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Abstract.

This paper introduced the ¥ — Q-BFBCI-Ids and ¥ — Q-BFBCI-Imp-1ds with examples and
properties are studied. In furthermore, discussed about ¥ — Q —Bipolar Fuzzy Union and

Intersection set as its various algebraic aspects.
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1. INTRODUCTION

[171Zadeh L A described the notation of fuzzy sets in 1965. In 2004, Bipolar logic
and bipolar fuzzy logic developed by M8Yang Y. ¥IZimmermann H J initiated by the
concept of Fuzzy set theory and its applications in 1985. In 1986, described the concept of
Intuitionistic fuzzy sets by MAtanassov K T. PIHu Q P developed the concept of On BCI-
algebras satisfying(x = y) * z = x * (y = z) in 1980. [®INagarajan R, initiated by notation
of a new structure and construction of Q- fuzzy groups in 2009. In 2019, Cubic
intuitionistic structures applied to ideals of BCl-algebras developed by [®Shum K P.
BlAldhafeeri S depicted the concept of N-soft p-ideals of BCl-algebras in 2019. In 2009
introduced by the notation of BCI-Implicative ideals of BCl-algebras in ©IMeng J. [1%un
Y B developed the concept of Hesitant fuzzy translations and extensions of subalgberas
and ideals in BCK/BCl-algebras in 2017. Bipolar valued fuzzy sub algebras and bipolar
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fuzzy ideals of BCK/BCl-algebras in 2009 developed by FllLee K J. FILiu Y L described
the notation of fuzzy ideals in BCl-algebras in 2001. Bipolar valued fuzzy sets and their
operations developed by ®llee K M in 2000. MPremkumar M develop the concept of On
Fundamental Algebraic Attributes of w — Q —Fuzzy Subring, Normal Subring and Ideal
in 2021. On x — Q-Anti Fuzzy Normed Rings in 2021 described by M'Prasanna A.
Bliseki K initiated by the notation of BCl-algebras in 1980. k — Q —Fuzzy Orders Relative
to k — Q —Fuzzy Subgroups and Cyclic group on various fundamental aspects depicted by
Mpremkumar M in 2020. MSPremkumar M developed the concept of Fundamental
Algebraic Properties on k — Q — Anti Fuzzy Normed Prime Ideal and x—Q —
Anti Fuzzy Normed Maximal Ideal in 2021. In 1993, Closed fuzzy ideals in BCl-algebras
depicted by “lJun Y B.

In this paper introduced by the new contribution of Algebraic Properties
on K — Q-BFBCI-Ids. And also described the new notation of ¥ — Q-BFBCI-Imp-Ids in
BCI-Algebra and their results.

2. PRELIMINARIES
Definition: 2.1

An algebra (G;*,0) of kind (2,0) is a BCl-algebra if it satisfies for all x,y,z € G
(i) ((c*y) *(x*2)*x(z*y) =0
(ii) (xx(x*y)*y=0
(iii) xxx=0
(iv) x*y=0andy*x=0=>x=y.
Definition: 2.2

A FS uin G isaFBCI-Id of G if it satisfies forall x,y,z € G
i) w02 u)
(ii) 1(x) = min{u(x * y), u()}-

Definition: 2.3
AFS pin G isaFBCI-Imp-Id of G if it satisfies for all x,y,z € G

u{<x (v @)+ (05 (0% (x *y))))} = mi"{“((((x £Y,q) *Y,q) *
(0*y,q), q) * (2, q)) ,/4(2)}-
Definition: 2.4

Let G and Q be any two nonempty sets and x € [0,1] and u be a Q — FSh of a set G.
The FS p* of G is called the ¥ — Q — FSb of G is defined by

n x,q) = (ux,q),k),Vx€Gandq € Q.
3. ONK — Q-BFBCI-IDS AND k¥ — 0-BFBCI-IMP-IDS IN BCI-ALGEBRA
Definition: 3.1

A K — Q-BFS,Ain G is called a k — Q-BFBCI-Id of G. If its following conditions
@ (i) - (0,0) = {(1p- (@, @), ¥)}



(i) Hpk+ 0,9 < {(,Ll7A+ (a, q),K)}
() (i) ppe- (@ @) = min{(py- (0 * ¥, 4), ), (up- (¥, ), K) }
(if) pyer (0, @) < max{(py+ @+ ¥, @), %), (i (7, ), )}, VBV €6
Definition: 3.2

A X — 0-BFS, A in G is called a K — Q-BFBCI-Imp-Id of G if it satisfies in above
definition condition (a) and the following conditions

(i) ppk- {0+ (F + (V +0,0),q) * (0% (0+ (G *¥,q),0),q), P} =
min { (- ((((ﬁ +¥,) «¥,q) * (0 ¥,q), q) *

(z, CD) ,K) ,(ua-(z,9), K)} and
(i) ppe {0 * (x (Vx0,0), ) * (0 (0% (0*V,9),4),q), @)} <

max {(“7.\* ((((ﬁ *V,q) *V,q) * (0 %V, q), q) *
(z, q)>,K),(u7A+ (z, q),K)}, Vi,V,z€G.

Example: 3.2.1.
Consider a BCI-Algebra(G,*, 0), where G = {0,a,b,c} and = is given by the
table
* 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0
Let ¥ — Q-BFS in G represented by
G 0 a b c
Hpk— -0.8 -0.8 -0.5 -0.5
Hpk+ 0.9 0.9 04 0.4
Then by routine calculations ¥ — Q-BFBCI-Imp-1d of G. m
Theorem: 3.3
Any ¥ — Q-BFBCI-Imp-Id of G isa ¥ — Q — BFl of G.
Proof:

Let, K — O-BFBCI-Imp-Id of G
Then,



(i)

(i)

pye- {0 * ( * (U + 0, q),q) * (0% (0% (0=
%,0,0), 0,0} 2 min{ (i (@, +%.0) »

0-5019)-19) 8 0]

max {(WA" ((((ﬁ *V,q) * ¥V, q) * (0% ¥, ), q) *

(z, Q)) .K) , (wA+ (z,q), K)}, Vi{,V,z €G.

Substitute z by v and ¥ by 0 to get

(i)

(if)

pype-{(@+ (0% (0 %0, q),¢) * (0% (0% (0x0,9),9),9),q)} =
min {(WA‘ ((((ﬁ ¥0,9) *0,q) * (0% 0,q), 0:) *

@9).K), (1@ @, ¥)} and

pye+ {0 % (0% (0 %0, 9),9) * (0% (0% (0%0,0),0),9),q)} <
max {(,uy ((((ﬁ +0,q) *0,q) * (0% 0,q), Q) *

, q)) ,K) , (WA+(\‘?, Q, K)}, Viv,z€EG.

= k- (4,9 = min{(wA— (G=*v,q), K), (wA— &9, K)} and

Mg+ (4,q < max{(uzﬁ (=*v,q), K), (wA+ ™, ), K)}, Vi,veE
G.

Hence, K — Q-BFBCI-Id of G. The converse of theorem 3.3 is not true as proved

by the following example.

Example: 3.3.1
Consider a BCI-Algebra(G,*, 0), where G = {0, a, b, c} and =* is given by
the table
* 0 d e f
0 0 0 0 f
d d 0 0 f
e 0 f
f f f f 0




Let ¥ — Q-BFS in G represented by

G 0 d e f
M- | 06 -0.4 -0.4 -0.4
pyer 0.8 0.7 0.7 07

Then nota K — Q-BFBCI-Imp-Id of G, as defined by

ks {(d * (e * (e xd,q), ) * (0% (0% (d *e,q),q), @), )} = pyx+(d, ) = —0.4 £
—0.6 = max {(,uy ((((d xe,q)*xe,q)*(0xeq), Q) * (0, CI)>;K) , (HTM(O; @, K)} =
Hax+ (0, ). L
Proposition: 3.4

Let, K — Q-BFS in G is a ¥ — Q-BFBCI-Id of G, if and only if for all G,V,z € G,
(i*v,q)*(z,q) =(0,q) =
() e (8, @) = min{ (- (¥, @), K), (- (2, @), )} and
(i0) pyx+ (T, @) < max{(up+ (¥, @), K), (uy+ (2, @), ¥)}.

Proposition: 3.5

Let, K — Q-BFS in G is a ¥ — Q-BFBCI-Id of G, if and only if for all G,V,z € G,
(*v,q) =0=

(M) py- (0, 4) = poyx- (¥, @) and
(i) e (8,9 < e (¥, Q).
Definition: 3.6

Let, two K — Q-BFSs in G. Then the union denoted by Hy %= U [y k- and
a1 a2
Hy K+ u Hy e+ is max {‘LLAIK—, [L,AZK—} and min {[LAIK+,‘[LA2K+}.
Definition: 3.7
Let, two K — Q-BFSs in G. Then the intersection denoted by My = N [y k- and
a1 a2
My K+ n b+ is min {,lLAlK—, ,LLAZK—} and max {/,LA1K+, /,L-AZK+}.
Theorem: 3.8
Let, two K — Q-BFSs in G and two K — Q-BFBCI-Imp-Id of G. Then Iy x- U
a1
Ho ¥ and by K+ u by, K+ isa K — Q-BFBCI-Imp-Ids of G.
Proof:
Let two ¥ — Q-BFBCI-Imp-Ids of G.

Then,
(i) ty - (0,9) =y ~((8,9),K)  and , x-(0,9) = pry,~((0, ), K)



(i) oy #(0,0) < +(@a)K)  andp, ke (0,0) <y +((@ ), K).
Therefore
max {LL,Alx—, LL,AZK—} (0,4) = max{uy,~((8 q), ¥), un,~((@ @), K)} and
min {p, o,y 1} (0,0) < min{p, +((@ ), K), by +((@ @), K)}
ForallG,v € Gand q € O,
/’L*A1K+{(ﬁ *x(*(*xl,q),q)* (00 ({*V,q),q),q),Q} =
iy {((@+ %) ¥,0) * 0+ ¥,9),q) K},
pp k(e (7% (T 0,0), @)« (0% (0% (@ +¥,0),), ), )} =
Ha, ™ {(((ﬁ +3,q) *¥,q) * (0% ¥,q), q),K} and
e {(Tx (@ x (P2 6,0), ) * (0% (0% (0% ¥,0),0), ), @)} =

iy {((@.0)  ¥,0) * 0+ ¥,9),q) K},
PLAZK—{(ﬁ *x(*(Vxl,q),q)* (00 ({*V,q),q),q),Q} =

m, {((@ v, 9) +9,0) = (0 ¥,0), q) K}

Thus,  min{ju, e py e G s G5 @ 0,6),) (0 (0 (% ¥,0),0),0),9)) =
min {#7,51+ ((((ﬁ *V,q) * ¥V, q) * (0% V,q), q),K),%A2+ ((((ﬁ *¥,q) ¥V, q) *
(0+%,q), q),K)} = min {u&h%;} {(((ﬁ *V,q) *V,q) * (0% V,q), Q)»K}.
and
max {‘LLAIK—,‘[LAZK—} {@*x@=F=xt,q9,q

* (0% (0 (0=V,q),9),9),q)}

= max {“7.%1_ <(((ﬁ *V,q) *V, q)

* (0 %V, q), q) , K) M, ~ ((((ﬁ *V,q) * V, q)

£ (0 %¥,q), q),K)}

= max{puy, -, pp," } {(((ﬁ *¥,q) * ¥, q)

* (0 x¥,q), q) ,K}.

That is Iy %= U ) %= and Iy ¥+ U [y g+ isK — Q-BFBCI-Imp-Ids of G. ]
a1 a2 a1 a2

Theorem: 3.9
Let, two K — Q-BFSs in G, and two K — Q-BFBCI-Imp-lds of G. Then Hhy ¥- N
a1
Iy ¥- and My K+ O [y K+ isa K — Q-BFBCI-Imp-Ids of G.
a2 a1 a2
Proof:
Let, two K — Q-BFBCI-Imp-Ids of G



Then,
(i) ty - (0,0) = iy, ~((®,9), %) and pr, «-(0,9) = i1y, ~((@ 0),K)
(i) 'LLAIK+ 0,9 < u7A1+((ﬁ, qQ), K) and LLA2K+ 0,9 < u7A2+((ﬁ, qQ), K).
Therefore

min {;LAlk—, ,U~,A2K—} 0,9) = min{wAl— ((ﬁ, Q, K), a,™ ((ﬁ, Q), K)} and
max {u,,Alm, LLAZK+} (0,q) < max {HTAlJr ((ﬁ, Q), K), Hy,* ((ﬁ, Q), K)}

Forall i, € G and q € Q,
pL,Alm{(ﬁ *(Vx(V*0,q),q) * (00 (lxV,q),q),9),q9)} =

i {((@* %, 9) #¥,) * (0 ¥, 9), q) K},

pL,AlK—{(ﬁ *(Vx(V*0,q),q) * (00 (lxV,q),q),9),q9)} =
b, {(((ﬁ *V,q) *V, q) * (0 *V, q), q),K} and

pLAZH{(ﬁ *(Vx(V*0,q),q) * (00 (l=*V,q),q),9),q9)} =
i {((@*9,9) *¥,9) (0 % ¥,), q) K},
o o {@x @ x (T +0,0),q) * (0% (0% (G+¥,9),9),),q)} =

i, {((@* @) #¥,0) « (0% ¥,9),q) K}
Thus, max {[LAIK+,/LA2K+} {(A*@*E@=*0,9,)*O0*0*{0*V,q),q,9, 9} =
max {i, + ((((ﬁ *¥,0) xV,q) * (0 ¥,q), q),K> Sy ((((ﬁ *¥,q) * ¥, q) *
0+, q), q),K)} = max {u, + i +H((@+ ¥, +¥,0) = (0¥, 0),) K},
and
min {/Lalx_,p%zx_} {x@+®@=0,q9),q9)
* (0% (0 (U*V,9),9),9),9)}
= min i, (((@+ %@ +¥,0)
«(0:%,0),) k) i, (((@+ v @) < 7,0)
* (0 x¥,q), q),K)}
= min{/ﬁAl—, /JTAZ—} {(((ﬁ *V,q) *V,q)
+(0+¥,9),q),k}.

That is My = 0 [y %= and My &+ O [, K+ isK — QO-BFBCI-Imp-Ids of G. ]
a1 a2 a1 a2
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4. CONCLUSIONS

During in this paper, we acquainted a x — Q-BFBCI-Id of Fuzzy BCI -algebra
which is discussed with illustrative examples and proposition of Algebras and also
investigated k — Q-BFBCI-Imp-Ids . In further future work define as Doubt x — Q-
BFBCI-Id and k — Q-BFBCI-Imp-Ids.
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