behaviour, we use rules of the form —ab(C) —
behav(C'). A battery component, for example, can be easily formalized
stating that in case of correct behaviour, it is delivering power using the
following logic rule:

—ab (C) A type (C, battery) — val(pow (C) , nominal) (1.5.1)

The predicate type is used to say that component C is of a type, e.g., battery.
The predicate val is for stating a value, e.g., nominal, for a component port,
e.g., pow. In addition, we may also formalize that a malfunctioning battery is
not delivering any electricity, i.e.:

ab (C) A type (C, battery) — val(pow (C) , zero) (1.5.2)

We can do the same for switches, resistors, and the motor. A switch if being
switched-on provides electricity (but only if there is electricity at one port).
If switched-off no electricity is provided. A resistor is for passing electricity,
and a motor makes use of provided electrical power to speed-up its rotor.
Depending on the load the velocity reached can be higher or lower, requiring
less or more power.

—ab (C) A type (C, switch) A on (S) A val (inpow (C), V)
— val(outpow (C), V)
—ab (C) A type (C, switch) A on (S) A val (outpow (C), V)
— val(inpow (C), V) (1.5.3)
—ab (C) A type (C, switch) A of f (S)
— val(outpow (C) , zero)
ab (C) A type (C, switch) — val(outpow (C) , zero)

—ab (C) A type (C, resistor) A val (inpow (C) , V)
— val(outpow (C), V)
—ab (C) A type (C, resistor) A val (outpow (C),V) (1.5.4)
— wval(inpow (C), V)
ab (C) A type (C, resistor) — val(outpow (C) , zero)

—ab (C) A type (C, motor) A val (inpow (C) , V') — val(outpow (C),V)
—ab (C) A type (C, motor) A val (inpow (C), V') — val(speed(C), V)
—ab (C) A type (C, motor) A val (speed (C), V) — val(inpow (C), V)

ab (C) A type (C, motor) — —wal(speed (C) ,nominal)
ab (C) A type (C, motor) — —wal(outpow (C) , nominal)
(1.5.5)

70 Real-Time Predictive Maintenance

Note that in the above model we do not distinguish values to be higher or
lower than expected. Instead, we state that the speed (power requested) is not
allowed to be nominal in case of a fault in the e-motor. This formalization
captures the faulty behaviour required for diagnosis in the mentioned use
case. However, we are also able to come up with a model considering different
faulty states (and not only ab).

The described model formalizes the behaviour of the components. What
is missing, is the description of the structure of the system. In our case, we
have 4 components, i.e., a battery b, a switch s, a resistor r, and a motor
m, that are directly connected. We first, declare the components via stating
logical facts:

type (b, battery) A type(s, switch) A type(r, resistor) A type(m, motor)

(1.5.6)

Afterward, we define the connections between the components using the
predicate conn:

conn (inpow (s) , pow (b)) A conn(outpow (s) , inpow (r))

conn (outpow (1) , inpow (m)) (1.5.7)

To complete the formalization, we state that values are transferred via a
connection (in both directions), and that it is not allowed to have different
values on any connection:

val (X, V) Aconn (X,Y) — val(Y,V)
val (Y, V) A conn (X,Y) — val(X,V) (1.5.8)
—(val (X, V) Aval (X, W)ANV #W)

This logic model can be now used for diagnosis. Note that in this context a
diagnosis is a setting of health states to components. Hence, we are interested
in assigning either ab or —ab to any component, e.g., in our case b, s, T,
and m considering the given observations. In Table 1.5.2, we summarised
the diagnosis results obtained when using the diagnosis engine described
in [2] and the model introduced in this section. Based on the foundations
elaborated in [2] we introduced a more complex physical system also taking
the factor time into consideration for observation to show the efficiency of the
developed diagnosis method for a broader field of application.

We see that in case of the second and third observations, we only obtain
the motor being responsible for the deviation between the expected and
the observed values. Note that this — because of the formalization — states
that the load is higher than expected. The required diagnosis time was less

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 71

Table 1.5.2 Diagnosis results obtained using model-based diagnosis.
Section Observation Diagnosis

(1) of f (s) —ab(b) A—ab(s) A—ab (1) A—ab(m)
A val (pow (b) , nominal)
A wval (speed (m) , zero)
A val(outpow (m) , zero)
[2) on (s) —ab(b) A—ab(s) A—ab(r)Aab(m)
A val (pow (b) , nominal)

A —wal (speed (m) , zero)

A —wal (speed (m) , nominal)

A —wal(outpow (m) , zero)

A —wal (outpow (m) , nominal)
(3 on (s) —ab(b) A-ab(s) A-ab(r)Aab(m)
A val (pow (b) , nominal)

A —wal (speed (m) , zero)
A —wal (speed (m) , nominal)
A val(outpow (m) , zero)

than 0.0021 seconds for all observations. It is also worth noting that the
observations represent our knowledge. For @ we know that the speed and
the power consumption (the latter represented using the port outpow) are
both not nominal and also not zero. Similarly, we represent the observations
for €.

In summary, the provided model was able together with the given
observations to come up with the expected solution. No other single fault
diagnoses were obtained in any case. Modelling relied on the assumption of
the particular fault case, and the transfer of power through the circuit. This
simplified model may not be appropriate in all cases. Diagnosis time was
very short making the approach feasible for this kind of application having
a limited smaller number of components and taking care of simple models.
Modelling, however, has always been an issue and more sophisticated models
are maybe required for other application scenarios. The presented approach
assumes that a simulation model (a-kind-of a digital twin) is running
concurrently for allowing to generate observations.

1.5.2.3 Simulation-Based Diagnosis for Simplified DC e-Motor

The idea behind the simulation-based diagnosis is to make use of digital twin
models to simulate pre-configured faulty behaviour and thus find correlations
with the original cyber-physical system’s measured values, which allows to

72 Real-Time Predictive Maintenance

diagnose faults as well as fault combinations and the correlated root causes
of a physical system.

To diagnose a physical system with a simulation-based approach we
use a system to induce fault modes to measure relevant signals to gather
information about the behaviour under these configurations. This can be
performed on a real system or at least on a digital twin (simulation model)
with the ability to perform fault injection and output all relevant measured
signals. To use the knowledge about the behaviour under fault conditions is
the main idea of the simulation-based diagnosis approach. This leads us to
the question of how to use the measured information to detect a fault system
and additional to diagnose the root cause of such a faulty behaviour?

The main part of the simulation-based diagnosis approach is a precise
cyber physical model, or a simulation model of the physical system (digital
twin) with the capability of fault injection. Besides that, the algorithm itself
is categorized into three subsections. First the reference data, a pre-simulated
fault data generation for the diagnosis, second the model signals processing,
a preparation phase of the measured model signals on which the diagnosis is
performed and last the diagnosis phase where the measured data is brought
into comparison with the pre-simulated fault reference data to find the best
correlation and compute diagnoses to explain the actual system behaviour.

To evaluate the simulation-based diagnosis approach on the DC e-motor
model we use the FMU version of the simulation model running in a python
environment instead of a real system to produce fault reference data for the
diagnosis method. In addition, we used another instance of the simulated
DC e-motor model as a system to be diagnosed. We set the focus on the
diagnosis of the faults in regards to the motor and torque parameter. As stated
in Table 1.5.1 the motor and load state can be set with different modes.
However, for the validation we concentrate on the specific faults as empty,
f1 and f> for the motor as well as f; and f> for the torque. In addition, we use
the ok state to diagnose a health system as a reference to a faulty system.

loadsigte € {Oky empty, fla f2}
motorstate € {0k7 f17f2}

To generate the reference data for diagnosis, the simulation is configured with
the option to inject faults at runtime. To generate a reference dataset with a
broad range of different scenarios and signal behaviour characteristics, the
fault states f; (loadstate, MOtorsiqate) are injected at various time points
and initial parameters of the DC motor model simulation. Besides the single
fault injection, also all possible combinations of faults are considered to cover

(1.5.9)

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 73

most of the feasible fault diagnosis. While performing the simulations with
fault injection, we measure the most significant signals 72 (1.5.10) of the e-
motor model as the battery current ¢ and voltage u, the motor rotation speed
w and angular acceleration « at a sampling rate of 0.001 seconds.

s () € {i(t), ult), w(t), alt)} (1.5.10)

Next the observations 7, are processed with a moving average method (see

equation (1.5.11)) on a time window Aw of 0.05 seconds. With the moving
average we obtain an averaged signal value for each time step we simulate.

z (t) = %sz(t—i) o= Aw (1.5.11)
=0

The average is built since we perform the diagnosis based on an averaged
time window Aw to avoid losing information during state changes and quick
responses. The averaged reference data Zr (1.5.12) is stored in a table for
later usage in the diagnosis algorithm. Since all fault states f, are known
for every measurement, we obtain a labelled dataset as reference data. The

corresponding state information is appended to the reference data in the table.

E%:[:ETO cor Trn o Jload .fmotor] (1.5.12)

After generating the labelled reference data Z7, we can run the DC motor
simulation with the option to measure the signals ZZ as mentioned before
with a sampling rate of 0.001 seconds. For the diagnosis we constantly store
the latest signal values within the same time window Aw length as selected
for the reference data (0.05 seconds). By selection of an equal-sized time
window, it is possible to make a direct comparison on the reference and
measured data. The diagnosis is requested continuously within a time interval
of 0.4 seconds. With every request, the latest measured signals are averaged
at the request time point equal to equation (1.5.11) and result in Zn. The
generated averaged measured signal vector Z,, is further used in the diagnosis
process.

Within the diagnosis process the highest correlation between the averaged
measured signals and the averaged reference data is searched. After the global
minimum of the deviation is found, the related reference signal 7 is read out
to get access to the parameter states f, used as a label for the reference data.
Finally, the identified states f; (fioad and fimotor) are returned as the actual
diagnosis. Figure 1.5.3 shows a detailed description of the complete diagnosis

74 Real-Time Predictive Maintenance

[Real Time)| (PreSimalation)
\\‘--.-.-.-.-__ & % Avg. ref. data

JE— x

’”'%x_ =B = Sy -
7%,

L5 =t

%, LE

Yk %

Reference Data

Dy

myt
=[tmo -~ *mp] = [Xm%g - Fmdy] i [

Dy

Dy = min(D)

d = idx(Dyy D)

DIAG=%;,(fo - f})

Figure 1.5.3 Simulation-based diagnosis algorithm description.

algorithm equations for the search process starting with a triggered diagnosis
based on the averaged measured signals Zn, and reference signals x;.

Figure 1.5.4 illustrates the e-motor simulation, where the first three graphs
show the battery current flow, the motor angular velocity and the angular
acceleration over a time of 5 seconds. In addition, the markers indicate a
diagnosis request of the system, whereby a green dot depicts a health system
and a red cross means that a fault is detected at this point by the diagnosis
algorithm. The last graph describes the actual set of states f, in the e-motor
simulation (blue rectangle) and the system diagnosis (red arrow), whereby
the diagnosis holds until a change in diagnosing is recognized.

We see that the system starts at health conditions (ok). After the first
second the load fault f; (high load) is injected into the DC e-motor simulation.
The algorithm recognizes the fault and returns the correct diagnosis. At the
time of 2 seconds, the system is brought back to health conditions for 1
second when the motor state is set to fault fo (66% inductivity and resistor
value lost). Since this fault is injected within a transient zone where no
diagnosis request is triggered, the fault is detected with the next diagnosis
request what explains the time delay of the diagnosis. With a higher diagnosis
request rate, we obtain faster results, but this is limited in terms of real time
diagnosis and the necessary computation time. The last fault injection into
the system is a combined fault, it consists of a motor fault f> and a load fault
f1. The fault is again recognized and diagnosed correctly by the algorithm.
We see again a delay between the injection and the computed diagnosis, due
to the selected diagnosis interval of 0.4 seconds.

From this we conclude that the simulation-based diagnosis system is
worth to be considered for further research since the overall algorithm is
easy to implement and the system is robust in detecting different kinds of

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 75

—— Battery | [A]
o5 —e— DIAG: OK
—— DIAG: FAULT

Battery | [A]
|
-
)

—— Motor angular vel. [1/s]
—e— DIAG: OK
= DIAG: FAULT

Motor angular vel. [1/s]
L
o

0 1 2 3 4 5

—— Motor angular acc. [1/5"2]
—e— DIAG: OK
=¥ DIAG: FAULT

Motor angular acc. [1/s°2]

0 1 2 3 4 5
SET STATES SET STATES SET STATES SET STATES SET STATES — time-line
«» | mot_state: ok mot_state: ok mot_state: ok mot_state: f2 mot_state: f2
2 | tor_state: ok tor_state: f1 tor_state: ok tor_state: ok tor_state: f1
z
»
> | | N2 | |
2 I ! ~ I I
g
o DIAGNOSE DIAGNOSE DIAGNOSE DIAGNOSE DIAGNOSE
g motor_s: ok motor_s: ok motor_s: ok motor_s: f2 motor_s: f2
load_s: ok load_s: f1 load_s: ok load_s: ok load_s: f1
0 1 2 3 4 5

time [sec]

Figure 1.5.4 Simplified DC e-motor diagnosis observation with simulation-based diagnosis.

faults and fault combinations if the faults to be diagnosed are known and the
digital twin is able to simulate the behaviour precisely enough. Weaknesses
are zones where different faults can raise similar characteristics during the
initial phase that may result in wrong diagnoses. The reference table can also
cause problems in terms of storage space, if too many different faults and
fault combinations need to be diagnosed, which also has a direct negative
impact on the computation time. Since we are only interested in short sections
starting with the fault injection and ending when signals reach a certain
equilibrium level, the storage of reference data is minimized.

1.5.2.4 Machine Learning for Diagnosis of Simplified DC e-Motor

As already discussed, that machine learning algorithms are not unfamiliar
with the domain of fault diagnosis. There exist classes of algorithms e.g.,
Support vector machines, Decision Tree, K-Means, etc., which can be utilized
to solve a complex problem related to fault diagnosis. For this case study, fault

76 Real-Time Predictive Maintenance

diagnosis of DC motor, we modelled the fault diagnosis problem with one of
the ensembles-technique-based machine learning algorithms called Bootstrap
Aggregation (Bagging). We have multiple fault states of the simplified DC
motor for the diagnosis. Hence, we will use a classifier model for the
classification task. We already have faulty behaviour simulated for each faulty
state, that’s why we adopted a supervised methodology to train the model.
Now we will discuss the methodology for the fault diagnosis using machine
learning in more detail.

In a classification problem, machine learning models take input of
predictor variables corresponding to the dependent variable. In this case
study, we have nine predictor variables and two dependent variables namely
loadstqte and motorgqee Of the e-motor system. Dependent variable loadsiqte
and motorsqee have a set of categorical labels defined as shown in (1.5.9).
In order to transform the problem into the multi-classification problem, we
combined the loadsiqte and motorsqte and introduced a new variable called
target defined as follows:

target=Iloadgsqte MOLOT sqte (1.5.13)

Finally, the distribution of the dependent variable is almost equally divided
into faulty and non-faulty categories i.e., 42% and 58% respectively. As the
dependent variable has the sequence of values across predictor variables,
therefore, a machine learning model can be trained to learn the underlying
pattern associated with each state of the system. As there are more than
two states, a multi-classification model is trained as opposed to binary
classification. Furthermore, as machine learning models require data to be
numeric, we encoded the dependent variable with a label encoder in order
to train and evaluate the model performance. Label encoder simply assigns a
unique numeric integer value to a categorical label.

As discussed earlier that we used Bagging algorithm for the modelling,
Random Forest is one of the machine learning models from Bagging
classifiers. Random Forest is a bagging technique that simply combines
(average) the outcome of multiple models and makes more accurate
prediction than one model.

Model selection is one of the important and crucial parts of the training.
The main reason to select Random Forest is that it performs well on both
large and small datasets, and it can select the best subset of features that
perform better and adds more information into the modelling. There is a
number of hyper parameters associated with most of the machine learning
models which can be fine-tuned to achieve the best performance. In this case

1.5.2 Application of Diagnosis Systems Based on Simplified DC e-Motor Model 77

Box Plot F1-macro: 10 Fold Cross Validation

09844 { TR

0.9842 1

0.9840 4

09838 1

0.9836 4

0.9834 1

0.9832 4

0.9830 { _

1
Fl-macro

Figure 1.5.5 Box plot 10-fold cross validation.

study we used the important parameters for random forest i.e., n_estmiators
= 100, criterion = gini, min_samples_split = 2, min_samples_leaf = 1
etc. to train and evaluate the model. For the evaluation of the model, K-
fold cross-validation is used where k=10. K-fold cross-validation is used to
ensure that the model is not overfitting [1] and it generalizes well. In this
setting, the dataset is randomly divided into K chunks, and K models are
trained on each chunk. Each model is trained using K-/ chunks and validated
on the remaining dataset. Finally, as an evaluation metric, we used FI-
macro (macro-averaged), used to assess the quality of the model for multiple
classes. Fl-macro is an average of label-wise F1 scores, whereas the F1
score is basically a harmonic mean of precision and recall. For each fold,
the Fl-macro is calculated, and then averaged score for 10-folds is used to
evaluate the performance of the model. Once the model is passed through
the validation process to estimate the overall performance, the final model is
trained and tested on the test data. Please note that the test data was not part
of the training and validation process.

Next, we will discuss the results obtained from the diagnosis using the
machine-learning model. Figure 1.5.5. shows the distribution of FI-macro
over the 10 folds. For each fold, our model performs well as there are no
outliers. The average score for 10-fold cross-validation is 0.9838, which
shows that model was able to classify and detect the faults correctly, for most
of the states.

Figure 1.5.6. shows the confusion matrix for the test data, where each cell
along the diagonal represents the correct classification of diagnosis and the
rest of the cells show the misclassifications predicted by the model. Results

78 Real-Time Predictive Maintenance

Confusion matrix
2000

1750
flok 1000 o o

1500

1250

ok.f2 ° 798 202 1000

True label

750

250

& o
7 & &
Predicted label

Figure 1.5.6 Normalized confusion matrix - model testing/verification.

suggest that the model was able to correctly diagnose two faults i.e. {f1, ok}
and {0k, ok}, whereas we have very few misclassifications for faulty state
{0k, fo}. The F1-macro score for the test data is 0.9465. Results indeed show
that machine learning can be useful for the fault diagnosis of the e-motor.

From this, we conclude that we developed a machine learning algorithm
to classify the faulty states of the DC e-motor, based on the sequence of
variables. Results indeed suggest that machine learning algorithms have the
potential to learn the fault behaviour of the DC e-motor system. Although,
there are few misclassifications of the faulty states, but it is indeed part
of the learning as learning cannot be perfect. Bagging algorithms take the
decision from multiple models. Hence, these algorithms have the ability to
perform well. It is important to note that learning highly depends on the
quality of data, as the model learns from the underlying distribution of the
data and correlations (if exist). Results also suggest that each faulty state
has the learning curve associated with it, as a result, advanced machine-
learning algorithms e.g., boosting, neural networks, and deep learning can
be tested and evaluated for future work. As machine learning algorithms are
not pre-programmed, it gives them the advantage over other traditional faulty
diagnosis techniques.

1.5.3 Conclusion 79

1.5.2.5 Comparisons and Limitations

The used underlying methodology has some limitations due to the
assumptions required. In the following section, the limitations and problems
of each applied diagnosis algorithm on the DC e-motor model are
summarized for comparison reasons.

The model-based diagnosis uses a detailed logic representation describing
the model’s components separately from the available simulation model. The
logic models may be made for a particular purpose, e.g., hardware diagnose,
and must be adapted to serve other goals, e.g., design diagnose of a system.
Since the logic representation of complex cyber-physical systems is applied,
the diagnosis is limited to observe state changes. Therefore, abstraction might
not be that simple to map to real behaviour without ambiguity. Further,
there is a lack of tools supporting the development and easily going through
obtained results.

The simulation-based approach uses digital twin models directly to
simulate healthy and faulty behaviour. The used parameter and obtained
outputs from the simulation are analysed, processed, labelled and stored in
a lookup table for further usage as a reference basis for the diagnosis search
algorithm. The main requirement for this approach is to generate an accurate
representation of the real system with the capability of fault injection. In
addition, the faults and fault combinations must be previously defined to
be able to diagnose them. With an increasing number of possible faults,
limitation factors as computation time and storage space come to the fore.
Another limitation is the adaptability to hardware or parameter changes in the
real system, since a precise and realistic behaviour representation to obtain a
correct diagnosis is needed.

Machine learning for diagnosis uses labelled reference data to train the
system. Since the algorithm depends on the quality of the observed labelled
data it is essential to have access to a precise simulated representation of
the real system. Variability in the system hardware or parameter requires the
machine learning model to be retrained which takes up an enormous amount
of time. Models usually do not generalize well, and when deployed in real-
time, results are affected by the data points which were not part of the training
dataset. In addition, model selection is a crucial part of learning. Results may
vary based on the model selected for the type of data, e.g., sequential and
non-sequential and underlying distribution of the data. Further, if the labels
of the fault type are not simulated properly the model will be biased towards
the noise and the misclassification rate increases.

80 Real-Time Predictive Maintenance

1.5.3 Conclusion

For the simplified DC e-motor, we introduced two types of components
(motor, load) with the ability to inject faults as resistor and inductivity loss
and a varying load factor. Based on this model, three methods, model-based
diagnosis, simulation-based diagnosis and machine-learning diagnosis are
introduced to be able to detect unexpected behaviour and outline its root
cause. The model-based diagnosis method uses a logical representation of
the simplified DC motor model to identify abnormal state changes. With
this approach, we were able to come up with the expected solution in the
particular case applying a high load fault during normal operation, still, the
modelling complexity increases for more sophisticated models.

The simulation-based approach makes use of digital twin models directly
to simulate normal and faulty behaviour to cover possible scenarios which are
of interest for the diagnose part. The measurements and the corresponding
state parameter are stored and used as reference data for the diagnosis search
process during real-time observation of the simplified DC motor model.
The simulation-based diagnosis approach delivers accurate diagnoses in real
time with the limitation that only pre-simulated faults are considered to be
diagnosed.

The last approach is the machine-learning diagnosis, which is capable
to classify the faulty states based on the real-time measured signals of the
model. As training data for the bagging algorithm, we use the simulated
labelled reference data from a simulation-based approach which already
covers different behaviours caused by fault injection. The machine-learning
diagnosis model is validated with a 10-fold cross-validation method and the
verification is done on unseen data which was not part of the validation set.
We generated new instances of the system under test using the simulation-
based approach architecture to run the DC e-motor model simulation to test
the machine-learning diagnosis model.

Acknowledgements

This work is conducted under the framework of the ECSEL AlI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European UniondAZs Horizon 2020
research and innovation programme and Germany, Austria, Czech Republic,
Italy, Latvia, Belgium, Lithuania, France, Greece, Finland, Norway. The

References 81

work was co-funded by grants of Ministry of Education, Youth and Sports
of the Czech Republic, by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) under the program “ICT of the Future”
between May 2019 and April 2022 (more information can be retrieved
from https://iktderzukunft.at/en/). The work was also supported by the
infrastructure of RICAIP that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 857306 and from Ministry of Education, Youth and Sports
under OP RDE grant agreement No CZ.02.1.01/0.0/0.0/17_043/0010085.

References

[1] G.a. W.D.a.H.T.a. T.R. James, An Introduction to Statistical Learning:
with Applications in R, Springer, 2013.

[2] Kaufmann, D., Nica, 1., Wotawa, F.: Intelligent agents diagnostics
- enhancing cyber-physical systems with self-diagnostic capabilities.
Advanced Intelligent Systems, 2021. DOI https://doi.org/10.1002/ai
sy.202000218.

https://doi.org/10.1002/aisy.202000218
https://doi.org/10.1002/aisy.202000218

