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Abstract

In this article, we discuss the use of artificial neural networks for monitoring
and diagnosis to be used in the context of real-time predictive maintenance.
There are two use cases analysed here. As a first one, we discuss the
motor model used for diagnosis in detail. In particular, we introduce a
detailed acausal six-phase e-motor model to be used for different stator
and inverter faults simulations. The inter-turn short circuit fault is targeted
here. Simulation data and data measured on a real custom-made six-phase
motor with the ability to emulate this fault are pre-processed based on the
mathematical analysis of the fault. Such data are then used for modular
neural network training. The trained modular neural network is optimized
and deployed into the NVIDIA Jetson platform. The second ANN presented
in this article is designed for bearing fault detection based on vibration
measurements. The vibration data taken from publicly available datasets
are transformed into suitable condition indicators which are analysed by
the multilayer perceptron network running on a PC in MATLAB with the
possibility to implement the resulting network into a small edge device. As
such, two use cases are shown how artificial neural networks can be used on
edge devices. Obtained results show that the approaches can be used in real
setups.
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1.6.1 Introduction and Background

This article focuses on the demonstration of Artificial Neural Network
(ANN) based monitoring and diagnosis of e-motors and mechatronic systems
implemented on the edge directly in embedded devices. It reveals a theoretical
analysis of existing methods provided in the article “Foundations of Real
Time Predictive Maintenance” and it can be viewed as its two use-cases.

1.6.1.1 Al-based Diagnosis of E-motors

There are many recent papers dealing with the Al-based diagnosis of e-
motors [1], [2], [3], [4], [5] and others. The authors describe the design of
the ANN and provide the success rate of the network evaluation, still they
either do not deal with on the edge implementation or mention that the
integration is in progress. This paper tries to reduce the complexity of the
proposed networks by suitable data pre-processing to be able to classify the
measured data on the edge platform represented with embedded Al hardware
and tends to practical implementation and the operation in real-time. The
integration of fault diagnosis and predictive maintenance algorithms as close
as possible to the motor try to support this trend. This article demonstrates
Al-based diagnosis and predictive maintenance for e-motor running on the
edge. The diagnosis discovers the issues which are potentially dangerous for
the operation if they are ignored. Diagnosis combined with the redundancy
and integration of predictive maintenance tasks can substantially increase the
reliability and the availability of the powertrain.

Various methods to detect faults and unexpected behaviour of cyber-
physical systems were proposed [6]. These methods require a large amount of
experimental data for the learning process, or well-known system behaviour
described by the model. Modelling a healthy system is a relatively simple
task, on the other hand, modelling the system under fault conditions can be
challenging. For instance, commonly used causal modelling methods can be
used to create a healthy motor model, however, modelling of fault behaviour
of the electric motor using causal models is difficult [7]. For these reasons,
an acausal modelling approach was selected since it brings many benefits [8].
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This type of model can be created in MATLAB/Simulink using Simscape or
other simulation methods and tools like Modelica.

The requirements on e-motor safety integrity levels are continuously
increasing. It holds for the motor for fully or hybrid electric vehicles as well as
for common industrial motors. For the e-motor, it is demanded by the braking
capability of the e-motor which is good for the energy recuperation, and
by the progression towards autonomous cars. In industrial applications, it is
required due to a higher level of automation and precise production planning.

1.6.1.2 Artificial Intelligence in Vibration Diagnosis

Nowadays, the Artificial Intelligence (Al) approach to vibration diagnosis
is growing significantly and machine learning as well as deep learning
algorithms, including neural networks (NNs), are becoming a part of vibro-
diagnosis [9]. Both approaches are used in practice — simple statistic-based
machine learning algorithms as well as complicated NN structures. Examples
of such methods can support vector machines, decision trees, Bayesian
classifier, Mahalanobis-Taguchi system etc., as representants of the machine
learning algorithms, and convolutional NN, recurrent NN, shallow dense NN,
etc., as representants of the deep learning techniques. The functionality of
the algorithms is mainly demonstrated on the publicly available datasets or
on real captured data on minor occasions. Success rate of the classification is
relatively high and reaches values over 98 %. Because of the lack of real data,
even describing many failures of the concrete machine, transferred learning
algorithms are in the scope of view of the scientific community in the last few
years. This procedure allows the algorithm to be learned using one type of
data captured on one machine, transfer the knowledge and classify the faults
on the second machine without prior training using data of such machine.

1.6.2 Artificial Neural Network for e-Motor Diagnosis

This section provides the first use case of ANN for the inter-turn short circuit
fault detection in a six-phase motor. It is composed of two subsections. The
first one outlines acausal e-motor model, which is used to prepare training
datasets with the fault, which are either not realisable on a real customised
motor or prepared faster and complement datasets from the measurements on
a real motor. The second one presents the steps from the selection of suitable
condition indicators, through the data pre-processing, MNN design, training,
validation, towards MNN deployment on NVIDIA Jetson Xavier platform.
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1.6.2.1 Acausal e-Motor Model with Faults Injection Capability

This section outlines the development of an acausal e-motor model for the six-
phase motor (connected as two three-phase sub-systems) which is capable to
inject several typical Permanent Magnet Synchronous Motor (PMSM) stator
faults. This model was parameterized for the correspondence with the real
custom-made motor equipped with many windings taps enabling to emulate
these faults. They both can serve as sources of datasets for the ANN training
and validation which is capable to diagnose the inter-turn short circuit fault.

The Simscape allows building physical component models in Simulink
in a fast and natural way. Components and physical connections are directly
integrated within block diagrams and other modelling paradigms. Individual
Simscape components interact with each other. Each Simscape block is
represented by a set of equations that describe the physical behaviour
of components. Equations are automatically processed during the model
compilation process. The motor converts electrical energy into mechanical
rotating energy. The mechanical rotating components as the moment of inertia
or friction block can be used to create the simple model of a motor mechanical
part. The motor connection to the complex mechanical model is also possible
using Simscape.

The electrical part of the dual three-phase motor model can be described
by equation (1.6.1).

dLabclg iabclg
dt

Conversion of electrical energy into mechanical torque can be characterized
using the equation (1.6.2).
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The mentioned equation can be used to emulate healthy motor model
behaviour. This model can be extended and the equation for some coils are
split into the serial connection of two coils with mutual inductances. The
serial connection of the coils has the same behaviour as the original one. The
voltage potential of any place of the original coil can be subsequently used to
simulate electrical fault. This approach is demonstrated in Figure 1.6.1.

The variable M represents mutual inductance between the coil L and other
motor windings. R represents windings resistance. Variable e denotes the
influence of back-EMF voltage in windings. Parameter o represents a division
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Figure 1.6.1 Winding equivalent for extended motor model.

ratio. The position of fault occurrence can be specified using this parameter.
The coil splitting process is describable by equations (1.6.3).
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This description was used to create an acausal model of the dual three-
phase machine able to emulate various internal motor faults. Internal short-
circuits as well as disconnections in phases can be simply simulated. Figure
1.6.2 demonstrates various motor faults which can be simulated as well as
emulated in the real motor. The model is used to generate important data sets
for both healthy and faulty motors and for the transients from healthy to faulty
states. These data sets can be used to train ANNs and for their validation.

1.6.2.2 Artificial Neural Network for Inter-turn Short Circuit
Detection

This section shows the design of the DNN for inter-turn short circuit
fault detection of PMSM. It starts with real experiments which were
performed using the experimental motor with multiple windings taps which
are capable to emulate this type of motor fault. The experiments helped
with the selection of suitable condition indicator for fault detection. Further
subsections describe data pre-processing, preparation of datasets and the
process of training, validating and final deployment of DNN on embedded
hardware.
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Figure 1.6.2 Simulated/Emulated faults in extended motor model / experimental motor.

1.6.2.2.1 Selection of suitable condition indicator for fault
detection
Figure 1.6.3 demonstrates phase currents of both healthy and damaged motor
sub-systems (only currents in the damaged sub-system are shown in this
figure). Figure 1.6.4 shows phase currents transformed into dg coordinates.
In this case, currents of both sub-systems are visible. As it can be observed,
currents of damaged sub-system contain significant noise and distortion in a
form of a significant second harmonic component. This is in accordance with
the mathematical analysis of this fault as it is described e.g., in [8] and [11].
Phase currents or phase currents transformed into dg coordinates could
be used as inputs to recurrent NN. This type of NN can filter the noise
and consider not only the actual measurements but also previous ones.



1.6.2 Artificial Neural Network for e-Motor Diagnosis 89
5 Phase motor currents (Heatty) Phase motor currents (Interturn short-<circuit)
‘U'Il i i \ Phase A - Phase A
Iy | h ™M Phase B | Ly &} | A Phase B [}
10 Iur.ﬂ f i l" My \r b .'\' Phase G | =0 \ { | | Phase G
™ [T A \ | | |
| | E‘ \ / \ 1 / H L, | | | 1 | | I\
5 | i 1 i | 1 | i 10 | / + b | \f | [
z \ A A A A z T AV R N { | /
= VA v M\ = / N \ N R
= \ bt d V. i | [= | I f i L
g H 7 v / 2 0 f {4 i J
s h N W T M N NI L SR T LU Y A A
o (W ¥ S T I N O | 1 [ ] I
| | | \ \ I | f\ \ )
B | | i \'1 | | 10 f | / | \ 1 f {
| AN . \ 7 A A (VI A
N | \ Iﬁ‘|' 1 bd I A | | If A \ /
-0 lf\ A-"‘ Loy l\‘wl ; LR 20 1] — \ \ \
v \I?‘ o W'r' W ! \W '3
-15 30
83 83.005 83.01 83.015 83.02 83 83.005 82.01 83.015 83.02
Time [s] Time [s]
Figure 1.6.3 Phase motor currents (healthy/with fault).
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Figure 1.6.4 Motor currents in dgq coordinates (healthy/with fault).

The computational complexity of such a NN would be high. On the other
hand, linear NN would not be able to detect this fault properly using actual
measurements as inputs due to high measurement noise. This problem can be
overcome by suitable data pre-processing using the filtration method which
is described later in this article.

Figure 1.6.5 shows low pass filtered motor current magnitudes in af3
coordinates in both sub-systems. The magnitudes should be constant and
independent of the motor electrical angle for the ideal motor and power
inverter operating in steady-state; however, the sixth harmonic component is
visible in both healthy and faulty waveforms. The sixth harmonics component
is generated especially by the dead-time effect. Analysed inter-turn fault
causes a significant increase of the second harmonic component which is
nicely visible in a8 current magnitude waveform.



90 Real-Time Predictive Maintenance

i Currents magnitude in o/ coordinates (Healty) Curéeéms magnitude in o coordinates (Interturn short-circuit)

1
R SUB1 ke
135 sugz2 (1 P ~
\

SuB1
SuB2

Amplitude [A]
]

T
Amplitude [A]
o
=

10 . 15
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Figure 1.6.5 Filtered data in 3 coordinates (healthy/with fault).

From the analysis above it is evident that the second harmonic component
in filtered currents during one electrical period is a good condition indicator
for the inter-turn short circuit fault.

The slight drawback is the fact that the number of measured data during
one electrical period depends on motor speed. To suppress this drawback,
the whole current waveform is converted to 60 data points per electrical
period per sub-system. This fixes the length of the data buffer for its easier
processing with ANN.

1.6.2.2.2 Network structure selection

The designed ANN is composed of several ANN modules, and as such, they
form a Modular Neural Network (MNN). Filtered magnitudes of current
waveforms in both sub-systems are used as inputs into the MNN. To increase
fault classification precision, also filtered magnitudes of voltage waveforms
are used as inputs. Currents represent the motor torque, while voltages
carry the information about the rotational speed. Figure 1.6.6 shows the
proposed structure of the MNN. The symmetry of the motor is reflected in
the symmetry of data processing in MNN.

1.6.2.2.3 Data pre-processing
Inputs into the MNN consist of four buffers. Each buffer has 60 elements.
The buffers are created from actual measured current/voltage magnitudes in
both sub-systems.

Used filtration method is based on sixty IIR filters per MNN input. Only
one filter with index ¢ is active at a time depending on the actual motor
position ¢, in degrees.

i = floor(¢pe,,,, /60) (1.6.4)
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Figure 1.6.6 MNN structure used for inter-turn short circuit detection.

Input data updating occurs once per motor control period which is set to 100
micro us. Filters are described by the following formula:

Yigey = Kttigy + (1-K) Yi(k—1) (1.6.5)

where the filtering constant K is set to 0.01, k is step related with the control
period of the data generation and u; , denotes one of the inputs.
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Outputs of the filters are grouped into the buffer. This buffer is used as an
input to MNN and it contains filtered signal along one electrical period.

1.6.2.2.4 Preparation of datasets

Fault symptoms that can appear in PMSMs depend not only on the emulated
fault type but also on the motor operating point (motor speed, load torque,
problematic stator phase). For this reason, a large amount of training data is
required to cover all possible fault states in all operating conditions.

Datasets measured on the real motor were obtained under various
motor speeds and torques. Randomly generated transients between randomly
selected electrical speeds in the range from 200 to 3000 rad/s and with
different torques in the range from O to 10 Nm (the breaking torques were
not used for learning and not for validation) were used to generate training
datasets. Simulated data using the motor model were used to generate
complementary datasets under the fault condition because these experiments
are time-consuming on a real motor. The fault current is high and causes fast
local overheating of the motor and it is always necessary to let the motor cool
down after such experiments. The experimental motor also does not enable
to make the short-circuiting between an arbitrary couple of turns of the coil.
And this is the second reason why simulated data are used to prepare missing
datasets advantageously.

The motor symmetry was employed to extend datasets with the faults
in different motor phases. Phase currents and voltages were re-grouped in
different orders to prepare the training and validation data for the six-phase
(two times three-phase) motor. This solution helped to prepare additional
datasets for learning/testing without the necessity to simulate/experiment
with each phase and each sub-system separately. This approach significantly
reduced the time needed for the dataset preparation.

1.6.2.2.5 MNN training

The network from Figure 1.6.6 was trained from the mixture of real
measurements and the data coming from the simulations using the acausal
motor model on a workstation PC in the environment of MATLAB using
pre-processed datasets as described in the previous two sections.

1.6.2.2.6 MNN validation

The capability of MNN to diagnose the inter-turn short circuit fault was
validated using data from the real motor only. Three turns of the stator
winding coil were short-circuited. It represents 3/7 of the stator coil in one
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slot. Validation datasets were measured on the real motor in a similar way as
the ones for training. Data used for training were not used for the validation
at the same time. The fault was successfully classified with the probability of
99.92 %. When the fault depth was lower, the fault detectability was slightly
reduced.

The fault detection below 200 rad/s is significantly less precise, but the
severity of the fault is also lower, and it is usually not harmful for the motor.

1.6.2.2.7 MNN deployment

The designed and trained network was implemented in NVIDIA Jetson
Xavier platform using GPU coder in MATLAB. This NVIDIA platform was
connected with the inverter controller using Ethernet. The controller sends
required voltages and currents. The data pre-processing can run in both, in
the controller or in the NVIDIA platform.

After the fault injection into the model simulation, it requires only 1.1 ms
for classification with a success ratio of 99.92%. The latency of the Linux
running on the NVIDIA platform spans up to 100 us with the provided
JetPack software. Other operating systems designed for hard real-time like
RedHawk Linux exist and significantly improve the latency issue.

1.6.3 Artificial Neural Network based Vibration Diagnosis

This section is devoted to the design of the second use case, which is ANN
for vibration diagnosis for the bearing state of health monitoring. The first
subsection deals in general with the vibration diagnosis of rotating machines.
The second subsection analysis Al approaches in vibration diagnosis. The
third section presents the developed MLP network.

1.6.3.1 Vibration Diagnosis of Rotating Machines

Vibration diagnosis of rotating machines is a commonly used technique in
technical diagnosis and faults identification. Not only typical mechanical
failures, such as unbalance, misalignment, gears, and bearings problems
can be advantageously diagnosed, but also electrically caused failures
may be simply found. Nowadays, electrical faults are diagnosed mainly
using electrical quantities measurement, however, mechanical vibrations
measurement can be very helpful in the detection of electrically hardly
detected faults. On the other hand, vibration-based diagnosis is capable to
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reveal the faults undetectable by measurement of only electrical quantities.
There can be two reasons for this fact:

* Manifestation of a fault in the electrical signal domain is quite weak
(e.g., in the initial phase of the fault) and cannot be correctly measured
due to small signal to noise ratio, while the vibration signal provides
successful information for sufficient detection of the fault.

* Given fault does not have an image in the electrical domain, thus the
measurement of mechanically generated signals is helpful for successful
fault diagnosis.

Thanks to the aforementioned aspects, vibration diagnosis is a widely used
part of the diagnosis and predictive maintenance of rotating machines,
including e-machines.

1.6.3.2 Al Approaches in Vibration Diagnosis

The algorithms, statistical procedures, and NNs are usually created, learned,
and finally inferred on computers, both standard personal computers, and
advanced powerful multicore computers with the support of dedicated
graphic cards with multicore graphic processors. Also, specialized dedicated
hardware such as the NVIDIA Jetson platform is commonly used thanks to
relatively small dimensions and high computational performance compared
to standard computers. A typical application area for this kind of hardware
is Computing-at-the-Edge (CatE) nodes. Insignificant limitations in available
memory and performance, rather typical for small size CatE sensors, shall
also be taken into consideration. Finally, implementation of the NNs into
small sensors or CatE nodes is a relatively challenging process because
of limited resources, mainly available memory, computational performance,
power consumption as well as the speed of inference of the algorithm. It
is very common, that NN creation, learning, and validation process is done
using a powerful computer, NN structure and parameters are exported from
the IDE and imported into this small performance device as a functional
and successfully learned algorithm. A NN is then executed on the target
hardware with no need to learn the overall structure of the network. It is
good to mention, that by the small performance device is understood a
simple microprocessor with several kilobytes of read/write memory, max.
a megabyte of program memory, core frequency of about several hundreds
of MHz and typical performance of around 100 DMIPS (Dhrystone Million
Instructions Per Second). For comparison, typical Jetson NANO hardware
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has 128 core GPU, 4GB of internal RAM, and is capable of processing around
1600 FLOPS.

Because the performance of the system, as previously mentioned, can
be somehow limited, it is good to reduce the amount of input data by pre-
processing procedures. Not only the NN algorithm itself, but also other
necessary code needs to be executed inside the processor to ensure the
basic functionality of the system (e.g., communication with sensing elements,
drawing graphics on display to communicate with the user, peripheral service
routine, etc.). Signal pre-processing leads to reduction of the input data and
in fact to the reduction of the size and execution time of the Al algorithm. In
the vibration diagnosis, two types of extracted features are usually used:

* Time domain features — features calculated from the time signal, mainly
statistic parameters like RMS value, standard deviation, kurtosis etc.
Translated domain features — features calculated from translated domain.
Frequency transform, Hilbert transform, Gabor transform, Z-transform,
etc., are the most used transforms in the vibration diagnosis. It is good
to mention, that not the whole e.g. frequency spectrum is used as
an input for the algorithm, but only some particular frequency lines
representing possible faults are led to the input of the NN. This brings a
significant reduction of the input data and computational complexity of
pre-processing algorithms.

1.6.3.3 MLP implementable in device at the edge

As an example of a simple and powerful NN algorithm for bearing faults
classification, Multilayer Perceptron (MLP) can be considered. Simple
shallow dense NN of a MLP type can be seen in Figure 1.6.7.

The network has one hidden layer and three layers in total (including input
and output layer). The number of input neurons is equal to eight, representing
eight input time-domain features. The number of output neurons is equal to
five, representing five output classes. Therefore, the network is trained to
distinguish between five faulty states of the input signal. Training dataset
used for this network is represented by publicly available CWRU bearing data
centre data. As this dataset is used by many scientists for evaluation of their
bearing faults detection algorithms capabilities, accuracy of different neural
networks can be found in the literature, e.g. [10], where maximal accuracy
of 99,92 % can be found. Dataset, containing data of healthy bearing state
and four degrees of bearing outer ring faults, was pre-processed and eight
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Figure 1.6.7 Shallow dense NN.

signal features have been extracted, namely RMS value, kurtosis, skewness,
variance, standard deviation, mean value and min and max value.

Inference algorithm of the network, as well as weights modification
procedure using back propagation method, have been implemented in
MATLAB environment. The output value of each neuron can be calculated

using equation (1.6.6).
N
y=f <Z w:c) (1.6.6)
i=1

Where w; is the vector of the individual weights wi,ws, ..., wn, X; is the
vector of individual inputs z1,z2, ...,z of the perceptron, and f(-) is an
activation function. In this case, sigmoid activation has been used.

It is necessary to adjust the initial weights values of the NN during
the learning procedure. The commonly used approach is based on back
propagation algorithm (gradient descend method). The goal is to adjust the
weights according to equation (1.6.7)

w(t+1) = w)(t) + Aw (1.6.7)

with the effort to minimize the output error, defined by subtraction between
desired (d;) and real (aj(z)) output values of the network (1.6.8).

E= % > (o - dj>2 (1.6.8)

J
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Figure 1.6.8 Mean square error of MLP during training phase.

The equation for final weights modification after partial derivatives of the
aforementioned equations and using mathematical operations can be written:

puo _ DB _0Bc 997 ox
j 3w;) 6a§-2) Oz aw? (1.6.9)

= (a(-z) — dj> . a§-2) <1 — a(-2)) A

J J
where a§2) is the output of the network, a§0) is the input of the network,
d; is the desired output and « is the learning rate of the back propagation
algorithm.

The final MLP ANN has been implemented in MATLAB and its
classification accuracy has been evaluated using Confusion Matrices (CM).
Mean square error (MSE) calculated according to Equation (1.6.8) during the
learning phase can be observed in Figure 1.6.8.

As it can be seen, MSE reaches very low values (below 2 %) at the end
of the learning phase, which has been confirmed by the CM obtained from
the output acquired during the testing process. Mentioned CM can be seen in
Figure 1.6.9.
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Figure 1.6.9 CM of the testing process of MLP.

Since the MLP was successfully implemented in MATLAB, there is a
strong intention to import the network in the low-performance CatE device.
Such a device can be represented by a small electronic sensor including a
sensing element and microcontroller suitable for MLP inference (e.g. ARM
based STM32 microcontroller). Once the structure of the network is created
and the weights of the network are established by the training process, a file
describing the structure of the network and weights values can be exported
from MATLAB and imported by STM Cube. Al application directly into a
microcontroller. Validation of the network is done on a PC within testing
phase, while validation of the resulting network implementable into STM
device is done within Cube.Al software. Afterwards, MLP will fully run
inside the target STM device.

To fulfil the requirements of the limited resources of the microcontroller,
a simple evaluation of the occupied memory has been done and it is listed in
Table 1.6.1 (considering implementation of float data type using four bytes).

This amount of total occupied memory of ca. 1.2 kB can be smoothly
implemented into small size memory of a microcontroller. Despite the small
size of the MLP network, the classification accuracy of the network is
satisfactory, as it can be seen in Figure 1.6.9 and the overall algorithm is
very well suited for this simple case of bearing faults classification. It is good
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Table 1.6.1 CatE device evaluation of occupied memory.

Layer Memory
Input features 8 x 4 bytes
weights vector (between input and hidden layer) 162 x 4 bytes
weights vector (between hidden and output layer) 90 x 4 bytes
output layer 5 x 4 bytes
intermediate temporary variables 30 x 4 bytes
TOTAL ~1.200 bytes

to mention, that the accuracy of the classification strongly depends on the
learning phase given by the quality and size of the input training dataset.

1.6.4 Conclusion

Two ANNs were designed to detect unexpected behaviour of the e-motor
and the bearing on the edge device to operate in real-time. For the inter-turn
short circuit detection in the PMSM, MNN was utilized because of the motor
symmetry. The highly detailed acausal e-motor model was used to substitute
measurement in the operating points which were unreachable on a customized
real motor and to reduce the number of required experiments on a real motor.
A significant factor in the diagnosis of an inter-turn short circuit fault is the
processing time. It was reduced with the used computational hardware to
1.1 ms which is promising and should be sufficient for real-time diagnostic
of common e-motors. The second ANN prepared for abnormal vibrations
analysis due to bearing faults is MLP designed in a way that the computation
is prepared to be deployed directly on the vibration sensor’s microcontroller.
This is possible since a low-sized and efficient MLP network is applied,
which delivers good results in the classification of bearing faults.
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