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Abstract 

 The raw image pattern-based quality has been enhanced in this project. The translation of RAW picture 

qualities into quantifiable components offers a method for analysing how RAW image elements affect enhanced 

performance scientifically. Currently, the REENet (RAW-guiding Exposure Enhancement Network) project is in the 

works. This method produces pictures with a greater PSNR, image resolution, and high intensity and resolution. to 

conduct a new assessment The Factorized Enhancement Model (FEM) framework decomposes RAW image 

characteristics into measurable factors and offers a tool for scientifically exploring how RAW image features 

influence enhancement performance. The empirical benchmark results show that data linearity and metadata-

recorded Exposure Time are the most critical factors, leading in considerable performance improvements in several 

measures when compared to approaches that employ sRGB images as input. A RAW-guiding Exposure 

Enhancement Network (REENet) is constructed using the information gathered from the benchmark results, which 

makes trade-offs between the advantages and inaccessibility of RAW pictures in real-world applications, enabling 

RAW images to be utilised purely for training. 

Keywords: Factorized enhancement method, RAW images, deep learning, RGB data, low light enhancement, 

algorithm 

 

1. INTRODUCTION 

Imagery suffers from a multitude of difficulties in low-light situations, including increased noise, lower visibility, 

colour cast, and so on. To some degree, more advanced camera equipment and specialised photographic systems 

come at a price in terms of reducing degradation. Modern digital cameras attempt to address the issue by adjusting 

the shooting settings, but this has its own set of issues. A high ISO, for example, generates noise, whereas a lengthy 

exposure duration causes blurring. As a consequence, enhancing low-light images using software is both cost-

effective and attractive. The updated approaches are provided with two sorts of pictures in most instances. 1: 

• Images in RAW format 

• Images in the RGB colour space. 

Which are created by using a range of methods on raw pictures, such as demos frosting, white balance, tone 

mapping, and so on, while taking into account human eye preferences and system limits, like as storage capacity. As 

reported in these earlier articles, low-light enhancement algorithms that employ RAW data as input often provide 

substantially better results than those that use sRGB data. On one side, RAW data has two inherent advantages to 

sRGB pictures. 1) The original data is almost immediately retrieved from the sensors and records meta-data 

pertaining to the hardware and shooting settings, while sRGB photographs have been adjusted for human visual 

preference and system requirements, resulting in information loss. 2) Linear: Because RAW data is acquired 

instantaneously by sensors, the connection between RAW data and various exposure levels stays linear, but the 

dependency on the sRGB domain after processing is nonlinear. Obtaining RAW pictures from real-world apps, on 

the other hand, may be more difficult. To begin with, RAW photos contain a large amount of data that is costly to 

store, hence many devices only record sRGB images. Second, a powerful display of RAW photographs requires a 

lot of professional processing steps and technical knowledge on the side of the user. As a consequence, more casual 

users choose a pocket device like a mobile phone over more complicated shooting tools like digital single-lens reflex 

cameras (DSLR). As a consequence, sRGB image-based applications that are easy to use are becoming more 

popular [1]-[5]. 

mailto:1mkarphd@gmail.com%20,%202mohanboopathi1911@gmail.com,
mailto:deepabecse21@gmail.com,
mailto:3santhoshece26@gmail.com


 

 

LLE is a pre-processing step that is employed in applications including autonomous driving, scientific data 

collection, and general visual enhancement. Images with a limited dynamic range and considerable noise levels 

originate from poor lighting and uneven brightness. Computer vision algorithms that understand such images may 

perform badly as a result of these properties. This approach enhances the visibility of a picture's underlying features. 

The example model includes a reference floating-point frame-based algorithm, as well as a simplified version 

without division operations and a hardware-compatible streaming fixed-point implementation of the reduced 

method. 

By inverting an input picture and then applying a de-haze algorithm to the inverted image, this example generates 

LLE. After inverting the low-light image, the pixels representing the non-sky area have low brightness in at least 

one colour channel. This property is comparable to a blurry picture. These black pixels provide a reasonable 

measure of haze effects since their intensity is largely due to scattering, or air-light. The method enhances the dark 

channel in an inverted low-light image by changing the air light picture dependent on the ambient light conditions. 

A 3-channel low-light RGB picture is supplied to the LLE algorithm. The LLE Algorithm is shown in this block 

diagram. 

In current digital camera systems, the image processing pipeline translates sensor data into a more visually 

acceptable picture with less noise, which is stored as an RGB file (e.g. sRGB image in JPEG or PNG format). When 

compared to the processed sRGB picture, the RAW file offers the following advantages: 

Metadata may be accessed. During image collection, cameras record the shooting settings as meta-data d meta for 

the original sensor data d sens. Due to hardware impacts such as different black levels, saturation, and lens 

distortion, sensor data is particularly camera-specific and is approximated using a camera-specific real-world noise 

model. A RAW file f raw is made up of sensor data d sens and meta-data d Meta [6]-[10]. 

Data linearity is a term used to describe the consistency of data. A linear picture's pixel values are directly linked to 

the real-world signal, which is the quantity of photons received at that location on the sensor, ensuring direct 

proportionality at various exposure levels. Techniques for hardware calibration To recreate linear RAW data y raw 

from sensor data d sens, Fcali (•) techniques like as linearization and lens calibration are utilised. 

Adaptive normalisation with restricted contrast has been developed for these. Dynamic Histogram Equalization 

Maintains Image Brightness A contrast-enhancing technique was utilised. The approach employed was a contextual 

and variable contrast enhancement method. For contrast enhancement, a tiered difference representation-based 

method was adopted. For contrast enhancement, 2D histograms with layered difference representation are used. 

The Proc image processing pipeline is described in this section. Because the particular pipelines and settings of the 

processing systems in each kind of camera are kept as trade secrets, we refer to them as "black boxes" in our 

discussion. Despite this, the typical image processing system assists in the building of a concise mathematical 

model, as shown in Figure, that we can use as a framework to evaluate the parts of RAW that enhance low-light 

picture improvement, as shown in Figure. Libra, which is treated as a black box in this discussion, processes all 

sRGB pictures used as final targets in the benchmark. As stated, the shortened processing pipeline, which includes a 

simpler DE mosaicking module, only provides intermediate monitoring in the RAW sector and has no impact on 

benchmarking performance, offering just the essentials. 

In this benchmark, we look at a variety of RAW data consumption techniques with a variety of inputs and 

instructions to evaluate how much of a difference RAW data properties may make to the low-light improvement 

issue. The results of the experiments are utilised to investigate the impacts of metadata attributes including linearity, 

exposure time, and white balance parameters, as well as quantization levels defined by L, E, W, and Q. The SID 

dataset may be utilised for both training and evaluation purposes. A sub-dataset was created using a 7S and a Bayer 

sensor. There are 409 low/normal-light RAW images in this collection. There are 280, 93, and 36 matched 

photographs in the training, testing, and validation sets, respectively. For performance comparisons, we run several 

operations on input/target pairs depending on RAW file properties and feed them into a similar architecture, namely 

U-Net. SID teaches all methods from the bottom up. Unpacking RAW data with a Bayer pattern into four channels, 

linearizing the data, and normalising it to [0, 1] are the training settings for RAW-based approaches. After that, the 

data is fed into a U-Net. Libraw analyses matching sRGB photographs without employing histogram stretching for 

sRGB-based approaches since it brightens images during processing, which is incompatible with our benchmarking 

and development aims [11]-[15]. 

2. RELATED WORK 

Deep learning startups have had success using it to huge data for knowledge discovery, application, and prediction. 

To put it another way, deep learning has the potential to be a strong engine for generating actionable outcomes. • 

The power of deep learning may also be demonstrated in how it's being applied to social media technologies. 

Consider Pinterest, which has a visual search feature that allows you to zoom in on a certain item in a "Pin" (or 



 

 

pinned picture) and find visually comparable things, colours, patterns, and more. Using a heavily annotated data set 

of billions of Pins collected by Pinterest users, the company's technical team employed deep learning to train its 

system how to detect picture attributes. The characteristics may then be utilised to choose the best matches by 

computing a similarity score between any two photos. As a consequence, for image fire detection, we recommend 

utilising even deeper Convolutional Neural Networks, with fine-tuning based on a fully connected layer. Our fire 

detection system employs two cutting-edge Deep CNNs: VGG16 and Resnet50. On an imbalanced dataset that we 

built to imitate real-world situations, the Deep CNNs are put to the test. It includes shots that are difficult to identify 

and that are purposely unbalanced, with many more non-fire images than fire images. The dataset is now freely 

accessible over the internet. According to our results, introducing completely connected 

3. PROPOSED SYSTEM 

Using a deep convolution neural-based algorithm, the recommended technique improves the image's raw picture 

resolution. A deep convolution neural REENet convolution neural network-based approach is utilised to improve 

photo resolution. The PSNR is increased in this suggested method to improve picture resolution.For image 

processing, the suggested system uses a deep convolution neural based approach to boost raw picture resolution. For 

enhanced picture resolution, a deep convolution neural REENet convolution neural network based method is used. 

This suggested approach is used to boost picture resolution by increasing PSNR is shown in Fig.1.. 

 

Figure.1. Proposed Block Diagram 

4. RESULTS AND DISCUSSION 
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Figure.2 (a,b&c) Enhancement of RAW Image 

The process of various stages to enhance the RAW image is shown in figure.2. 

 

5. CONCLUSION 

For the first time, we investigate the benefits of RAW for low light enhancement in detail in this research. The 

linearity, access to meta-data, fine-grained information (more abundant intensities and colours), display 

inconveniency, and loss of performance of Files are all examined in detail, and their effects on low-light 

improvement are illustrated with quantitative results. We utilise a new way to tackle low-light enhancement in a 

Factorized Enhancement Model to generate a clear and plain description that divides the ambiguities of this work 

into numerous measurable aspects (FEM). The planned REENet makes use of RAW-guiding techniques. It 

overcomes the challenges created by sRGB photographs' nonlinearity and the absence of RAW images in many 

applications, surpassing various state-of-the-art sRGB-based solutions. Our infrastructure only needs RAW 

photographs during the training phase and performs better in testing with just sRGB inputs; as a result, our solutions 

absorb as much RAW data as possible during training but do not rely on RAW input and change the ISP approach in 

current applications. Experiments show that our method is more effective and that our model design is logical. 
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