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Abstract.  
The adoption of Internet of Things (IoT) devices in residences, workplaces, transit, hospitals, and other places has led to an 

increase in harmful assaults, which are becoming more common. As the space among IOT systems and fog machines is lower 

than the gap between IoT devices and the cloud, threats may be discovered more quickly. As a result of the massive amounts of 

data generated by IoT devices, machine learning is commonly employed to identify threats. It's a concern, though, because fog 

nodes may not have the computing or storage capacity to identify threats in a timely basis. Machine learning model creation and 

real-time forecasting may be offloaded from the cloud, and both tasks can be performed by fog nodes, according to this article. 

In the server, an ensemble machine learning method is created based on past data to identify assaults on fog nodes in real time. 

This method is used on the NSL-KDD database. In terms of numerous performance metrics, such as processing time, 

specificity, recall, efficiency, and the ROC (receiver operating characteristic) curve, the findings suggest that the proposed 

technique is successful. 
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1. INTRODUCTION 
In the past, only computer systems, cell phones, and tablets were associated with the Internet. A wide range of equipment and 

utilities (e.g., TVs, air-conditioning units, and washing machines) may now be linked over the Internet via the IoT. Healthcare, 

farming, traffic control, energy conservation, supply of water, unmanned aerial vehicles, and autos are just a few of the many 

industries using the Internet of Things (IoT). Figure 1 depicts a three-Level IoT Framework: (1) the thing layer (TL), (2) the fog 

layer (FL), and (3) the cloud layer. A wide range of IoT machines are included in the thing layer, covering home automation, 

healthcare, smart automobiles, smart drones, and smart buildings, among other applications. With data limits, computation, 

power, and storage, this layer allows for data collecting. Following the TL is the fog layer, which may include operational 

resources for managing real-time activities and making swift decisions. Data may be collected and processed in several data 

centres thanks to the cloud layer's support. It may take quite some time to implement choices in the TL since it is so far removed 

from the object layer. 

The quantity of information created by IoT devices is growing from 18 zeta bytes in 2019 to 73 zeta bytes in 2025, as per a 

forecast from the International Data Corporation (IDC). Many new dangers arise from the huge inflow of data [1]. Due to the 

lack of energy, storage, or connectivity, IoT machines and connections tend to be unsafe since they cannot execute fundamental 

security operations such as encryption. According to IBM X-Force, the number of IoT assaults doubled in 2020. Malware and 

botnet assaults are putting IoT-enabled networks at danger of losing their anonymity and safety. 

 
Figure 1: A Three-Level IoT Framework. 

 

Authentication [2], identification, and protection are some of the security measures suggested for the IoT. Incorporating ML 

algorithms into the IoT might reduce safety and privacy problems [3]. Decisions on where to execute techniques for quick 

decision making are critical nowadays, whether they are on the cloud, fog or things layer. Any IoT choices may be postponed if 
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all machine learning judgments are done remotely. Because of the restricted bandwidth, processing power, and energy 

available at the object and fog layers, it may be challenging to implement ML solutions at these levels. 

Deep learning methods are more successful in detecting IoT assaults than typical machine learning algorithms, according to 

recent study [4]. However, these techniques may only be able to be executed on the cloud layer. The system is designed to make 

real-time judgments quickly, however in certain cases, such as online surgeries, these methods don't work as well as they 

should. ML algorithms like support vector machine may only produce relevant results when they are used in conjunction with a 

feature matching strategy or optimization technique [5][6] in the context of IoT threats. The limited resource requirement cannot 

be met by this set of techniques. Applications like offline or non-interactive projections among tiny dataset use ML methods 

such as decision trees, nave Bayes, and K-nearest neighbours. Real-time forecasting is a problem for these algorithms, which 

are deemed poor. 

An ensemble model for detecting IoT assaults is proposed in this research for an IoT system with restricted connectivity and 

computing power, power and memory. Attacks such as DoS, spoofing, and probes are all taken into consideration. To boost 

detection rates, no further feature extraction or dimensions reduction algorithms are used. This methodology is best suited for 

detecting IoT threats in real time and quickly. Step one is picking the best ensemble model that is fast and accurate, and step two 

is executing the best model so that the decision may be applied in a short period of time. Since picking the optimal ensemble 

model necessitates a lot of computing power, the first step is done in the cloud, while the second is done in the fog layer, where 

latency is minimal for real world applications. 

The NSL-KDD database is used extensively in this study for data analysis studies. As a real-time representation of IoT assaults 

on a network, the dataset has been improved from KDD-99. The findings reveal a good precision in a short period of time and 

with the minimal number of resources required. Here are the sections of the paper's structure: This paper is organized as 

follows: Section 2 gives an overview of the relevant work, Section 3 outlines our technique, Section 4 outlines simulation 

scenarios, and Section 5 concludes with the findings. 

 

2. RELATED STUDY 
IoT devices and apps are hampered by security flaws that prevent widespread use. It is impossible to utilize standard 

benchmarks like NSL-KDD to evaluate and validate the efficiency of new Network Intrusion Detection due to the 

heterogeneous nature of IoT systems (NIDS). In a research [7], the author looked at particular threats in the NSL-KDD database 

that might affect sensor nodes and networking in IoT contexts to fill the gap. In addition, we examined and reported on the 

findings of eleven machine learning methods in order to identify the newly emerging assaults. Through quantitative simulation, 

we demonstrate that approaches based on trees and ensembles outperform all other methods of machine learning. XGBoost is 

the best supervised algorithm with 95 percent accuracy. Also of note in this study is that the unsupervised Modeling approach 

surpasses the Nave Bayes classifier by 22.0 percent when it comes to detecting assaults in the NSL-KDD dataset which is a 

noteworthy research discovery. As a network security measure, intrusion detection has proven useful. Many of the current 

approaches for detecting network anomalies are based on well-established ml algorithms like KNN, SVM, and so on. It's 

possible to generate impressive characteristics, but these approaches have a poor rate of precision and depend primarily on 

human traffic features that have become outdated in the age of big data.  

It is recommended that a traffic anomaly identification technique BAT be used to address the issues of poor precision and 

feature engineering in intrusion identification [8]. BLSTM and attention mechanisms are included in the BAT model. As a 

result of the attention mechanism, the BLSTM model generates a connectivity flow vector that may be used to classify network 

traffic. The local aspects of traffic information are also captured using numerous convolutional layers. The BAT model is 

referred to as BAT-MC because it uses multiple convolutional layers to analyze data samples. Using the softmax classifier, 

traffic on the network may be classified. No feature engineering skills are required for the suggested end-to-end model, which is 

capable of independently learning the hierarchy's most important characteristics. It is able to accurately represent network traffic 

patterns and enhance anomaly detection. The experimental findings conclude that the model performs better than existing 

comparison approaches on a publicly available benchmark dataset. NIDSs, or Network Intrusion Detection Systems, are critical 

pieces of cyber-defense equipment. 

In order to develop a profile of normal and malicious activity, NIDSs use a variety of techniques. Machine-learning-based NIDS 

were devised and implemented in article [9] by the author, and their performance was evaluated. In particular, we look at six 

approaches of supervised learning that fall into three categories: (1) ensemble approaches, (2) NN techniques, and (3) kernel 

approach. NSL KDD and NSL-Kitsune-2018 datasets are used to test the created NIDSs, which are based on a current real-

world IoT traffic that has been exposed to various network assaults. The recognition efficiency, error rates, and inference speed 

are evaluated using standard performance measures from the ml algorithms literature. In comparison to neural network and 

kernel approaches, our empirical study shows that ensemble learning have greater precision and fewer margins of error. Neural 

networks, on the other hand, have the fastest inference speed, which demonstrates their applicability for high-bandwidth 

networks. Our greatest findings outperform any previous art by 120 percent, as shown in a relation to existing state-of-the-art 

solutions.  

Data sharing and administration of networked "things" are all possible with the Internet of things (IoT). IoT devices are growing 

and serve a critical role in increasing people's quality of life and their level of living. The actual IoT, on the other hand, is more 

susceptible to the myriad Internet-based assaults that might lead to the leaking of personal information, data manipulation, and 

other damage to society and people. The Internet of Things (IoT) relies heavily on network security, and online injection, 

particularly web shell, is among the most serious threats. Using fundamental machine learning algorithms to identify web shell, 

author [10] built reliable services for IoT networks. These machine learning models will be enhanced by ensemble approaches 

and voting [11]. The reliability of web shell incursion has been shown by extensive testing on these models. Simulated findings 

suggest that RF and ET are appropriate for mild IoT settings, whereas the Voting approach is beneficial in heavy IoT scenarios. 
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IoT-enabled technology, communications, and apps are used in a smart city in order to increase operational efficiency and 

improve both the level of services delivered by service providers and the quality of life enjoyed by citizens. There is, however, a 

greater danger of cyberattacks and threats with the expansion of smart city networks. Detectors coupled to huge public cloud 

uncover IoT systems in a smart city system to fraudulent malicious activities. Such assaults must be prevented and IoT devices 

must be protected against failure. The author of article [12] investigated a machine learning algorithm-based attack and anomaly 

detection method to protect and mitigate IoT cybersecurity risks in a smart city. For example, instead of relying just on a single 

classifier, we also look at ensemble approaches like bagging, boosting, and stacking. For the described area, we also investigate 

a combination of selecting features, cross-validation, and multi-class classification that has not been widely studied in the 

current literature [13] [14]. "Stacking ensemble models beat similar models in terms of performance metrics, suggesting 

stocking’s potential in this area validated with experimental findings using the most current attack database [15] [16] [17]. 

3. METHODOLOGY 
Our goal is to identify assaults in an IoT system using ensemble machine learning methods. The reason for this is because deep 

learning models demand large amounts of memory. For real-time assault identification, the aim is to find the optimal ensemble 

approach. Thing, fog, and cloud layers are shown in Figure 2. To do this, youmust go through the three stages listed below (as 

seen in Figure 2): Putting the right model on the clouds, collecting data at the cloud layer first, and then picking the best 

prediction from an ensemble of models run on the server. Below is a breakdown of the aforementioned responsibilities. 

 
Figure 2. Proposed Approach 

3.1. Data Gathering 

Gathering information from the things layer and transmitting it to the top layer is part of this process. Input from the thing tier 

may then be sent to the fog layer in order to do this. The cloud layer may then use the fog layer to convey it. The fog layer may 

screen information while it is being transferred to the cloud layer, allowing it to select which data should be sent there. The 

following characteristics may be used to anticipate Internet of Things (IoT) attacks: A user's login information is followed by a 

list of net datagram fields such as segment characteristics and source and destination addresses (such as IP addresses). Data 

utilized in our simulation will be given in the next section. 

3.2 Choosing Top Model 

There are many fundamental machine learning algorithms that may be combined in this stage in order to get the best outcomes. 

This is a lengthy process; consequently we suggest doing it on the cloud. As a result, we only use the most basic machine 

learning algorithms since they take less time to run. 

 
Figure 3. Ensemble Model Selection. 

Four layer is composed are shown in Figure 3 to demonstrate this process Pre-processed input from the preceding phase is 

supplied into the bottom layer in the data layer. Decision trees and KNN are all used in the base layer, as are nave Bayes and 

decision trees. They are input into the meta layer where ensemble techniques such as stacking and voting are used to combine 

the outcomes of different pairings. ROC and processing time are taken into consideration while evaluating each ensemble 

approach. In addition, the model with the best mix of basic classifiers and an ensemble approach is chosen.   First, the outcome 

and results are both set to NULL in Algorithm 1's variables OUTPUT and RESULTS, respectively. The completion time is set 

to be maximum. 
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3.3 Executing Top Model on the Fog Layer 

Things layer actual statistics is used to run models over the fog layer in this stage based on earlier selections. Base classifiers 

and an ensemble approach make up the model.A cross-Atlantic experimental analysis of smart Infrastructure IoT networks has 

been suggested. An IoT gateway transmits data to a cloud-based IoT deployment via the Internet, increasing safety and delay by 

conducting secure network services. Because fog/edge nodes don't have the capacity to perform heavyweight techniques that 

take a lot of resources in commercial IoT networks, our technique provides a feasible solution in real time. It is thus reasonable 

to use only one layer of the fog, the trained model, to reduce the fog node's resource needs. It also makes perfect sense to train 

the information in the cloud, as outlined in stages 1 and 2 of the process. 

4. SIMULATION ENVIRONMENT 
4.1 Server Configuration 

For the purposes of testing, a 32-bit OS with a Processor speed of 2.80 GHz was used in conjunction with a CoreI511400 

processor and 4GB RAM. The cloud node implements the suggested ensemble technique, while the fog node runs the best 

model. To conduct cloud-based experiments and identify IoT assaults in real time in the fog, researchers turn to the Weka 

framework. 

4.2 Dataset Description 

Simulated data is taken from the NSL-KDD database(https://www.unb.ca/cic/datasets/nsl.html). To represent a particular IoT 

network object, it has a total of 41 characteristics. According to these 41 characteristics, one may categories network invasions 

into computational data (such as flag or land), content-based data (such as login or root shell data), length or hosts (such as a 

host's IP address). 

The NSL-KDD dataset is shown in Figure 4 by means of two layers: Examples of assaults within each category are shown in 

the outer layer, which depicts the several forms of IoT attacks in the database. Probe IoT attacks include attacks like Saint, 

Satan, Nmap, and portsweep, shown in Figure 4. Examine a connected device for holes in its design, which are then 

manipulated by the hacker for access to secret data. 

 
Figure 4. Dataset description. 

 

In the same way, DoS assaults like Neptune, Teardrop, Worm, and Smurf are included in this category. Denial-of-service 

attacks occur when an attacker uses too many resources, preventing authorized users from accessing a resource, thereby 

rendering the service unavailable. There are also R2L attacks (remote user to user) and user-to-root attacks (user root to user) 

that are distinct from one other. Components are highlighted in Figure 4 based on their section. Nominal values predominate in 

this dataset. TCP, UDP, and FTP are the three main protocols in the collection. 

4.3 Data Segregation  

While the cloud layer stores previous data on network connections related with IoT threats, the fog layer analyses actual 

information in order to prevent future assaults. In addition, the cloud layer contains the predicted value and its associated tags, 

but the fog layer needs this parameter to be forecasted for new additions or tags. There are two sets of data in the NSL-KDD 

dataset: one for training and the other for testing. Training information is intended as cloud information, while testing 

information is used as fog data for experimental purposes. To make things more interesting, the cloud layer uses a major portion 

of the NSL-KDD dataset for train and test, while the fog layer uses the remaining dataset for real-time assessment. At the cloud 

layer, 80/20 K-cross validation is employed. 

4.4 Blending Classifiers 

Multiple ML techniques along with couple of ensemble approaches were used to simulate the suggested strategy. Decision trees 

(DT), random forests (RF), KNNs (KNNs), logistic regression (LRs), and nave Bayes (NBs) are among the classifiers used, 

along with voting and stacking approaches for ensemble analysis. Table 2 illustrates the specifics of each base classifier pairing 

used in the base layer. It is tested with ten distinct models. Table 2 lists the variants. It's because we chose five basic predictors, 

and then constructed two-classifier combinations. As a result, we have ten options. 

 

Model number Blending Base Classifier  

1 decision tree random forest K-nearest neighbor 

2 random forest K-nearest neighbor logistic regression 

3 K-nearest neighbor logistic regression naïve Bayes 
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4 logistic regression naïve Bayes decision tree 

5 naïve Bayes decision tree random forest 

6 decision tree K-nearest neighbor logistic regression 

7 random forest logistic regression naïve Bayes 

8 K-nearest neighbor naïve Bayes decision tree 

9 logistic regression decision tree random forest 

10 naïve Bayes random forest K-nearest neighbor 

 

Table 2: Blending Base Classifier  

5. RESULTS AND DISCUSSIONS 
In this section, we assess the outcomes of the suggested technique using 3 aspects: (1) processing time, (2) quality estimate, and 

(3) variance. More train data is utilized to develop models and run tests in the cloud layer than on a local computer. The fog 

layer is used to evaluate fresh data. Selecting the most accurate version is done in real-time with data collected in the cloud 

layer. This is followed by an analysis of data collected from a layer of fog. 

5.1 Cloud Layer Analysis 

5.1.1 Runtime Analysis 

Using the models listed in Table 2, the voting and stacking ensemble procedures are shown in Figure 5 along with their 

associated execution times, which shows the number of seconds needed to run each individual model, as well as their length in 

seconds. Stacking takes substantially longer to execute than the voting ensemble approach. Model number 8 with voting 

approach has the shortest execution time (9.18 s) and uses KNN, NB, and DT as its basis classifications, as per our findings. 

 
Figure 5: Runtime of various models. 

5.1.2 Evaluation Metrics 

 
Figure 6: Performance metrics of different models. 

 

Figure 6 depicts performance metrics of different models. As can be seen, all the models had kappa values more than or equal to 

0.99, with model 8 having the highest value at 0.991 with an F-measure of 0.995 and an area under the receiver operating 

characteristic curve (0.99). As can be seen in Figure 7, the voting ensemble approach has errors in terms of MAE, RMSE, RAE, 

and RRSE. In comparison to any other model, Model 1 with voting has a much lower error rate.Model 8 is chosen for the fog 

layer despite the fact that it worked well in respect of running time and other performance indicators, as shown in Figure 6. 
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Figure 7. Errors associated with all the models. 

 

Additional measurements of model 8's effectiveness were performed (see Figure 8) to make sure it meets our standards for 

accuracy and robustness. The Y-axis results are reliable to three decimal places. As a rule, the Model 8's performance in this 

trial was closer to 99.99%.  

 
Figure 8: Performance Metrics of selected Models. 

 

We discovered that model 8 based on KNN, DT, and NB outperformed all other models in terms of processing time and 

Evaluation metrics. Using the voting ensemble approach, it is determined that model 8 takes the least amount of time: 1.18 

seconds. In addition, the highest values of kappa, F-measure, ROC, and MCC are 6.39, 98.20, 99.60, and 96.40. It has a mean 

absolute error of 7.87 percent, RMSE of 17.72 percent, a RAE of 15.91 percent, and a RRSE of 35.68 percent. Model 8 has a 

RRSE inaccuracy of 27.94 percent, and its minimal effect is 0.6 percent. However, the most time and resource costly approach, 

model 8, has the largest influence. 

5.2 Fog Layer Result Analysis 
As a result of the newly added data, we can now analyze the effectiveness of model 8, which combines KNN, Naïve Bayes, and 

Decision Tree as the model's primary models with voting to create an ensemble model. 

5.2.1 Evaluation Metrics 

Fog layer evaluation metrics reveals how nicely our model is performing in the fog layer. Figure 9 shows that under the chosen 

model, every evaluation method is almost equal and at or near the top. When looking at the ROC and MCC curves in 

conjunction with the F-measure, we see that the averages are 99.9 and 96.40 respectively. 

 
Figure 9: Various Evaluation Metrics 

5.2.2 Correlated Errors 

Figure 10 shows the various errors on the fog node.  
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Figure 10: Correlated errors on the fog node. 

5.2.3 Runtime and CPU Consumption 

Voting as an ensemble approach, we also computed the runtime of our best technique as well as all other technique on the fog 

node. Figure 11 depicts the total time it took to complete this task. This is a test to see whether the model we choose is efficient 

in terms of time. Model 8 with voting has the quickest processing time for fog nodes. 

 
Figure 11: Processing time on the fog node for various models. 

 

Additional calculations were made to determine how much CPU was used in the fog layer. Only a little percentage of the CPU 

is used by the fog layer. As a result, no extra fog node resources are required for our approach. In addition, our method is fast to 

implement. This demonstrates the great efficiency of our strategy. 

6. CONCLUSION AND FUTURE SCOPE 
The purpose of this work is to offer a method that can offload the duty of ensemble ML model choosing to the server, while 

simultaneously offloading the task of real-world forecasting to fog nodes. By using this method, the server is able to manage 

high in-depth resource operations, while the fog nodes are able to manage real-time calculations, which simplifies and reduces 

the amount of effort required for real-time attack detection. On the NSL-KDD dataset, the methodology that has been suggested 

has been evaluated. The findings that we obtained by using performance metrics, including as kappa, F-measure, ROC, and 

MCC, revealed that the method that was chosen to represent the cloud layer worked quite well when applied to the fog layer. In 

addition, the trials showed that the chosen model required a minimum of 1.15 seconds to complete the fog node. According to 

the findings of the study, stacking takes much more time to implement than the ensemble technique, which includes voting. The 

NSL-KDD dataset was used in our research. The gathering of data from a genuine testbed simulation is one of our goals for the 

future. At the moment, both the EU and the US each have access to a number of different testbeds.  
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