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Abstract.  

This paper compares the performance of the grey wolf optimization (GWO) algorithm for four distinct exploration 

approaches. These exploration strategies are used throughout the iterative procedure, with the co-efficient vector 

being modified for different dimensions of each solution. The co-efficient vector, 𝑋 is linearly changed in the first 

exploration strategy from 1 to 0. While, in second, third, and fourth strategies, the co-efficient vector, 𝑋 is varied 

linearly from 2 to 0, 10 to 0, and 20 to 0 respectively. Thus, modified GWO algorithm is applied on five different 

unimodel benchmarks functions for performance comparison. The performance comparison is done on the basis 

of results obtained for the value of objective function (i.e. figure of merit), standard deviation, mean, minimum 

and maximum values of the figure of merit.  

Keywords. Grey Wolf Optimization, Exploration; Meta-heuristics, Swarm Intelligence, Unimodal Benchmark 

Functions. 

1. INTRODUCTION 

Over the last few decades, meta-heuristic optimization approaches have been increasingly popular. These 

optimization techniques are used in a wide range of research fields as well as in a large number of applications. 

This is because of advantages such as simplicity, flexibility, avoiding local optima, no requirement of derivation. 

Meta-heuristics optimization techniques are easy to learn and apply to the existing optimization problems. These 

optimization techniques are implemented by numerous scholars because of ease of use in replicating many natural 

behaviours. Also, new meta-heuristics by merging two or more meta-heuristics or strengthening the current meta-

heuristics with an improvement are suggested in literature. Furthermore, the simplicity of the meta-heuristics helps 

researchers from inter-disciplinary branches in quickly understanding and applying them to their own optimization 

problems. 

The next most important advantage of using these meta-heuristics to optimize the problems is their flexibility. 

Meta-heuristics are easily adaptable to wide range of issues as they presume the problems to be black boxes. In 

simple context, meta-heuristics only examine the system’s input(s) and output(s). A designer just has to know 

how to articulate his or her problem by understanding these meta-heuristics. 

The vast majority of meta-heuristics include procedures that do not need derivation. Meta-heuristics, in contrast 

to gradient-based optimization methods, approach issues in a stochastic way. The optimization process starts with 

random solution(s) to find the best, and there is no need to compute the derivative of such search spaces. As a 

result, meta-heuristics are well-suited for real-world scenarios where derivative information is not known. 

Meta-heuristics are better than conventional optimization techniques in avoiding local optima. This is because 

meta-heuristics are stochastic in nature. This stochastic nature allows them to avoid trappings in local solution 

and thoroughly search the whole search space.  

Swarm intelligence (SI) is one of the most important branch of population-based meta-heuristics. Beni and Wang 

[1] proposed SI for the first time in 1993. Natural colonies are a primary source of SI based methods [2]. These 

SI optimization algorithms generally emulate the social behaviour of swarms, herds, flocks, or schools of 

organisms in nature. SI optimization techniques provide a number of benefits, including: 

▪ These optimization techniques are simple to implement. 

▪ These optimization methods contain fewer operators than evolutionary strategies.  

▪ There are usually fewer parameters to configure with these optimization techniques. 

▪ These optimization methods maintain track of information about the search space during the course of 

iterations.  

▪ These optimization methods usually require memory to preserve the best solution identified. 
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Along withstanding the benefits indicated above, SI optimization strategies have certain disadvantages too. The 

search agent activity seems to be noisy because the decision action is stochastic. Without understanding how the 

search agent works, it is impossible to know the functions of colony. Anticipating behaviour based on a set of 

specified rules is tough. Even little modifications to the basic rules have a significant influence on group 

behaviour. 

Within the due course of time, many other SI optimization techniques are proposed in the literature providing 

good results. Some of them are particle swarm optimization [3], [4], grey wolf optimization [5], [6], cat and mouse 

based optimizer [7], elephant herding optimization [8], [9], jaya algorithm [10], [11], rock hyraxes swarm 

optimization [12], teacher-learner-based optimization [13], symbiotic organisms search optimization [14], [15], 

differential evolution algorithm [16], honey badger algorithm [17], sine cosine algorithm [18],  [19], whale 

optimization algorithm [20], etc. These algorithms have also been modified and published in the literature. 

Furthermore, hybridising two or more algorithms improves the performance of these algorithms. 

In this article, the efficacy of grey wolf optimization (GWO) algorithm is investigated by varying one algorithm-

specific parameter. This algorithm-specific parameter is required in exploration. In parent GWO algorithm [5], 

this algorithm is varied linearly from 2 to zero as the number of iterations increase. However, in this article, three 

other ranges are taken for this parameter. Then, efficacy of GWO algorithm is tested for four variations (one 

parent and other three suggested in this article). The performance is tested for five benchmarks functions. 

The organization of this contribution is as follows: In section II, GWO is described in detail and modification in 

GWO algorithm is proposed. Section III deals with the simulation results and discussion. Finally, the whole work 

is concluded in section IV. 

2. GREY WOLF OPTIMIZATION ALGORITHM 

Grey wolf optimization (GWO) is a revolutionary swarm intelligence system based on grey wolf leadership 

hierarchy and prey hunting. Mirjalili et al. [21] produced GWO in 2014. Canis lupus is the scientific name for 

grey wolves, and they belong to the canidae family. These grey wolves are top-tier predators in the food chain. 

Grey wolves like to live in packs, which have an average of 5 to 12 members. 

2.1. Description of GWO algorithm 

The pack’s social order, surrounding prey, hunting, attacking prey, and looking for prey are all examples of grey 

wolves’ behaviour. These grey wolves in the pack have an extremely strict social hierarchy. Grey wolves are 

divided into four groups depending on social hierarchical dominance 𝛼, 𝛽, 𝛾, and 𝜔. The leader is at the 𝛼 level 

and is in charge of making decisions for the pack. The decisions taken by 𝛼 are dictated to the other wolves in the 

pack, and the entire pack must obey them. The wolf in this 𝛼 level is the greatest at sustaining pack discipline and 

structure, demonstrating that group organisation is more essential than collective strength. The next level in the 

grey wolf social hierarchy is 𝛽, and the wolves in this level are in charge of aiding the 𝛼 level in making decisions 

and other collective interests. In the absence of a 𝛼 level, the wolves in the 𝛽 level function as the leader.  

The next level in the grey wolf social hierarchy is gamma, which includes scouts, sentinels, hunters, and 

caretakers. Scouts are in responsible of keeping an eye on the territory’s boundaries and informing the pack if any 

threat persists, while sentinels are in charge of defending and ensuring the pack’s safety. Hunters help 𝛼 and 𝛽 

level wolves by hunting animals and providing food for the pack. The caretakers must look after the pack’s weak, 

injured, and wounded wolves. The pack’s lowest level is 𝜔. At all times, the wolves at this rank must surrender 

to all other dominant wolves. The next most important social behaviour among grey wolves is that they always 

engage in groups while hunting. This encircling behaviour of grey wolves is given by  

 𝐶 = |𝑌 ⋅ 𝐽𝑝 − 𝐽| (1) 

 𝐽𝑖 + 1 = 𝐽𝑝 − 𝑋 ⋅ 𝐶 (2) 

where 𝐽𝑝 represents the position vector of prey, 𝐽 indicates position vector of wolves in current iteration, 𝐽𝑖 + 1 

illustrates the position vector of wolves in next iteration, 𝑋 and 𝑌 are co-efficient vectors which are calculated as  

 𝑋 = 2𝑥 ⋅ 𝑟1 − 𝑥 (3) 

 𝑌 = 2 ⋅ 𝑟2 (4) 

where, 𝑋 decreases linearly from 2 to 0 as the number of iterations increase, 𝑟1 and 𝑟2 are random vectors in the 

range of [0,1].  

Grey wolves have the ability to track down and encircle their prey. In most cases, the 𝛼 level is in charge of 

hunting. Hunting is a skill that 𝛽 and 𝛿 level wolves can exhibit occasionally. However, in search space, we are 
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unable to determine where the best prey position is located. We suppose that the 𝛼 level is the best candidate, 

although the 𝑏𝑒𝑡𝑎 and 𝑑𝑒𝑙𝑡𝑎 levels have a better understanding of the prey’s likely position. We preserve the top 

three best solutions identified so far and need additional search components to update their positions in line with 

the best search component. This behavioural aspect is considered in order to mathematically simulate the hunting 

behaviour of grey wolves. The following formulae are stated in this regard:  

 𝐽𝑖 + 1 =
𝐽𝛼+𝐽𝛽+𝐽𝛾

3
 (5) 

 𝐽𝛼 = 𝐽𝛼, 𝑖 − 𝑋1 ⋅ 𝐶𝛼 (6) 

 𝐽𝛽 = 𝐽𝛽, 𝑖 − 𝑋2 ⋅ 𝐶𝛽 (7) 

 𝐽𝛾 = 𝐽𝛾, 𝑖 − 𝑋3 ⋅ 𝐶𝛾 (8) 

 𝐶𝛼 = |𝑌1 ⋅ 𝐽𝛼, 𝑖 − 𝐽| (9) 

 𝐶𝛽 = |𝑌2 ⋅ 𝐽𝛽, 𝑖 − 𝐽| (10) 

 𝐶𝛾 = |𝑌3 ⋅ 𝐽𝛾, 𝑖 − 𝐽| (11) 

where, 𝐽𝑖 + 1 interprets position of wolves in next iteration, 𝐽𝛼, 𝐽𝛽 and 𝐽𝛾 represent new position of 𝛼 level, 𝛽 

level and 𝛾 level wolves respectively; 𝐽𝛼, 𝑖, 𝐽𝛽, 𝑖 and 𝐽𝛾, 𝑖 indicate the current position of 𝛼 level, 𝛽 level and 𝛾 

level wolves respectively; 𝐶𝛼, 𝐶𝛽 and 𝐶𝛾 refer to the encircling behaviour of 𝛼 level, 𝛽 level and 𝛾 level wolves 

respectively. 

2.2. Amendment to GWO algorithm 

In parent GWO algorithm, the co-efficient vector, 𝑋 is presumed to be decreasing linearly from 2 to 0 as the 

iterations increase in number. The modification in the value of this co-efficient vector, 𝑋 tends to modify the 

searching capability of the GWO algorithm. In this contribution, the efficacy of GWO algorithm is tested by 

modifying the exploration of algorithm. The exploration is modified by varying the value of 𝑋 considering the 

following four cases.   

1. By varying the value of 𝑋 from 1 to 0 linearly.  

2. By varying the value of 𝑋 from 2 to 0 linearly.  

3. By varying the value of 𝑋 from 10 to 0 linearly.  

4. By varying the value of 𝑋 from 20 to 0 linearly.  

3. RESULT AND DISCUSSION 

Four different exploration strategies are proposed in previous section and are used with GWO algorithm one by 

one. For presenting the results, the modified GWO is used for minimizing following five benchmarks functions. 

A. Sphere Function 

 𝐹1(𝑥) = ∑𝑛
𝑖=1 𝑥𝑖

2 (12) 

B.  Schwefel 2.22 Function 

 𝐹2(𝑥) = ∑𝑛
𝑖=1 |𝑥𝑖| + ∏𝑛

𝑖=1 |𝑥𝑖| (13) 

C.  Schwefel 1.2 Function 

 𝐹3(𝑥) = ∑𝑛
𝑖=1 (∑

𝑖
𝑗−1 𝑥𝑗)

2
 (14) 

D.  Schwefel 2.21 Function 

 𝐹4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} (15) 

E.  Rosenbrock Function 

 𝐹5(𝑥) = ∑𝑛−1
𝑖=1 [100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2] (16) 

The following four cases are considered for testing efficacy of the GWO algorithm:   
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    1.  Case 1: When 𝑋 is varied from 1 to 0 linearly.  

    2.  Case 2: When 𝑋 is varied from 2 to 0 linearly.  

    3.  Case 3: When 𝑋 is varied from 10 to 0 linearly.  

    4.  Case 4: When 𝑋 is varied from 20 to 0 linearly.  

A total of 100 solutions are explored while minimizing the five benchmark functions considered. The number of 

iterations, on the other hand, is taken to be 100. The algorithm is repeated five times in a row. The statistical 

analysis is based on the outcomes of five successive runs.  

Table  1: Figure of merit (FOM) for dimension of 𝑫 =

𝟏𝟎  

  𝐷 = 10 

 

 

F1 

 

 

 

 Case-1   Case-2   Case-3   Case-4  

 3.6954e-113   5.6107e-97  7.7927  806.4701  

 2.3269e-114  5.1516e-20  9.3672  581.2886  

1.4317e-115   4.5816e-95  13.9832  230.8661  

3.8480e-115  2.1863e-98   24.0044  194.6897  

 8.2018e-115   5.6902e-97  6.1811   360.3082  

 

 

F2 

 

 

2.4177e-59   6.0033e-50  1131.5887   6.3369e+6  

3.6649e-59   3.3865e-49   49.2205   3405.4965  

1.4559e-58  9.3874e-51   34.8568   1.1747e+7  

8.9506e-59  1.5391e-50   23.8319  1.9239e+5  

 7.1150e-59  9.4559e-50   36.6730   1.9504e+5  

 

 

F3 

 

 

0   0  0   0  

0   0   0   0  

0  0  0  0  

0  0   0  0  

0  0   0   0  

 

 

F4 

 

 

1.4726e-55   4.0766e-47  5.2664   19.7313  

4.2422e-55   3.5396e-46   5.4806   25.6629  

3.3699e-54  4.6897e-48  5.6047  0.8569  

5.9530e-56  1.0689e-46   9.0666  0.6890  

5.7683e-55  6.4228e-46   6.1606   25.2770  

 

 

F5 

 

 

8.7541   8.1003  1.1269e+5  6.7109e+7  

8.5925   8.1014   4.7527e+4  2.2580e+7  

8.7685  8.7292  8566.5078  1.6725e+7  

8.0738  8.1002   8.1725e+4  4.2854e+6  

8.7003  8.0723   5.4835e+5  5.0827e+6  

 

Table  2: Figure of merit (FOM) for dimension of 𝑫 =

𝟐𝟎 

  𝐷 = 20 

 

   

F1   

   

   

   

 Case-1   Case-2   Case-3   Case-4  

 1.1333e-103   1.1491e-86  2019.8435  11011.4692  

 1.9705e-104  2.3098e-87  2024.3171  7629.1472  

5.9303e-105   2.6469e-88  1523.5633  8539.1056  

3.1142e-104  2.6261e-89   1977.4169  8483.1347  

 1.1380e-103   6.9748e-87  2403.7282   38627.4326 

 

   

F2   

   

   

8.2755e-54   3.8488e-45  1.0319e+14   6.9821e+16  

2.3608e-53   1.1079e-45   6.9370e+13   3.9841e+16  

2.5641e-53  1.6536e-45   2.2913e+12   5.5195e+15  

4.6818e-53  1.7741e-46   2.3862e+9  1.6333e+21  

2.6256e-53  1.8730e-45   3.8336e+12   3.4570e+17  

  

   

F3   

   

   

0   0  0   0  

0   0   0   0  

0  0  0  0  

0  0   0  0  

0  0   0   0  

  

   

F4   

   

   

2.2649e-51   3.9997e-42  0.3277   12.6963  

8.6926e-50   2.1907e-42   0.1535   7.3062  

4.4330e-51  5.0165e-41  25.1857  53.4712  

1.8159e-50  3.9018e-42   19.6380  2.9966  

4.4769e-51  3.1600e-41   36.0258   10.7821  

 

   

F5   

   

   

18.9093   18.0925  1.3002e+8   5.6713e+8  

18.8884   18.6166   5.1006e+7   9.5274e+8  

18.6499  18.0848  2.3117e+7  3.7050e+8  

18.8924  18.6972   8.4099e+8  8.0334e+8  

18.6815  18.0722   2.5234e+7   1.5402e+9  

In this contribution, all benchmark functions are minimized with dimension of 𝐷 = 10 and 𝐷 = 20. The values 

of objective functions or figure of merit of five benchmark functions are represented in Table 1 for each of the 

four scenarios independently for dimension 𝐷 = 10. Similarly, Table 2 presents the figure of merits of five 

benchmark functions for dimension 𝐷 = 20 when all four cases are considered independently. 

The statistical analysis of all four cases evaluated for dimension 𝐷 = 10 is shown in Table 3. The values of 

standard deviation (SD), mean, minimum, and maximum of figure of merit (FOM) are tabulated in this table for 

each case. Table 4 shows similar findings for all four cases when the dimension is set to 𝐷 = 20.



    

Table  3: Statistical Analysis for dimension of 𝑫 = 𝟏𝟎  

  𝐷 = 10 

 

 

F1 

   Case-1   Case-2   Case-3   Case-4  

 SD   1.6137e-113   2.3038e-20   7.1794   257.0936  

 Mean   8.1258e-114   1.0303e-20   12.2657  434.7245  

 Min  1.4317e-115   2.1863e-98   6.1811   194.6897  

 Max  3.6954e-113  5.1516e-20  24.0044  806.4701  

  

F2   

   

   

 SD   4.8086e-59   1.3591e-49   489.9798   5.2434e+6 

 Mean   7.3414e-59  1.0360e-49  255.2342  3.6951e+6  

 Min  2.4177e-59   9.3874e-51   23.8319   3405.4965  

 Max  1.4559e-58  3.3865e-49  1131.5887  1.1747e+7  

  

F3   

   

   

 SD   0   0   0   0  

 Mean   0  0  0  0  

 Min  0   0   0   0  

 Max  0  0  0  0  

 

F4   

   

   

 SD   1.3877e-54   2.6789e-46   1.5728   12.6982  

 Mean   9.1555e-55  2.2972e-46  6.3158  14.4434  

 Min  5.9530e-56   4.6897e-48   5.2664   0.6890  

 Max  3.3699e-54  6.4228e-46  9.0666  25.6629  

 

F5   

   

   

 SD   0.2901   0.2845   2.2066e+5   2.5769e+7  

 Mean   8.5778  8.2207  1.5977e+5  2.3156e+7  

 Min  8.0738   8.07239   8566.5078   4.2854e+6  

 Max  8.7685  8.7292  5.4835e+5  6.7109e+7  

Table  4: Statistical Analysis for dimension of 𝑫 = 𝟐𝟎  

  𝐷 = 20 

  

   

F1   

   

   

   Case-1   Case-2   Case-3   Case-4  

 SD   5.2601e-104   4.9332e-87   312.6342   1269.1422 

 Mean   5.6783e-104   4.2134e-87  1989.7738  8858.0579  

 Min  5.9303e-105   2.6261e-89   1523.5633   7629.1472  

 Max  1.1380e-103  1.1491e-86  2403.7282  11011.4692  

  

 F2  

   

   

 SD   1.3724e-53   1.3521e-45   4.7683e+13   7.3042e+20 

 Mean   2.6119e-53  1.7321e-45  3.5737e+13  3.2677e+20  

 Min  8.2755e-54   1.7741e-46   2.3862e+9   5.5195e+15  

 Max  4.6818e-53  3.8488e-45  1.0319e+15  1.6333e+21  

  

F3   

   

   

 SD   0   0   0   0  

 Mean   0  0  0  0  

 Min  0   0   0   0  

 Max  0  0  0  0  

  

F4   

   

   

 SD   3.6150e-50   2.1584e-41   15.7720   20.4718  

 Mean   2.3252e-50  1.8371e-41  16.2661  17.4505  

 Min  2.2649e-51   2.1907e-42   0.1535   2.9966  

 Max  8.6926e-50  5.0165e-41  36.0258  53.4712  

  

F5   

   

   

 SD   0.1272  0.3156   4.3985e+7  4.4695e+8 

 Mean   18.8043  18.3127   5.4074e+7  8.4680e+8  

 Min  18.6499   18.0722   2.3117e+7   3.7050e+8  

 Max  18.9093  18.6972  1.3002e+8  1.5402e+9  

When comparing data in Tables 1-4, bold face data represents the better value than the equivalent normal face 

data. From Tables 1-2, it is clear that thirty-one times results are better in case 1. However, better results are 

obtained nine times in case 2. In cases 3 and 4, none result is better in comparision to case 1 and case 2. This 

proves that case 1, where 𝑋 is varied from 1 to 0 linearly, is better than case 2, case 3 and case 4. 

The same is also proved with the statistical analysis presented in Tables 3-4. In Tables 3-4, minimum value of 

FOM is obtained nineteen times in case 1. However, it is obtained only five times in case 2. Also, the maximum 

value of FOM is obtained only six times in case 2 in comparison to two times as obtained in case 1. So, with the 

results presented in 1-4, it is clear that by varying 𝑋 from 1 to 0 linearly is better than varying 𝑋 from 2 to 0 

linearly, 10 to 0 linearly, or 20 to 0 linearly. 

4. CONCLUSION  

This article provides the comparison of performance of grey wolf optimization (GWO) algorithm with four 

different exploration strategies. This experimentation of initializing the co-efficient vector, 𝑋 from different values 

simulate the divergence towards or away from the best solution. It is clear from results that the divergence of 

function is towards the best solution when the co-efficient vector, 𝑋 declines linearly from 1 to 0. The performance 

of modified GWO algorithm with four different exploration strategies is utilized further for comparison of five 

unimodel benchmark functions. The results are tabulated in terms of value of objective function, standard 

deviation, mean, minimum and maximum values of objective function. Further, it can be concluded with results 

that we obtain the best solution when the co-efficient vector, 𝑋 declines linearly from 1 to 0 instead of 𝑋 declining 

linearly from 2 to 0, linearly from 10 to 0, or linearly from 20 to 0. 

The study in this contribution should be extended to other optimization techniques as well. Furthermore, the same 

approach could be extended to different benchmark functions. 
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