
11
Efficient Edge Deployment Demonstrated

on YOLOv5 and Coral Edge TPU

Ruben Prokscha, Mathias Schneider, and Alfred Höß

Ostbayerische Technische Hochschule Amberg-Weiden, Germany

Abstract

The recent advancements towards Artificial Intelligence (AI) at the edge
resonate with an impression of a dichotomy between resource intensive,
highly abstracted Machine Learning (ML) research and strongly optimized,
low-level embedded design. Overcoming such opposing mindsets is imper-
ative for enabling desirable future scenarios such as autonomous driving
and smart cities. edge AI must incorporate both straightforward streamlined
deployments together with resource efficient execution to achieve general
acceptance. This research aims to exemplify how such an endeavour could be
realized, utilizing a novel low power AI accelerator together with a state-of-
the-art object detection algorithm. Different considerations regarding model
structure and efficient hardware acceleration are presented for deploying
Deep Learning (DL) applications in resource restricted environments while
maintaining the comfort of operating at a high degree of abstraction. The
goal is to demonstrate what is possible in the field of edge AI once software
and hardware are optimally matched.

Keywords: edge AI, object detection, deep learning, YOLO, embedded
systems, tensor processing unit.

11.1 Introduction

With AI shifting from a simple research subject towards end user applica-
tions, the issue of efficient deployment moves into focus. ML workloads

141



142 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

are decidedly different from average computing tasks. Hence, GPUs were
the common solution for such undertakings. Realizing mobile intelligent
appliances, requires even more specialized, low power accelerators which
can be integrated into embedded environments. Such edge solutions attracted
increasing interest within the last years. The European Strategic Research and
Innovation Agenda (SRIA) [1] concretizes the term even further by intro-
ducing the terms Micro-, Deep- and Meta-edge. There are several different
solutions available which target this new frontier. Most prominent are the
NVIDIA Jetson family, which utilizes optimized embedded GPUs, the Intel
Neural Compute Stick 2 which is comprised of a specialized Vision Process-
ing Unit (VPU) and the Google Coral edge Tensor Processing Unit (TPU),
which will be the focus of this work. As such, its impact on related research
is presented in the following section. The task of object detection was chosen
to be part of the experimental test setup for evaluating the accelerator. You
Only Look Once (YOLO) version 5 [2] serves as delegate for these class
of networks in the upcoming section. It is evaluated, how models can be
modified to facilitate edge TPU characteristics. Furthermore, it is shown how
this optimized solution compares to models provided by Google. With a focus
on deployment, a lightweight software stack is introduced which enables
efficient AI solutions without sacrificing high-level development. Finally, a
conclusion is provided giving a synapsis of the key findings and offering
points of interest for future work.

11.2 Related Work

In recent years, the usage of decentralized AI at the edge has become a
progressively relevant research topic. Thereby, besides GPU acceleration, the
energy-efficient edge TPU was of special interest by research fellows. For
applications with strict power or battery limitation, such as in the area of UAV,
the usage of the edge TPU is evaluated in recent work. Thereby, applications
comprise indoor person-following systems [3], vision-based trash and litter
detection [4], and lightweight odometry estimation [5]. Using a U-Net net-
work architecture, Roesler et al. leverage their edge AI setup combining the
edge accelerator with a STM32MP157C-DK2 board for the yield estimation
of grapes in an agriculture use case [6]. But also, other application domains
are explored, e.g., in [7], which utilizes the edge TPU to process time-series
data to determine the remaining useful life. Since at that time Recurrent
Neural Networks (RNNs) were not yet supported by the accelerator, their
model architecture employs a deep Convolutional Neural Network (CNN). It



11.3 Experimental Setup 143

is worth mentioning that their experiments included measurements for models
using quantization-aware training as well as post-training quantization, which
outperformed reference CPU and GPU deployments in terms of latency and
accuracy. The authors in [8] examine the potential of the edge TPU for
detecting network intrusion to ensure security at the edge using feed forward
and CNN architectures. They elaborate their classification scores on a public
benchmark dataset, and further investigate the energy efficiency of their DL
algorithms in comparison to traditional CPU processing. Their studies on
the effects of larger model sizes reveal a bimodal behaviour of the edge
accelerator, indicating a decline of the energy efficiency ratio as soon as a
certain model size is exceeded. This finding is the focus of their consecutive
work and is confirmed by more refined experiments [9].

Besides this applied research of utilizing the edge accelerator for a ded-
icated application, more theoretical research was conducted to explore and
demarcate TPU capabilities. Therefore, several benchmarks were performed
to determine its performance empirically using various setups differing in the
models under test, obtained metrics, or compared edge devices [10, 11, 12].
Providing micro-architectural insights, Google researcher, Yazdanbakhsh et
al., elaborate an extensive evaluation covering different structures in CNNs
and their effects on latency and energy consumption [13]. With a similar
level of hardware details, the authors in [14] analysed the inference of
24 Google edge models, revealing major shortcomings of the edge TPU
architecture which must be taken into account for efficient deployment. Fur-
thermore, they incorporate the results into their framework for heterogeneous
edge ML accelerators called Mensa, improving the edge TPU performance
significantly.

11.3 Experimental Setup

Figure 11.1 depicts the setup used for this research. A Raspberry Pi 4 Model
B with 4 GB memory served as base platform. The Google Coral edge TPU
accelerator was connected either to a USB2 or USB3 port for performance
and accuracy evaluation.

11.3.1 Google Coral Edge TPU

Google developed a custom Application Specific Integrated Circuit (ASIC)
for edge inference. This specialized TPU can be connected to existing sys-
tems utilizing a USB, (m)PCIe or M.2 interface. Figure 11.1 depicts the USB



144 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

 3 

in terms of latency and accuracy. The authors in [8] examine the potential of the 
edge TPU for detecting network intrusion to ensure security at the edge using feed 
forward and CNN architectures. They elaborate their classification scores on a 
public benchmark dataset, and further investigate the energy efficiency of their DL 
algorithms in comparison to traditional CPU processing. Their studies on the 
effects of larger model sizes reveal a bimodal behaviour of the edge accelerator, 
indicating a decline of the energy efficiency ratio as soon as a certain model size is 
exceeded. This finding is the focus of their consecutive work and is confirmed by 
more refined experiments [9]. 

Besides this applied research of utilizing the edge accelerator for a dedicated 
application, more theoretical research was conducted to explore and demarcate 
TPU capabilities. Therefore, several benchmarks were performed to determine its 
performance empirically using various setups differing in the models under test, 
obtained metrics, or compared edge devices [10, 11, 12]. Providing micro-
architectural insights, Google researcher, Yazdanbakhsh et al., elaborate an 
extensive evaluation covering different structures in CNNs and their effects on 
latency and energy consumption [13]. With a similar level of hardware details, the 
authors in [14] analysed the inference of 24 Google edge models, revealing major 
shortcomings of the edge TPU architecture which must be taken into account for 
efficient deployment. Furthermore, they incorporate the results into their 
framework for heterogeneous edge ML accelerators called Mensa, improving the 
edge TPU performance significantly. 

 

3. EXPERIMENTAL SETUP 
Figure 1 depicts the setup used for this research. A Raspberry Pi 4 Model B with 4 
GB memory served as base platform. The Google Coral edge TPU accelerator was 
connected either to a USB2 or USB3 port for performance and accuracy 
evaluation. 

 
Figure 1: Raspberry Pi 4 with Google Coral edge TPU USB accelerator. 

 

Figure 11.1 Raspberry Pi 4 with Google Coral edge TPU USB accelerator.

dongle variant of the accelerator with is advertised to perform up to four
trillion operations per second. Approximately 8 MB ‘scratchpad’ memory
is available per unit and the peak power consumption is rated at 2 W [15].
Additionally, multiple of these coprocessors can be chained together for
handling bigger workloads. The TPU hardware operates on 8 Bit integer
variables. Both performance and power consumption benefit from a reduced
complexity in the hardware design. However, this introduces weight quantiza-
tion as an additional step before deployment. The reduction in precision from
floating point to 8 Bit integers variables subsequently leads to a deterioration
of accuracy. Further overhead is introduced by the addition of quantization
operations to the execution graph.

Deploying a model for this device entails several pitfalls due to a rather
convoluted development pipeline. Google necessitates its own Tensorflow
(TF) framework as starting point. Hence, models from other frameworks must
be converted by means of e.g., Open Neural Network Exchange (ONNX).
There, a quantization step is performed alongside a conversion to the TFLite
format. The final step involves a proprietary edge TPU compiler, which
translate the TFLite instructions for the edge TPU. Inference on the other
hand is straight forward. The TFLite runtime provides the interfaces for
loading and executing the model file, while the libedgetpu is responsible
for handling the low-level communication with the accelerator. This allows
for a very lightweight deployment of 10 MB to 20 MB (without model)
compared to conventional GPU solutions, which can require over a gigabyte
disk storage for the libraries alone.



11.4 Performance Considerations 145

11.3.2 YOLOv5

The original You Only Look Once (YOLO) architecture was proposed by
Joseph Redmon in 2016 [16]. It performs both object detection and classifi-
cation in a single model. This resulted in a significant performance increase
compared to classical two stage designs (e.g., Region Based Convolutional
Neural Networks (R-CNNs) [17]). Since the original design, many improve-
ments were made. YOLOv5 [2] is based on the YOLOv3 [18] architecture. It
is under constant open-source development by Ultralytics, who shifted the
focus from academic research to accessible deployment. They provide an
end-to-end solution which allows for training, testing and exporting models to
a variety of different deployment frameworks. This includes the integration
of the previously described pipeline for generating edge TPU models from
version 6.1 onward.

11.4 Performance Considerations

The Coral accelerator achieves its low energy footprint and high performance
by sacrificing flexibility. This manifests itself in a significantly reduced
instruction set [19]. The edge TPU compiler is a black box which aims to
aggregate as much operations as possible and convert them into a binary
which can be executed by the coprocessor. Every operation, which is not
mapped accordingly, must therefore run-on CPU. This section aims to pro-
vide guidance for optimizing a model for edge TPU execution exemplified
on YOLOv5 (release 6.1).

11.4.1 Graph Optimization

Figure 11.2 depicts the graphs of two edge TPU models. Figure 11.2a shows
the small variant of the YOLOv5 model with additional optimizations. The
EfficientDet Lite0 [20] model in Figure 11.2b was taken from the Coral model
zoo [21]. Most of the graph is mapped to the edgetpu-custom-op, while some
operations are still executed by the main processor. In the following, possible
issues are shown when compiling a model and ways to improve the mapping
are elaborated.

11.4.1.1 Incompatible Operations
The compiler only maps operations until it encounters an incompatibility.
Everything after that is executed on the CPU. This is especially critical for
activation functions (e.g., LeakyReLU, Hardswish), as they are distributed



146 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

 5 

4. PERFORMANCE CONSIDERATIONS 
The Coral accelerator achieves its low energy footprint and high performance by 
sacrificing flexibility. This manifests itself in a significantly reduced instruction 
set [19]. The edge TPU compiler is a black box which aims to aggregate as much 
operations as possible and convert them into a binary which can be executed by 
the coprocessor. Every operation, which is not mapped accordingly, must 
therefore run-on CPU. This section aims to provide guidance for optimizing a 
model for edge TPU execution exemplified on YOLOv5 (release 6.1). 

 

4.1. Graph Optimization 

Figure 2 depicts the graphs of two edge TPU models. Figure 2a shows the small 
variant of the YOLOv5 model with additional optimizations. The EfficientDet 
Lite0 [20] model in Figure 2b was taken from the Coral model zoo [21]. Most of 
the graph is mapped to the edgetpu-custom-op, while some operations are still 
executed by the main processor. In the following, possible issues are shown when 
compiling a model and ways to improve the mapping are elaborated. 

 
 
 

 
(a) YOLOv5s 

 
(b) EfficientDet Lite0 

Figure 2: Quantized edge TPU Models. 

 

4.1.1. Incompatible operations 

The compiler only maps operations until it encounters an incompatibility. 
Everything after that is executed on the CPU. This is especially critical for 
activation functions (e.g.,LeakyReLU, Hardswish), as they are distributed 

Figure 11.2 Quantized edge TPU Models.

throughout the graph. While it is possible to create multiple TPU subgraphs,
the overhead of transferring intermediate tensors several times between CPU
and TPU usually eliminates any benefits. It is therefore advisable to use
compatible activation functions (e.g., ReLU, Logistic). Furthermore, binary
operations (e.g., AND, OR) are also not supported.

11.4.1.2 Tensor Transformations
The reshape and transpose operation are not mapped once their input tensor
exceeds a certain soft threshold. There is no documentation on how this limit
is calculated and it seems to be dependent on the general model structure.
However, it could be observed, that this threshold is significantly smaller for
the transpose operation. A possible explanation for this behaviour could be an
inability of the accelerator to address memory in a different order. A transpose
operation on CPU would imply a change in the direction (column/row wise)
memory is read from the same location. If this is not supported by the TPU,
memory reallocation is required.

There are several ways for addressing this issue. One approach is to
reduce the size of the input tensor. In CNNs the size is proportionally



11.4 Performance Considerations 147

Table 11.1 Comparison of YOLOv5s model before and after optimizations.

Input Size
YOLOv5s (6.1) YOLOv5s (6.2dev)

Speedup
TPU/CPU USB3 Speed TPU/CPU USB3 Speed

320x320 245/40 30.10ms 253/3 24.27ms 19.37%
640x640 225/59 427.48ms 240/16 178.67ms 58.20%

propagated through the network. Hence, reducing the input size results in
smaller intermediate tensors. Further reduction can be induced by limiting
the number of output classes. If graph modifications are viable, a divide and
conquer strategy can be used to split tensors before the operation and merging
afterwards. Moving these operations to the bottom of the graph can also be an
option as the instruction are fast on CPU. A last option is using mathematical
transformation to change the graph beneficially.

Some of these strategies were used to optimize the YOLOv5 models
which are evaluated further in this research. All changes were committed to
the open-source project in a pull request [22] and are part of the next major
release (6.2). Table 11.1 shows the performance impact for the demonstrator
setup. Both model variants experienced a significant speedup in inference
time. The variant with the larger input size improves significantly.

11.4.2 Performance Evaluation

In the following, different variants of the optimized YOLOv5 models are
compared to other object detectors supplied by Google. All numerical values
can be found in Table 11.2. The inference speed was evaluated utilizing the
Google benchmark model tool [23]. Version 16 of libedgetpu-max was used,
and each inference was repeated 100 times with a previous warm-up phase.
Accuracy was determined by pycocotools and the Common Objects in Con-
text (COCO) evaluation dataset [24]. The input images were proportionally
scaled to input size with bilinear interpolation. The Google models have a
postprocessing operation integrated in the model graph (ref. Figure 11.2b).
It was evaluated separately for inference speed and fast Non-Maximum
Suppression (NMS) [25] was used for all models as it is the default setting of
this custom operation. Furthermore, the threshold for confidence was set to
0.001 and overlap to 0.65.

11.4.2.1 Speed-Accuracy Comparison
Figure 11.3 shows the mean average precision (mAP50:95) of each tested
model in relation to the inference speed. It can be observed that the edge TPU



148 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

T
ab

le
11

.2
M

od
el

co
m

pa
ri

so
n

in
re

ga
rd

s
of

in
pu

ts
iz

e,
fil

e
si

ze
,o

pe
ra

tio
n

In
pu

t
Si
ze

Si
ze

in
M
B

O
ps

A
cc
ur

ac
y

Sp
ee
d
in

m
s

T
P
U
/C

P
U

m
A
P
50
:9
5

m
A
P
50

m
A
P
75

m
A
P
S

m
A
P
M

m
A
P
L

U
SB

2
U
SB

3

E
ffi

ci
en

tD
et

L
ite

0
32

0x
32

0
5.

93
26

0/
7

24
.3

0
39

.1
0

25
.4

0
5.

50
27

.3
0

42
.2

0
16

4.
06

+2
1.

6
57

.5
7

+2
1.

79

E
ffi

ci
en

tD
et

L
ite

1
38

4x
38

4
8.

01
31

5/
7

28
.9

0
45

.1
0

30
.7

0
8.

80
33

.2
0

47
.0

0
24

3.
16

+3
0.

57
81

.4
3

+3
1.

03

E
ffi

ci
en

tD
et

L
ite

2
44

8x
44

8
10

.6
7

34
9/

8
32

.3
0

48
.9

0
34

.8
0

12
.2

0
37

.1
0

49
.6

0
49

0.
06

+4
0.

44
15

2.
77

+3
9.

58

SS
D

M
ob

ile
ne

tv
2

30
0x

30
0

7.
08

99
/3

15
.5

0
27

.2
0

15
.3

0
1.

20
10

.9
0

34
.3

0
31

.6
8

+2
.0

1
10

.9
0

+2
.0

6

SS
D

L
ite

M
ob

ile
D

et
32

0x
32

0
5.

4
13

4/
3

22
.5

0
38

.3
0

23
.3

0
2.

50
19

.4
0

48
.2

0
34

.9
8

+8
.7

7
9.

56
+5

.9
3

Y
O

L
O

v5
n

32
0x

32
0

2.
38

25
3/

3
18

.1
0

32
.4

0
18

.1
0

3.
00

17
.6

0
32

.6
0

64
.3

5
24

.6
4

48
0x

48
0

2.
47

24
0/

16
22

.2
0

39
.6

0
22

.5
0

6.
10

24
.6

0
34

.4
0

12
7.

57
50

.4
1

64
0x

64
0

2.
43

24
0/

16
22

.7
0

41
.1

0
22

.8
0

8.
90

26
.7

0
31

.0
0

26
2.

79
93

.6
0

Y
O

L
O

v5
s

32
0x

32
0

7.
84

25
3/

3
26

.1
0

43
.5

0
27

.0
0

6.
40

27
.8

0
45

.1
0

67
.7

6
24

.2
7

40
0x

40
0

7.
96

24
0/

16
28

.5
0

47
.4

0
29

.4
0

8.
90

31
.6

0
45

.1
0

16
2.

15
49

.4
2

48
0x

48
0

8.
09

24
0/

16
29

.8
0

49
.2

0
31

.3
0

11
.3

0
33

.7
0

44
.7

0
23

8.
43

77
.7

7

64
0x

64
0

8.
78

24
0/

16
30

.2
0

50
.5

0
31

.6
0

14
.1

0
35

.0
0

41
.1

0
71

1.
97

17
8.

67

Y
O

L
O

v5
m

24
0x

24
0

22
.1

3
32

5/
3

28
.8

0
46

.7
0

30
.3

0
6.

80
31

.0
0

51
.1

0
46

0.
60

63
.6

1

32
0x

32
0

22
.3

2
32

5/
3

32
.4

0
51

.3
0

34
.4

0
10

.4
0

36
.1

0
53

.6
0

54
2.

08
85

.9
8

48
0x

48
0

23
.3

3
31

3/
16

36
.9

0
58

.0
0

39
.1

0
16

.2
0

41
.9

0
53

.3
0

12
68

.5
5

23
8.

90

Y
O

L
O

v5
l

32
0x

32
0

47
.7

7
39

9/
3

35
.4

0
55

.1
0

37
.6

0
12

.7
0

40
.0

0
56

.6
0

12
96

.3
9

17
7.

60



11.4 Performance Considerations 149
 8 

 
Figure 3: USB3 speed-accuracy comparison of different model types and configurations 

for edge TPU deployment. 

 
In general, YOLOv5 performs better than the other models. Only the nano model 
has issues, which is probably caused by its particularly small file size. If speed is 
the deciding factor, SSDLiteMobileDet [26][27], is still the preferable solution. 
The classical SSD Mobilenetv2 [26][28] does not seem to be competitive 
anymore. The EfficientDet models perform reasonable, however considering the 
additional overhead by a particularly slow postprocessing operation, YOLOv5 
should be considered the better solution. All models share a low accuracy for 
small objects, which could be an issue inflicted by quantization. 

4.2.2. USB Speed Comparison 

Considering the purpose of edge accelerators to allow for AI deployment on low 
power devices, USB3 might not always be an option. Hence, it should be 
evaluated whether a deployment utilizing USB2 is a viable option. The maximum 
speed for such a connection is rated at 60 MB/s, while USB3 is specified at almost 
ten times this value. 

Figure 11.3 USB3 speed-accuracy comparison of different model types and configurations
for edge TPU deployment.

works best lower input sizes, while larger inputs cause an unproportionate
slowdown compared to the benefit in accuracy. Interesting are the nano and
small models with 320 px input. They have an almost identical inference
time, while the accuracy of the s-model is significantly better. They share the
same vertical graph structure, while the larger one is scaled horizontally by
a factor of two. Hence, the small variant has twice as many weights for each
convolutional layer. This aligns with the insights from [12] that horizontal
scaling is preferable. The model should be very close to a sweet spot, for
which all weights are cached within the 8 MB device memory. Sacrificing
some model vertical space for more width could theoretically improve the
accuracy even further.

In general, YOLOv5 performs better than the other models. Only the
nano model has issues, which is probably caused by its particularly small
file size. If speed is the deciding factor, SSDLite MobileDet [26] [27], is
still the preferable solution. The classical SSD Mobilenetv2 [26] [28] does
not seem to be competitive anymore. The EfficientDet models perform rea-
sonable, however considering the additional overhead by a particularly slow
postprocessing operation, YOLOv5 should be considered the better solution.
All models share a low accuracy for small objects, which could be an issue
inflicted by quantization.



150 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

 

 

Figure 11.4 YOLOv5s inference speed comparison between USB2 and USB3

11.4.2.2 USB Speed Comparison
Considering the purpose of edge accelerators to allow for AI deployment on
low power devices, USB3 might not always be an option. Hence, it should
be evaluated whether a deployment utilizing USB2 is a viable option. The
maximum speed for such a connection is rated at 60 MB/s, while USB3 is
specified at almost ten times this value.

Figure 11.4 depicts the speed comparison the small model with varying
input size. A considerable difference for the inference speed can be observed.
The USB2 interface causes a slowdown by a factor of three. The model
parameters should fit entirely into the device memory. Therefore, only the
data transfer should impact the speed. Equation (11.1) shows how the data
flowing to and from the device is calculated. datain only depends on the
input size, while dataout also considers the number of anchor boxes (3),
strides for multi scale outputs (8, 16, 32) and class count. For the 320
px model, this results in 842.7 KB of data flow per inference, while the
640 px input increases this value to 3.37 MB. Additional data flow could
arise due to intermediate tensors, which are too large to be buffered on
the device. Whether this is an issue here must be determined in future
research.

datain = 3xinyin

dataout = 3

(
1

82
+

1

162
+

1

322

)
xinyin ∗ (5 + ncls) (11.1)



11.5 Conclusion and Future Work 151 10 

 

Figure 5: Micro software stack for fast and lightweight edge deployment. 

 

The software stack depicted in Figure 5 shows a simple layer model for a 

lightweight deep vision deployment. The part concerning the TPU was previously 

elaborated. Loading and transforming images is often handled by OpenCV [29]. It 

uses shared low-level libraries to perform these operations. Providing an optimized 

image loader, such as libjpeg-turbo [30] can therefore accelerate the whole pipeline. 

Similar is true for Numpy [31], which is responsible for performing mathematical 

tensor operations on CPU. A dedicated math library such as OpenBLAS [32] makes 

use of Single Instruction Multiple Data (SIMD) which performs vector operations 

faster and more efficient. Such a software stack is similarly fast compared to a 

solution written in a compiled language, while being way more flexible. It could 

also be viable to package such an application into a lightweight container for easy 

deployment using virtualization technologies. 

 

5. CONCLUSION AND FUTURE WORK 

This research demonstrated how efficient edge AI applications can be implemented 

in a feasible manner. It was shown that a high degree of optimization is required to 

make the best use of limited computing resources. Additionally, a lightweight 

software stack was presented, which can be used as basis for building high level ML 

applications. A paradigm shift towards a more deployment driven AI development, 

as portrait by YOLOv5, is mandatory for making ubiquitous AI possible. The 

Google Coral edge TPU offers high potential for enabling real-time object detection 

for common video stream rates on embedded systems, however there are several 

pitfalls associated with the device. The limited opset requires models to be designed 

accordingly, which must be in the interest of the developers. Another issue is the 

USB2 performance. Future research must evaluate, what exactly causes this drastic 

slowdown. If the TPU should be used in ultra-low power segments (e.g., Micro 

Controller Units), USB3 will not be viable. Changing the model to reduce the 

amount of data flowing to and from the device could alleviate this shortcoming. 

Figure 11.5 Micro software stack for fast and lightweight edge deployment.

11.4.3 Deployment Pipeline

An AI application can be considered a data pipeline of the steps. At first data
must be loaded and pre-processed to comply with the model. In the context of
object detection, this implies loading and scaling a jpeg image. The following
steps are inference and postprocessing. The latter takes the raw model output
and transforms into a usable form. This could involve thresholding, NMS and
coordination transforms. The pipeline is executed for each inference, hence
all steps should be highly optimized. Most efforts are usually focused towards
optimizing the model while neglecting everything else. This section intro-
duces a small deployment stack for object detection, which is both optimized
and allows for the usage of well-established high-level frameworks.

The software stack depicted in Figure 11.5 shows a simple layer model
for a lightweight deep vision deployment. The part concerning the TPU was
previously elaborated. Loading and transforming images is often handled by
OpenCV [29]. It uses shared low-level libraries to perform these operations.
Providing an optimized image loader, such as libjpeg-turbo [30] can therefore
accelerate the whole pipeline. Similar is true for Numpy [31], which is
responsible for performing mathematical tensor operations on CPU. A dedi-
cated math library such as OpenBLAS [32] makes use of Single Instruction
Multiple Data (SIMD) which performs vector operations faster and more
efficient. Such a software stack is similarly fast compared to a solution written
in a compiled language, while being way more flexible. It could also be
viable to package such an application into a lightweight container for easy
deployment using virtualization technologies.



152 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

11.5 Conclusion and Future Work

This research demonstrated how efficient edge AI applications can be imple-
mented in a feasible manner. It was shown that a high degree of optimization
is required to make the best use of limited computing resources. Additionally,
a lightweight software stack was presented, which can be used as basis
for building high level ML applications. A paradigm shift towards a more
deployment driven AI development, as portrait by YOLOv5, is mandatory
for making ubiquitous AI possible. The Google Coral edge TPU offers high
potential for enabling real-time object detection for common video stream
rates on embedded systems, however there are several pitfalls associated with
the device. The limited opset requires models to be designed accordingly,
which must be in the interest of the developers. Another issue is the USB2
performance. Future research must evaluate, what exactly causes this drastic
slowdown. If the TPU should be used in ultra-low power segments (e.g.,
Micro Controller Units), USB3 will not be viable. Changing the model to
reduce the amount of data flowing to and from the device could alleviate this
shortcoming.

Acknowledgements

This work has been financially supported by the AI4DI project. AI4DI
receives funding within the Electronic Components and Systems For Euro-
pean Leadership Joint Undertaking (ESCEL JU) in collaboration with
the European Union’s Horizon 2020 Framework Programme and National
Authorities, under grant agreement n◦ 826060.

References

[1] AENEAS, Inside Industry Association, and EPOSS. ECS – Strategic
Research and Innovation Agenda 2022. en. Jan. 2022. URL:
https://ecscollaborationtool.eu/publication/download/slides-ovidiu-
vermesan.pdf (visited on 03/31/2022).

[2] G. Jocher et al. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow
Edge TPU and OpenVINO Export and Inference. Feb. 2022. URL:
https://zenodo.org/record/6222936 (visited on 03/30/2022).

[3] A. Boschi et al. “A Cost-Effective Person-Following System for Assis-
tive Unmanned Vehicles with Deep Learning at the Edge”. en. In:
Machines 8.3 (Aug. 2020), p. 49.



References 153

[4] M. Kraft et al. “Autonomous, Onboard Vision-Based Trash and
Litter Detection in Low Altitude Aerial Images Collected by an
Unmanned Aerial Vehicle”. en. In: Remote Sensing 13.5 (Mar. 2021),
p. 965.

[5] N. J. Sanket et al. “PRGFlow: Benchmarking SWAP-Aware Unified
Deep Visual Inertial Odometry”. en. In: arXiv:2006.06753 [cs] (June
2020).

[6] M. Roesler et al. “Deploying Deep Neural Networks on Edge Devices
for Grape Segmentation”. en. In: Smart and Sustainable Agriculture. Ed.
by Selma Boumerdassi, Mounir Ghogho, and Éric Renault. Vol. 1470.
Cham: Springer International Publishing, 2021, pp. 30–43.

[7] C. Resende et al. “TIP4.0: Industrial Internet of Things Platform for
Predictive Maintenance”. en. In: Sensors 21.14 (July 2021), p. 4676.

[8] S. Hosseininoorbin et al. “Exploring Edge TPU for Network Intrusion
Detection in IoT”. en. In: arXiv:2103.16295 [cs] (Mar. 2021).

[9] S. Hosseininoorbin et al. “Exploring Deep Neural Networks on Edge
TPU”. en. In: arXiv:2110.08826 [cs] (Oct. 2021).

[10] M. Alnemari and N. Bagherzadeh. “Efficient Deep Neural Networks for
Edge Computing”. en. In: 2019 IEEE International Conference on Edge
Computing (EDGE). Milan, Italy: IEEE, July 2019, pp. 1–7.

[11] M. Antonini et al. “Resource Characterisation of Personal-Scale Sensing
Models on Edge Accelerators”. en. In: Proceedings of the First Interna-
tional Workshop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things. New York NY USA: ACM, Nov. 2019,
pp. 49–55.

[12] A. A. Asyraaf Jainuddin et al. “Performance Analysis of Deep Neu-
ral Networks for Object Classification with Edge TPU”. In: 2020 8th
International Conference on Information Technology and Multimedia
(ICIMU). Aug. 2020, pp. 323–328.

[13] A. Yazdanbakhsh et al. An Evaluation of Edge TPU Accelerators for
Convolutional Neural Networks. Feb. 2021.

[14] A. Boroumand et al. “Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks”.
en. In: arXiv:2109.14320 [cs] (Sept. 2021).

[15] USB Accelerator datasheet. en-us. URL : https://coral.ai/docs/accelera
tor/datasheet/ (visited on 03/31/2022).

[16] J. Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2016, pp. 779–788.

https://coral.ai/docs/accelerator/datasheet/
https://coral.ai/docs/accelerator/datasheet/


154 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

[17] R. Girshick et al. “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation”. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition. June 2014, pp. 580–587.

[18] J. Redmon and A. Farhadi. “YOLOv3: An Incremental Improvement”.
In: (Apr. 2018).

[19] TensorFlow models on the Edge TPU. en-us. URL: https://coral.ai /
docs / edgetpu / models - intro / #supported – operations (visited on
03/30/2022).

[20] M. Tan, R. Pang, and Q. V. Le. “EfficientDet: Scalable and Efficient
Object Detection”. In: arXiv:1911.09070 [cs, eess] (July 2020). arXiv:
1911.09070.

[21] Models - Object Detection. en-us. URL: https://coral.ai/models/object-
detection/.

[22] EdgeTPU optimizations by paradigmn Pull Request #6808 ultra-
lytics/yolov5. en. URL: https://github.com/ultralytics/yolov5/pull/6808
(visited on 03/31/2022).

[23] Performance measurement — TensorFlow Lite. en. URL : https://www.
tensorflow.org/lite/performance/measurement (visited on 03/30/2022).

[24] T.-Y. Lin et al. “Microsoft COCO: Common Objects in Context”. en. In:
Computer Vision – ECCV 2014. Ed. by David Fleet et al. LectureNotes
in Computer Science. Cham: Springer International Publishing, 2014,
pp. 740–755.

[25] J. Hosang, R. Benenson, and B. Schiele. “Learning Non-maximum Sup-
pression”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). ISSN: 1063-6919. July 2017, pp. 6469–6477.

[26] W. L. et al. “SSD: Single Shot MultiBox Detector”. en. In: Computer
Vision – ECCV 2016. Ed. by Bastian Leibe et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2016, pp.
21–37.

[27] Y. Xiong et al. “MobileDets: Searching for Object Detection Architec-
tures for Mobile Accelerators”. In: arXiv:2004.14525 [cs] (July 2020).
arXiv: 2004.14525.

[28] M. Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. June 2018, pp. 4510–4520.

[29] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[30] libjpeg-turbo. original-date: 2015-07-27T07:11:54Z. Mar. 2022. URL:
https://github.com/libjpeg-turbo/libjpeg-turbo (visited on 03/31/2022).

https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite/performance/measurement


References 155

[31] C. R. Harris et al. “Array programming with NumPy”. en. In: Nature
585.7825 (Sept. 2020), pp. 357–362.

[32] Q. Wang et al. “AUGEM: automatically generate high performance
dense linear algebra kernels on x86 CPUs”. en. In: Proceedings of the
International Conference on High Performance Computing, Network-
ing, Storage and Analysis. Denver Colorado: ACM, Nov. 2013, pp.
1–12.




