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Abstract—The fundamental approach is adding up numerous operands, which is a common operation on DSP 

systems. The Wallace Tree structure, which functions as the circuit's bottleneck, adds all of the partial products of a 

basic multiplier circuit. Counters and compressors with high compression ratios are required to speed up the addition 

process. We apply a unique approach based on the sorting network and split logic in the proposed research, which 

employs fast saturated binary counters and compressors. When the counter's inputs are partitioned asymmetrically 

into two groups and fed into sorting networks, sequences that can only be represented by one-hot codes are 

reordered. Due to the smaller size of the sorting network needed, the (7,3) counter may be built using the 

aforementioned approach. In the LSB, compressors with a 4:2 reduction ratio are employed to compress just a piece 

of the product. Because of the space and energy savings, it is ideal for use in error-tolerant systems. For the final 

addition of multipliers, we suggest employing a kogge-stone adder-based parallel prefix adder to reduce critical path 

time even further. When compared to the present approximation multiplier, the suggested technique produces better 

area-delay and power-delay products. The fundamental approach is adding up numerous operands, which is a 

common operation on DSP systems. The Wallace Tree structure, which functions as the circuit's bottleneck, adds all 

of the partial products of a basic multiplier circuit. Counters and compressors with high compression ratios are 

required to speed up the addition process. We apply a unique approach based on the sorting network and split logic 

in the proposed research, which employs fast saturated binary counters and compressors. . When the counter's inputs 

are partitioned asymmetrically into two groups and fed into sorting networks, sequences that can only be represented 

by one-hot codes are reordered. Due to the smaller size of the sorting network needed, the (7,3) counter may be built 

using the aforementioned approach. In the LSB, compressors with a 4:2 reduction ratio are employed to compress 

just a piece of the product. Because of the space and energy savings, it is ideal for use in error-tolerant systems. For 

the final addition of multipliers, we suggest employing a kogge-stone adder-based parallel prefix adder to reduce 

critical path time even further. When compared to the present approximation multiplier, the suggested technique 

produces better area-delay and power-delay products. 
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I.INTRODUCTION 

Any computer must be able to add several operands quickly and reliably. Multiplier circuits' speed and power 

efficiency are crucial to the overall performance of microprocessors. Multiplier circuits conduct filtering and 

convolution in a digital signal processor or arithmetic logic unit. When multiplying binary numbers or fixed-point 

values, some products must be assembled. The multiplier incurs a large amount of extra delay and requires more 

energy as a consequence of integrating these partial outputs. The fundamental approach is adding up numerous 

operands, which is a common operation on DSP systems. The Wallace Tree structure [1], whose performance is the 

bottleneck, is used to sum all the partial products of a basic multiplier circuit. In public-key cryptography, such as 

RSA and elliptic curve encryption, a large number multiplier based on the Toom-Cook [4] or Karatsuba approach 

[3] is used to generate modular multipliers (ECC). Several studies have looked at these two ways, with some even 

putting them into hardware. The summation of numerous operands is discussed in different areas of the circuit in the 

publications. In fully homomorphic encryption (FHE), a post-quantum cryptosystem that offers high security in 

cloud computing, a number theoretic transform (NTT) [6] is urgently needed to speed huge number and polynomial 

multiplication. The fundamental processing unit in certain implementations of the high radix [6] NTT consists of the 

aggregation of numerous operands..  

The Wallace tree structure [1] and its version, the shortened Wallace tree [2], are the most often employed to sum 

multiple operands. To speed up the summing, these approaches employ complete adders as (3,2) counters, resulting 
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in logarithmic time complexity. Another term for this structure is a carry–save structure. Several articles since then, 

notably [7]–[12], have focused on improving the framework in order to speed up the summing process. 

Data mining and database management [20, 21], automated teller machines and communication switching [1, 14], 

scientific computing [13], artificial intelligence and robotics [7], video [11], and signal processing [12] all need 

classification. Hardware implementations of sorting are prevalent in high-performance applications, frequently in 

the form of application-specific integrated circuits or field-programmable gate arrays [12]. The hardware sorting 

devices may be configured in a variety of ways to meet a variety of demands. Depending on the application, the 

number of inputs might vary from nine to tens of thousands when working with photos. Any combination of binary 

values, integers, and floating-point numbers with a precision of 4 bits or more up to 256 bits may be used as data. 

Efficiency and low power consumption are major goals when building devices. The quantity of space on a chip is 

often restricted. Because leakage current grows exponentially with temperature, it becomes more vital to maintain 

low chip temperatures as manufacturing processes improve. It is critical to consume as little energy as possible. A 

primary priority is the development of low-cost, low-energy sorting systems. A network of compare and swap 

(CAS) nodes, often known as a Batcher (or bitonic) network, is the most common technique. Pipelining is a breeze 

in this kind of network. Hardware-based solutions outperform sequential software-based solutions due to their 

parallel nature. The total number of CAS blocks and the price of each individual CAS block have an impact on 

hardware costs and power usage. 

II.SORTING NETWORK  

The sorting network [14], a high-performance parallel hardware network, is used to sort data. If a sorting network 

can sort a collection of data whose components are all 1-bit integers, then it can sort any set of numbers, according 

to the well-known 0,1 principle [14]. It is utilised only for sorting data that consists of a single bit in this 

investigation [13]. Figure 3.1 [14] depicts a typical three- and four-way sorting network. Each vertical line 

represents a distinct sorter that accepts and outputs one-bit information as input and output. The sorter processes the 

bigger inputs first, followed by the smaller ones. Figure 1 depicts the input of a four-way sorting network (4 SN) as 

[0, 1, 1, 1], while the input of a three-way sorting network (3 SN) is shown as [0, 1, 1]. (3) SN After being processed 

by a three-tiered sorter, the input sequences for both 4 SN and 3 SN are rearranged with the greater number at the 

top and the smaller number at the bottom. 

 
Fig. 1. Three- and four-way sorting networks. 

 
Fig. 2. Two-input binary sorter. 

As previously stated, the sorter rearranges two inputs based on numerical values. Figure 2 shows a logical circuit 

that might be used to sort two sets of 1-bit data effectively. In a single layer of a sorter, two-input basic logic gates 

are employed, while three- and four-input basic logic gates are utilised in a network to sort data. 

III.(7,3) COUNTER 

We'll begin by examining the primary point of comparison, the design in [11]. Fritz and Fam [11] presented fast 

(6,3) counters with symmetric stacking structures, and a saturated (7,3) counter was then built from them. The 

quickest of the seven counter designs (7,3) is achieved by adding a MUX to the essential route without optimising it, 

although it has poor delay performance. We suggest an immediate creation of a (7,3) counter using this technique to 

answer the issue in [11]. Instead of one symmetrically stacked set of sorting networks, as shown in Fig. 3.1, we start 

with two sets of networks stacked in opposing orientations. We generate three special Boolean equations [see (2), 



(13) and (15)] by constructing one-hot code sequences, considerably reducing the complexity of the Boolean 

expressions associated with the outputs. 

To begin, all "1"s will be at the top of the series if there are any, while all "0"s will be at the bottom if there are any, 

as illustrated in Fig. 3. If the two "1"s and "0"s exist at all, they must meet somewhere in the newly ordered 

sequence. If the sequence contains just ones or zeroes, we may deal with it by adding a fixed one-bit "1" at the start 

and a fixed one-bit "0" at the conclusion of the reordered sequence to ensure that the 0,1-junction always resolves to 

the exit state. Second, the total number of ones and zeros in the original and reordered sequences remains unchanged 

(the inputs of two sorting networks). We disregard the padded "1" since it cannot be erased and hence has no 

influence on the overall number of "1"s in the padded sequence. 

 
Fig. 3. Definition of a sequence. 

 

 
Fig. 4. One-hot code generation circuit. 

Both three-way and four-way sorting networks need three layers of binary sorters, as shown in Fig. 1. (the two 

binary sorters on the same layer in fourway sorting network can be calculated in parallel). Each layer of binary 

sorters is made up of a single two-input logical gate, as illustrated in Figure 2. This shows that the three-way and 

four-way sorting networks take about the same amount of time to complete. The seven inputs of a (7,3) counter were 

split in half as a result of this. One portion has four bits, whereas the other has just three. 

As seen in Fig. 3, the rearranged sequence can only be adequately represented by the 0,1-junction, which promises 

an extended fixed "0" and "1." The 1,0 at the 0,1-junction must be read from left to right. As a result, the four-way 

sorting network will be used as an example once again, with a final shape similar to that shown in Fig. 4. To create 

the new sequence P0P4, this framework employs a Boolean expression (AB). Because the altered and extended 

sequence includes just one 0,1-junction, sequence P0–P4 only contains one "1." If and only if the values 

P0|P1|P2|P3|P4 = 1, the range P0P4 is a one-hot code. If the sequence's components (P0–P4) are divided into two 

groups at random, with P0, P2, and P4 in group 1 and P1, and P3 in group 2, there is precisely one "1" in the 

sequence.  

This rule applies to all results of random separation. From the output sequence of a three-way sorting network, we 

utilise the same method to construct the one-hot code sequence Q0–Q3. The preceding rule applies to this sequence 

as well. The two sequences we have currently are P and Q. P0 = 1 indicates that the four-way sorting network's input 

sequence contains no "1," P1 = 1 indicates one "1," Pi = 1 indicates I "1"s, and Q indicates the sequence. The 

following are some symbol conventions. The outputs of the (7,3) counter are C2, C1, and S, with C2 having the 

most significant weight and S having the least. 

The output of a four-way sorting network, which comprises H1–H4 from left to right in Fig. 3.3, is denoted by the 

sequence H. From left to right, sequence I represents the output of a three-way sorting network, which contains I1–

I3. When C2 = 1, the input sequence of the (7,3) counter comprises at least four "1s," as shown in Table I. P4 = 1 

indicates that sequence H contains four "1s" (also in the input sequence of 4 SN, as the sorting network has no effect 

on the total number of "1s"), but Q0 = 1 shows that sequence I has no "1s." P4&Q0 = 1 shows that there are 4 + 0 = 

4 "1s" in the input 7 bits. As a result of this method of representation, C2 = 1 when the sum of the subscripts of P 

and Q is no less than 4. 



C2=P4&(Q0|Q1|Q2|Q3))|(P3&(Q1|Q2|Q3))|(P2&(Q2|Q3))|(P2&(Q2|Q3))|(P2&(Q2|Q3))|(P2&(Q2|Q3))|(P2&(Q2|Q

3))|(P2&(Q2|Q3))|(P2&(Q (P1&Q3). (3) Notice that the sequence Q satisfies using the same approach as in (2). 

 
Put (4) and (5) into (3), we get 

 
C1 = 1 because the total of the subscripts of the sequences P and Q equals 2, 3, 6, and 7. (see Table I). As a result, 

we get the following equation: 

 
Note that 

 
 

Equation (7) is reduced to the following equation: 

 
P2|P3, P2|P3, and P1|P2, P1|P2, build two multichannel selection structures in (10). C1 may be determined quickly 

using the circuit depicted in Fig. 5. S may be readily calculated using the following equation: (P1|P3) (Q1|Q3) (11) S 

= (P1|P3) (Q1|Q3) (11) S = (P1|P3) (Q1|Q3) (11) S = (P1|P3) ( 

 
Fig. 5. C1 generating circuit. 

 

We have got two sequences H1–H4 and I1–I3. Here, we extend sequence H1–H4 by H0 (denotes the fixed “1” in 

Fig. 3) and H5 (denotes the fixed “0”). Do the same for sequence I. I0 denotes the fixed “1,” and I4 denotes the fixed 

“0.” Thus, we have the following equation: 

 
 

In addition, we notice that, when subsequences selected from the sequence Q or P are given, if their subscripts are 

successive (P1, P2, and P3 for example), the result of “OR” them up can be easily expressed by sequence I or H 

(P1|P2|P3 =H1&H4 for example). Thus, the Boolean equation (12) is generalized as (13).  

 
Based on this, (10) is simplified to (14), which can also be calculated from the circuit in Fig. 6 

 
There is another trick for sequences H and I. Because H0–H5 are all in order, this means that, if Hi = 1 (i= 0, 1, 2, 3, 

4, 5), then, for every j <i,Hj= 1 always holds and so is the sequence Q. Then, we get the following equation: 

 
Note that H0 = I0 = 1 and H5 = I4 = 0 always hold; we can simplify (3) as (using a trick:A|(A&B) = A|B)              

C2=(P4&(Q0|Q1|Q2|Q3))|(P3&(Q1|Q2|Q3))|(P2&(Q2|Q3))|(P1&Q3) 

= H4|(H3&I1)|(H1&I3)|(H2&I2). (16) 



 
Fig. 6. Overall (7,3) counter circuit. 

 

Figure 6 depicts the whole structure. The pathways from H and I sequences to C2, C1, and S are virtually 

indistinguishable. This property, which is derived from (3) and (4), adds to the parallelism of the circuit (7). The 

area of the suggested design, on the other hand, will not expand as a result of the parallelism, as demonstrated in the 

following sections. In reality, it is decreasing. Boolean statement simplifications at stages (2), (13) and (14) are 

among the reasons for the lower footprint (15). 

IV.(4:2) COMPRESSORS 

A (4:2) compressor, as shown in Fig. 9, serves the same logical goal. We also use sorting networks to build a high-

speed (4:2) compressor. We noticed that the final step of the four-way sorting network (Fig. 1) only sorts the two 

data in the centre, meaning that the data at the top and bottom are the highest and lowest of the four data, 

respectively. 

 
Fig. 9. (4:2) compressor combined by full adders. 

 

 
Fig. 10. Proposed exact (4:2) compressor. 

 

The "Half Sort" results are labelled A, B, C, and D in Figure 10, which is titled "Half Sort." Because A and D are the 

largest and least data, the sequence [A, B, D] is already sorted completely. A modified "Full Adder" is used to 

calculate the sum of s0, Cin, and C. (as illustrated in Fig. 11). Equation describes the "Full Adder" (30).

 
Fig. 11. Block diagram of proposed multiplier. 



A novel counter and compressor architecture based on a sorting network is presented, as well as the construction of 

an 8x8 multiplier. Using a parallel prefix adder also reduces the latency of the final addition. In comparison to 

existing options, the suggested approach uses less resources and has a lower latency. Because it employs a sorting 

network, the (7,3) counter is more adaptable than previous designs. In addition, exact/approximate (4:2) 

compressors, which are built using a sorting network, are presented. When utilised in approximation applications, 

they perform better in ADP and PDP.  

 

 
Fig.12 Kogge stone adder 

 

V. EXPERIMENTAL RESULTS 

 
Fig.13 Simulation result of Propose Multiplier 

The suggested multiplier's simulation result is shown in Figure 13. The counter and compressor are used to 

implement multipliers. It employs a kogge stone parallel prefix adder for the final addition to increase latency and 

power efficiency even further. Table I lists some of the parameters for the proposed multi-level compressor and 

counter-based multiplier, including area, power, and latency. Several kinds of compressors and counters are used in 

the suggested design to optimise space, latency, and power consumption. 

Table.I. Comparison Results of Multiplier 

Parameters 

Area 

(Gate 

Count) 

Power 

(mW) 
Delay(ns) 

Existing 

Multiplier 
1260 181.97 32.340 

Proposed 

Multiplier 
1272 177.87 29.780 

 

VI. CONCLUSION 

A revolutionary counter and compressor design is presented with the use of a sorting network and the building of an 

8x8 multiplier. In addition, a parallel prefix adder is employed to reduce the final addition's total latency. The 

proposed technique has a lower latency and uses less resources than current methods. The (7,3) counter is more 

versatile than rival systems because it uses a sorting network. In addition, to generate exact/approximate (4:2) 

compressors, a sorting network-based technique is applied. They perform well in ADP and PDP when used for 

approximation purposes. 

REFERENCES 

[1] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron. Comput., vol. EC-13, no. 1, pp. 14–17, 

Feb. 1964, doi: 

10.1109/PGEC.1964.263830. 

[2] R. S. Waters and E. E. Swartzlander, “A reduced complexity wallace multiplier reduction,” IEEE Trans. 

Comput., vol. 59, no. 8, pp. 1134–1137, Aug. 2010, doi: 10.1109/TC.2010.103. 



[3] P. L. Montgomery, “Five, six, and seven-term karatsuba-like formulae,” IEEE Trans. Comput., vol. 54, no. 3, pp. 

362–369, Mar. 2005, doi: 10.1109/TC.2005.49. 

[4] J. Ding, S. Li, and Z. Gu, “High-speed ECC processor over NIST prime fields applied with Toom–Cook 

multiplication,” in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 3, pp. 1003–1016, Mar. 2019, 

doi:10.1109/TCSI.2018.2878598. 

[5] ParameswariSubbian, Chitra Chinnasamy and KannadhasanSuriyan, Textile UWB Antenna Performance for 

Healthcare Monitoring System, Frequenz, De Gruyter, 15 March 2022, https://doi.org/10.1515/freq-2021-0227 

[6] S.Kannadhasan, R.Nagarajan and R.Banupriya, Performance Improvement of an ultra wide band antenna using 

textile material with a PIN diode, Textile Research Journal, DOI: 10.1177/00405175221089690 

journals.sagepub.com/home/trj 

[7] S. Asif and Y. Kong, “Analysis of different architectures of counter based wallace multipliers,” in Proc. 10th Int. 

Conf. Comput.Eng. Syst. (ICCES), Cairo, Egypt, Dec. 2015, pp. 139–144, doi: 10.1109/ICCES.2015.7393034. 

[8] A. Najafi, B. Mazloom-nezhad, and A. Najafi, “Low-power and high speed 4-2 compressor,” in Proc. 36th Int. 

Conv. Inf. Commun. Technol., Electron. Microelectron. (MIPRO), Opatija, Croatia, May 2013, pp. 66–69. 

[9] A. Najafi, S. Timarchi, and A. Najafi, “High-speed energy-efficient 5:2 compressor,” in Proc. 37th Int. Conv. 

Inf. Commun. Technol., Electron. Microelectron. (MIPRO), Opatija, Croatia, May 2014, pp. 80–84, doi: 

10.1109/MIPRO.2014.6859537. 

[10] S. Asif and Y. Kong, “Design of an algorithmic wallace multiplier using high speed counters,” in Proc. 10th Int. 

Conf. Comput. Eng. Syst. (ICCES), Cairo, Egypt, Dec. 2015, pp. 133–138, doi: 10.1109/ICCES.2015.7393033. 

[11] C. Fritz and A. T. Fam, “Fast binary counters based on symmetric stacking,” IEEE Trans. Very Large Scale 

Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2971–2975, Oct. 2017, doi: 10.1109/TVLSI.2017.2723475. 

[12] Q. Jiang and S. Li, “A design of manually optimized (15,4) parallel counter,” in Proc. Int. Conf. Electron 

Devices Solid- 

State Circuits (EDSSC), Hsinchu, Taiwan, Oct. 2017, pp. 1–2, doi: 10.1109/EDSSC.2017.8126527. 

[13] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost sorting network circuits using unary 

processing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 8, pp. 1471–1480, Aug. 2018, 

doi:10.1109/TVLSI.2018.2822300. 

[14] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, vol. 3. Reading, MA, USA: Addison-

Wesley, 1973. 

[15] M. Mehta, V. Parmar, and E. Swartzlander, “High-speed multiplier design using multi-input counter and 

compressor circuits,” in Proc. 10th IEEE Symp. Comput. Arithmetic, Grenoble, France, Jun. 1991, pp. 43–50, doi: 

10.1109/ARITH.1991.145532. 

[16] A. Fathi, B. Mashoufi, and S. Azizian, “Very fast, high-performance 5-2 and 7-2 compressors in CMOS 

process for rapid parallel accumulations,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6, pp. 

1403–1412, Jun. 2020, doi: 10.1109/TVLSI.2020. 2983458. 

 

 

https://doi.org/10.1515/freq-2021-0227

