
 

 

Software Fault Prediction Models Using Soft Computing - A 

Systematic Review  

Gurmeet Kaur1, Dr. Jyoti Pruthi2, Dr. Parul Gandhi3 
 

1Research Scholar CST, MRU, India, grmtkaur02@gmail.com 
2Professor CST, MRU, India,  jyoti@mru.edu.in 
3Professor FCA, MRIIRS, India, parul.fca@mriu.edu 
 

Abstract.  

The most dynamic exploration zone in software engineering is software fault prediction 

because it offers the benefits regarding time complexity, low cost budget, testing effort, 

and increases the reliability along with the quality of the software if it is applied at the 

starting phase of traditional and agile based software development life cycle. This study of 

literature review is conducted in a systematic manner to understand the trends and 

techniques used for software fault prediction (SFP) problem and synthesis the qualitative 

results to present technical and methodological information, success and usefulness of SFP 

model. From this study, it analyzed that Neuro-Fuzzy as a soft computing methodology 

provides more accurate result for prediction of faults at the initial and later stage of 

software development, using a variety of metrics for feature selection process, identified 

datasets and reporting the statistical significance of different accuracy measure parameters, 

and comparing the performance of existing models with designed model.  

Keywords. Software Fault Prediction, Agile Software Development, Soft computing, 

Software Metrics, Software defects. 

1. INTRODUCTION 

The Software Quality Assurance and Software Reliability is the key to guarantee the 

superior quality of software. Both these concepts are attracted all throughout the 

development of the software and measure[1]. A software bug is a defect, error, failure, or 

flaw during the execution of a code of software that permits it from acting as unexpected 

function (e.g., delivering an erroneous outcome). The software defect may be a defect that 

gives rise to failure of software functionally. This failure may occur due to the existence of 

one quiet fault in the software. Defective software modules cause software failures, reduce 

customer satisfaction, increased development, and maintenance costs. A software fault 

prediction (SFP) is frequently suggested because it incorporates the activities inside the 

development interaction which assists with anticipating the defective modules or data at 

initial stages of the development of software. The forecasting of defective modules at the 

initial stage makes the process of testing simple and quick. With the expansion to the 

present, it likewise improves the norm of programming.  

With the fast progression of the software business, the use of the agile development 

technique proposed in recent years stress on timely reacting to the changes in prerequisites 

mailto:grmtkaur02@gmail.com
mailto:jyoti@mru.edu.in
mailto:parul.fca@mriu.edu


 2 

as describing the insufficiency of the conventional programming development process. 

Agile development involves different structures or systems, specifically Scrum, XP, 

Crystal strategies, Lean Software Development, Feature Driven Development and so on. 

Agile-based process effectively deals with the truth of variation.  

Estimating performance and project progress is a motivating field in programming 

practice. Inside the traditional programming development process, programming 

measurements are gathered into product metrics and process metrics. To evaluate the 

complexity of product, TSD measure normally utilizes Cyclomatic Complexity Metric 

(CCM), Halstead Complexity Metric (HCM), and Lines of Codes (LOC. Defect Density 

estimates the defect per function point or defect per KLOC and might be a product 

reliability metric. Defect Removal Efficiency is one among the significant estimations of 

programming standard. There are various kinds of soft computing modelling based 

approaches like a Fuzzy Logic System and Neural Network employed for Software Fault 

Prediction.  

In recent years, various researchers try to automate the fault prediction process by 

designing computer-based models that can perform learning from existing prediction data. 

The objective of this research is to take correct decisions on the development of the 

prediction models on basis of finest knowledge and execution of many previous related 

studies. The outcomes of this research paper explore the existing fault prediction 

techniques for agile software. This research paper describes the review of literature in 

different ways by recognizing the basic studies on SFP and the key features of prediction 

models as follows: 

▪ Prediction techniques: Based on soft computing techniques like Artifical Neural 

Network, Fuzzy Inference System, Machine learning techniques, and Neuro-fuzzy 

Hybrid system; 

▪ Software metrics: Either Product and Process Metrics and Agile based metrics;  

▪ Datasets: Public and Private data sets; 

▪ Performance evaluation methods: Either Continuous and Categorical studies;   

2. LITERATURE REVIEW  

The goal of the systematic review is to understand technical works that describe modelling 

and identification of metrics to predict the fault for agile software development (ASD) 

methodologies in the area of prediction methods in soft computing. The research 

performed in the following four steps: 

Step 1: Conduct manual and automatic search to get an initial list of studies. Always try to 

discard the duplicate studies.  

Step 2: To identify the inherent relevant studies on the basis of title and abstract, and reject 

studies which are not related to the concern topic. 

Step 3: Then, shortlist the research paper reviewed on the basis of the introduction, 

methodology section and conclusion. If reading of the selected research paper is not 

complete to confirm results, the study of the research paper read in detail.  

Step 4: Finally, perform essential investigation using the esteemed standard of achieved 

and administered list of research paper.   

This section describes a systematic method for the reviews of existing research paper on 

the fault prediction in source code by identifying research issues. 



 3 

2.1       Research Issues 

To explore the models applied to forecast faults in code, the following research questions 

are described as follows: 

RI1. Which soft computing approaches/methods have used to predict fault for traditional 

and agile development software?  

RI2: Which software metrics have been applied in the fault prediction models for 

traditional and agile development software?  

RI3: What is the level of accuracy of fault prediction models? 

2.2         Results of Concern Research 

RI1. Which soft computing approaches/methods have used to predict fault for 

traditional as well as agile development software?  

As the growing number of faults affects development time, cost and quality of a software 

package, so software fault prediction is the way of detecting faulty components in units in 

the prior of the implementation of the software. This study is predicated on systematic 

review that provides a comprehensive picture in the field of software fault prediction 

administered by many researchers for agile based software development. 

Catal and Diri (2009) [2] described research on types of methodology or techniques used, 

metrics, and datasets for software fault prediction. The outcomes shows that the use of 

machine learning computation increased successively after 2005 then PROMISE data store 

was designed.  

Hall (2012) [3] reported the application of feature selection algorithm and the combination 

of independent variables gives a better outcome in performance.  

Begel, (2007) [4] studied based on an experiment performed to find out regarding agile 

based development, and its implementation in development, executives and testing by 

individuals, it had been found that 33% of the research respondents make the use of agile 

strategies. Around 65% of respondents used scrum in their software teams. The test-driven 

development and pair programming were the least used practices.  

Table 1. Technical description of RI1 

Ref

. 

no. 

Objective Methodology Data 

Set/Features 

Findings Performan

ce 

measurem

ent tool 

[5] The fuzzy inference 

system proposed to 

calculate the efficiency 

of metrics in defect 

predicting for agile 

software projects. 

 

Neuro-Fuzzy hybrid 

approach used 

From PROMISE 

repository 

The proposed framework 

gives superior accuracy 

(specially for large size 

projects ) as evaluated from 

performance measurement 

tools 

MMRE, 

BMMRE, 

RMSE, 

NRMSE, 

 

[6] Proposed new variations 

of WOA as wrapper 

algorithms to deal with 

the feature (metric) 

selection issues in SFP 

applications. 

Roulette wheel, 

Tournament, Linear 

position, and random 

based, stochastic 

universal sampling. 

From the 

PROMISE archive. 

The deep investigation 

presented that the suggested 

TBWOA (tournament 

approach) exceeded the 

principal WOA. 

Average 

AUC and 

running time. 



 4 

[7] Proposed a system using 

inter-version and inter-

project assessment, to 

recognize the product 

defect. 

Based on fuzzy logic, 

the past assignments 

or adventure 

variations are taken 

for preparing sets, 

and, the present 

version or exercises 

are taken as testing 

sets. 

From PROMISE 

store, even as on 

PDE and JDT 

adventures and 

other more nine 

open source 

adventures. 

The assessment results 

concluded that the suggested 

system showed outstandingly 

good outcomes for Eclipse-

PDE and Eclipse-JDT based 

projects. 

AUC and 

GM, Root 

mean square 

error RMSE. 

 

[8] Proposed an exact 

framework to anticipate 

programming deficiency 

and assisted the feature 

selection algorithm for 

classification issues. 

Proposed upgraded 

binary moth flame 

Optimization and 

adaptive synthetic 

sampling  

It makes use of the 

wrapper feature 

selection and 

improves the data 

set. 

ADASYN attempts to beat 

the imbalanced data issue 

while BMFO perform as a 

feature selection. 

 

Average 

AUC 

[9] Depicted adequately 

anticipate the product 

defect proneness in the 

soft modules with a 

tendency to lessen 

programming 

maintenance cost. 

A DDN (deep neural 

network) with BAPS 

(Bound particle 

swarm optimization) 

dimensional 

reduction suggested. 

From real-world 

programming 

projects (NASA 

and Eclipse) was 

made use. 

The analysis result showed 

that the BPSO-based 

dimensionality reduction 

innovation can enhance the 

organization structure and 

acquire better execution. 

 

F-measure, 

area under 

the curve 

(AUC), and 

probability of 

detection 

(pd). 

The study describes many techniques and approaches which are soft computing in nature 

and used for fault prediction in traditional and agile based software, but one of the study 

from [5] relates the field of research as Software fault prediction in the best manner. The 

author presented framework using 21 process metrics incorporating different phases in the 

life cycle of software development using fuzzy inference system to compute the number of 

faults and applied the back propagation algorithm to train the fuzzy set of rules to improve 

the accuracy of prediction and also validate the presented model using 29 projects from the 

PROMISE repository. The author computed diverse performance criteria such as MMRE 

(0.0539), BMMRE (0.0585), RMSE (18.69), and NRMSE (0.010). The observed and 

calculated values concluded that the presented model provides better fault prediction 

capability as comparing to models discussed in their literature. 

There are three categories of datasets as Private, Public, and Unknown. Public datasets are 

available freely from PROMISE and NASA repository. Private Datasets normally belong 

to private organizations. The unknown datasets are those which are neither public nor 

private. 

RI2: Which software metrics have been applied in the fault prediction models for 

traditional and agile development software? Metric can be classified into class-level, 

method/product-level, process-level, and component-level. Halstead (1977) and McCabe 

(1976) in 1970 proposed Method/Product-level metrics, and they are still in use.  

“Product Metrics” 

 “Defect per Function Point”: It can be calculated using Function Point, which helps in 

Software fault prediction. 



 5 

“Defect per SKLOC”: It can be helpful in Software fault prediction but this metric will be 

dependent on language used for implementation [10]. 

“Class-level metrics”  It can be applied to object oriented programming only and proposed 

by Chidamber–Kemerer in 1994 and known as Chidamber & Kemerer (CK) metrics suite 

is still used by various researchers and software vendors. CK metric suite is perfect for 

prediction of fault in source code. These metrics are WMC, DIT, CBO, RFC, NOC, and 

LCOM [11]. 

“Process Metrics” 

Process measurements incorporate the arrangement of measurements, which relies upon 

the qualities gathered over the life cycle of software development. The classes of process 

measurements are Code Churn, Requirement Metrics, Change Metrics, and Code Delta.  

“Agile Software Development (ASD) based metrics” Changing needs is one among the 

principle issues that emerge inside the process of software development. To select software 

metric for Agile-based software, there is need for deep understanding to get the difference 

between the Agile-based process and Traditional Software Development (TSD), and their 

measurements methods.  

“Task effort”: The team produces and evaluates effort based on software professional 

hours for every task [12]. 

“Number of stories”: The number of stories within the sprint can be basic, medium, and 

sophisticated on the basis of the story. The measurement is determined as a value in term 

of count or weight of the complexity of the story [13]. 

“Story point”: Fibonacci format is used to describe the problem size of a story. There 

might be difficulty associated with uncertainty, efforts, and complexities involved in the 

process of measurement to forecast the software effort and size needed [13]. 

“Velocity”: It is computed as the sum of all accepted works [13]. 

For example if for a project completion there are 5 sprints and story points completed 

from every sprints are 12,34,30,22,and17, then velocity is computed as follows: 

Velocity = (12+34+30+22+17)/5 = 115/5 = 23 

“Work capacity”: The work capacity is the number of chores revealed during the run of 

the sprint, with respect to the finished feature. [13]. 

“Focus factor”: The proportion among velocity and Work capacity, the great worth 

reaches approximate 80% for a group [13]. 

Focus factor = Velocity /Work capacity                                                                    (1)                                  

“Open defect severity index”: The defect evaluated at the completion of the sprint. This 

metric measures quality of feature for each and every iteration of the sprint [13]. 

“Defect per iteration”: Calculate the entire defect that was presented during the sprint. 

The defect that was found, and will not be compile within the sprint [13]. 

“Error density”: Number of mistakes detailed by the client after delivery (determined per 

sprint) [12].  

C. Jones [10] (2008) the investigation inspected that there were a couple of difficulties in 

estimating the performance of the agile based development. On account of using the 

knowledge of the TSD Process, numerous project manager and developers are favoured to 

make use of a comparable measurement for the ASD process.  

Padmini (2015) [12] the investigation was intended to gather data about the metric used in 

the agile at present. The investigation distinguished measurements like unit test coverage, 

ideal delivery, and defect seriousness index, bug correction time, in ASD measures.  

Arisholm, E., L.C., Johannessen, Briand, E.B. 2010 [14] made sensible models with high 

inadequacy probability to recognize parts of a Java based structure. Because of the 



 6 

extended demonstration of object-oriented development in companies, an extended use of 

object-oriented metrics has been proposed.  

Briand L., Ikonomovski S., Wüst J., and Lounis H. (1998) [15] assembled an adequate data 

and information regarding the utilization of design measures. The author examined the 

coupling and cohesion estimation information gathered for the 83 framework classes. The 

author likewise concludes that some of the aspects to be estimated on the selected data 

sets: method innovation versus aggregate coupling, coupling to application classes versus 

library classes, and export versus import coupling. 

RI3: What is the level of accuracy of fault prediction methods? 

The prediction results of SFP model depend on and vary according to dependent variables. 
To measure the level of accuracy of the SFP model, there are various methods available 
that can be applied to analyze the performance of the designed SFP model. These 
measurements focused on predicting whether a given part of software is fault free or not. 

Magnitude of Relative Error (MRE): The most commonly used accuracy metrics are 

the magnitude of relative error. It can be calculated on the basis of either the mean or 

the median. MRE is an always less than 1[5].  

MRE = 
(Actual defect − Predicted defect)

Actual defect
                                                                           (2) 

Mean MRE (MMRE): It is the average of magnitude of relative error values N projects. 

The problem of the Mean MRE is its sensitivity to anomaly. 

Balanced MMRE (BMMRE): As MMRE is unbalanced, so for this reason BMMRE is 

used as [5][16][17]: 

BMMRE = 
1

𝑛
∑

| Actual defect − Predicted defect|

min (Actual defect ,Predicted defect)

𝑛
𝑖=1                                                         (3)       

Table 2. Accuracy values of the prediction methods used.    

Ref. No. Prediction Techniques Accuracy Model Accuracy  Value 

[6 ] Machine learning 
Accuracy 0.982 

[5 ] Fuzzy Inference System 
MMRE 0.0539 

BMMRE 0.0585 

RMSE 18.69 

[7 ] Neuro- Fuzzy System RMSE 0.1266 

GM 0.8128 

Accuracy 84.4941 

[16 ] Artifical Neural Network MMRE 0.0247 

BMMRE 0.0244 

[17] Fuzzy Inference System 

Artifical Neural Network 

MMRE 0.36343 

BMMRE 0.36534 

MMRE 0.015397 

BMMRE 0.007258 

RMSE (Root MSE): The RMSE is computed as square root of the mean of squared 

difference between actual and observed/predicted defect values [5][7]. It is evaluated as: 

RMSE = √
1

𝑛
∑ (Actual defect −  Predicted defect)𝑛

𝑖=1
2                                                                       (4) 

Where, n denotes the extent of the actual dataset. It gives the quadratic based value to 

compute the average measure of the error. 



 7 

Accuracy: It is applied to compute and equate the precision of prediction models, and 

calculated as the ratio of number of fault free predictions executed by the total number 

of prediction executed [7]. 

Accuracy = (True Positive +True Negative) / Total number of instances executed     (5) 

Where, True Positive –the number of fault free cases executed by the certain class of 

software and True Negative - the number of cases rejected by the certain class of 

project. 

G-Mean: For imbalanced datasets, G-Mean is applied to compute the efficacy of the 

prediction method [7]. It is calculated as: 

G-Mean = √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙                                                                                  (6) 

Where, Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
     and 

Recall= 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

3. RESULT AND DISCUSSION 

Since the predictability of fault is the essential step for development of any software, 

and this is also required for projects based on agile methodologies. The literature 

review study explore that there is very small quantity of efforts has been done in 

software fault prediction for agile-based software. Applying soft computing 

techniques for fault prediction in agile software development may result better 

performance in concern of precision. The SFP model affects in various areas of software 

development which in turn offer benefits in concern of reliability, quality, time and cost of 

completion.  

4.     CONCLUSION 

The present research paper conclude that  Neuro-Fuzzy (Hybrid) as a soft computing 

methodology provides more accurate result for prediction of faults, but it requires a real 

and huge data set to implement a model for agile software project from industry. There is a 

variety of metrics (Product, Process, and Agile based) that are used for feature selection 

process. The metric selection would be depending on the size or structure, and number of 

defects, effort on inspection activities, and experience of team members. This research 

paper also identified and reported the statistical significance of different accuracy measure 

parameters. This study also presents the vision of fault prediction field of software 

engineering by exploring the latest view of literature and a distinctive feature of fault 

prediction. 

5. REFERENCES 

[1]      Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K.    Bains, 

ManpreetKaur, Gurvinder Singh, ‘A Study on Early Prediction of Fault Proneness in 

Software Modules using Genetic Algorithm’, World Academy of Science, Engineering 

and Technology Vol. 72, pp. 648-653,  2010. 

[2] Catal C, Diri B,  ‘A systematic review of software fault prediction studies’,  Expert 

System Application, Vol. 36, pp. 7346–7354, 2009. doi: 10.1016/j.eswa.2008.10.027. 



 8 

[3] Hall T, Beecham S, Bowes D, et al, ‘A Systematic Literature Review on Fault 

Prediction Performance in Software Engineering’ IEEE Transaction of Software 

Engineering Vol. 38, pp. 1276–1304, 2012. doi: 10.1109/TSE.2011.103 

[4] Begel, A., &Nagappan, N., ‘Usage and Perceptions of Agile Software Development in 

an Industrial Context: An Exploratory Study’ in Proceedings of the 1st International 

symposium on empirical software engineering and measurement IEEE, pp. 255-264, 

2007,doi: 10.1109/ESEM.2007.12. 

[5] Sharma, P., Sangal, A.L., ‘Building and Testing a Fuzzy Linguistic Assessment 

Framework for Defect Prediction in ASD Environment Using Process-Based Software 

Metrics’,  Arabian Journal of Science and Engineering, Vol. 45, no.12  pp.10327–10351, 

2020  https://doi.org/10.1007/s13369-020-04701-5. 

[6] Y. Hassouneh, H. Turabieh, T. Thaher, I. Tumar, H. Chantar and J. Too, ‘Boosted 

Whale Optimization Algorithm With Natural Selection Operators for Software Fault 

Prediction’, IEEE Access, Vol. 9, pp. 14239-14258,  2021 doi: 

10.1109/ACCESS.2021.3052149. 

[7] KapilJuneja, ‘A fuzzy-filtered neuro-fuzzy framework for software fault prediction for 

inter-version and inter-project evaluation’, Applied Soft Computing Elsevier, Vol. 77, pp. 

696-713, 2019.https://doi.org/10.1016/j.asoc.2019.02.008 

[8] I. Tumar, Y. Hassouneh, H. Turabieh and T. Thaher, ‘Enhanced Binary Moth Flame 

Optimization as a Feature Selection Algorithm to Predict Software Fault Prediction’, IEEE 

Access, Vol. 8, pp. 8041-8055,  2020,doi: 10.1109/ACCESS.2020.2964321.  

[9] Wang Geng, ‘Cognitive Deep Neural Network prediction methods for software fault 

tendency module based on Bound Particles Swarm Optimization’ Cognitive System 

Research Elsevier, Vol. 52, pp. 12-20, 2018. 

[10] C. Jones, ‘Measuring defect potentials and defect removal efficiency’, Journal of 

Defense Software Engineering, Vol.21, no. 6, pp. 11-13, 2010. 

[11] Chidamber S, Kemerer C, ‘A metrics suite for object-oriented design’. IEEE 

Transaction of Software Engineering, Vol. 20 no. 6 pp.476– 493, 1994.  

 [12] K. V. J. Padmini, H. M. N. DilumBandara, and I. Perera, ‘Use of software metrics in 

agile software development process’, Moratuwa Engineering Research Conference 

(MERCon), pp. 312–317, 2015.  

[13] M. Agarwal and P. R. Majumdar, ‘Tracking Scrum projects Tools , Metrics and 

Myths About Agile’, International Journal of Emerging Technology and Advanced 

Engineering, Vol. 2, no. 3, pp. 97–104, 2012. 

[14] Arisholm, E., Briand, L.C., Johannessen, E.B., ‘A systematic and comprehensive 

investigation of methods to build and evaluate fault prediction models’, Journal of System 

and Software, Vol. 83, no. 1, pp. 2–17, 2010. 

[15] Briand L., Wüst J., Ikonomovski S., and Lounis H., ‘A Comprehensive Investigation 

of Quality Factors in Object-Oriented Designs: An Industrial Case Study,’ Technical 

Report, International Software of Engineering Research Network-98-29, 1998.  

[16] T. Sethi, ‘Improved approach for software defect prediction using artificial neural 

networks’ in the Proceedings of the 5th International Conference on in Reliability, 

Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 

480-485, 2016. 

[17] Ravi Kumar, T., SrinivasaRao, T., ‘Software Defects Prediction based on ANN and 

Fuzzy logic using Software Metrics’, International Journal of Applied Engineering 

Research, Vol. 12, no.19, pp. 8509-8517, 2017. 

https://doi.org/10.1007/s13369-020-04701-5
https://doi.org/10.1007/s13369-020-04701-5
https://doi.org/10.1016/j.asoc.2019.02.008

