
12
Embedded Edge Intelligent Processing for

End-To-End Predictive Maintenance in
Industrial Applications

Ovidiu Vermesan1 and Marcello Coppola2

1SINTEF AS, Norway
2STMicroelectronics, France

Abstract

This article advances innovative approaches to the design and implementation
of an embedded intelligent system for predictive maintenance (PdM) in
industrial applications. It is based on the integration of advanced artificial
intelligence (AI) techniques into micro-edge Industrial Internet of Things
(IIoT) devices running on Armr Cortexr microcontrollers (MCUs) and
addresses the impact of a) adapting to the constraints of MCUs, b) analysing
sensor patterns in the time and frequency domain and c) optimising the
AI model architecture and hyperparameter tuning, stressing that hardware–
software co-exploration is the key ingredient to converting micro-edge IIoT
devices into intelligent PdM systems. Moreover, this article highlights the
importance of end-to-end AI development solutions by employing existing
frameworks and inference engines that permit the integration of complex AI
mechanisms within MCUs, such as NanoEdgeTM AI Studio, Edge Impulse
and STM32 Cube.AI. Both quantitative and qualitative insights are presented
in complementary workflows with different design and learning components,
as well as in the backend flow for deployment onto IIoT devices with a
common inference platform based on Armr Cortexr-M-based MCUs. The
use case is an n-class classification based on the vibration of generic motor
rotating equipment. The results have been used to lay down the foundation

157

158 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

of the PdM strategy, which will be included in future work insights derived
from anomaly detection, regression and forecasting applications.

Keywords: predictive maintenance, smart sensors systems, industrial internet
of things, industrial internet of intelligent things, vibration analysis, machine
learning, deep learning architecture, edge-embedded devices.

12.1 Introduction and Background

Leveraging AI methods and techniques at the edge is vital for increasing
the performance and capabilities of the intelligent sensor systems and IIoT
devices used in industrial manufacturing. For many intelligent applications,
the edge AI processing concept is reflected in the emergence of different
edge layers (micro-, deep-, meta-edge). The edge processing continuum
includes the sensing, processing and communication devices (micro-edge)
close to the physical industrial assets under monitoring, the gateways and
intelligent controllers processing devices (deep-edge), and the on-premise
multi-use computing devices (meta-edge). This continuum creates a multi-
level structure that moves up in processing, intelligence, and connectivity
capability.

Micro-edge devices are typically small sensors and actuators equipped
with microcontrollers (MCUs) based on Armr Cortexr-M cores (e.g., M0,
M0+, M3, M4, M7) or open-source RISC-V instruction set architecture,
circuits with memory, serial ports, peripherals, and wireless capabilities and
designed to perform and extend the specific tasks of embedded systems.

Developing AI functionalities for micro-edge devices is a com-
plex process that has increased potential in various industrial applica-
tions, including manufacturing. In industrial manufacturing, the imple-
mentation of machine learning (ML) and deep learning (DL) models
on micro-edge-embedded devices has an absolute advantage for condi-
tion monitoring and PdM/prescriptive maintenance (PsM) operations for
industrial motors/equipment. Using AI-enabled micro-edge devices for
motors/equipment monitoring in industrial processes can prevent downtime
by alerting users to perform preventative maintenance based on equipment
real-time conditions.

There are several works that provide a comprehensive review of frame-
works available in the market that currently permit the integration of complex
ML and DL mechanisms within MCUs [1][4].

12.2 Machine and Deep Learning for Embedded Edge Predictive Maintenance 159

This article researches and investigates different approaches to using ML
and DL technologies to bring AI capabilities to micro-edge devices and
applies these capabilities for classification for PdM industrial applications.
The goal is to implement ML and DL techniques in low-energy systems,
including sensors, to perform intelligent automated tasks, such as PdM and
PsM.

The approaches used in this article illustrate how to optimise ML and DL
models for resource-constrained micro-edge-embedded devices. The article
gives an overview of the data acquisition and prediction aspects of ML and
DL, discusses how to build ML and DL models targeting micro-edge devices
and presents the experimental results using different tools and approaches.

The article is organised into five sections. The introduction on intel-
ligent edge processing real-time maintenance systems and description of
data-, model- and knowledge-driven methods for time series is included in
Section 12.1. Section 12.2 describes the architecture and design of motor
classification for PdM, including methods and possible end-to-end flows and
presents the use case, i.e., motor classification. Section 12.3 introduces the
implementation of the classification use case using three existing platforms.
Section 12.4 highlights specific experiments performed and the results that
were achieved through the lens of employing different tools. Section 12.5
addresses future research challenges and discusses the key open issues related
to AI techniques and methods in implementing intelligent edge processing
real-time maintenance systems for the purposes of industrial applications.

12.2 Machine and Deep Learning for Embedded Edge
Predictive Maintenance

For industrial manufacturing facilities using motors in the process line, the
maturity of maintenance practices is a crucial determinant of the ability to
operate reliably and profitably without interruption. Condition-based mon-
itoring maintenance (CBM) addresses uptime and maintenance costs by
monitoring one or several critical measurements for the motors, such as
temperature, vibration, oil analysis and current, which are used as indicators
of an out-of-specification condition. Maintenance tasks are performed when
needed. PdM applies a more extensive set of input data and more analysis to
provide a more reliable indicator of the overall health and condition of the
motor as well as a more accurate prediction of a possible failure and what
action should be considered to prevent it.

160 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

With PdM, the motors are serviced considering the actual wear and tear
and service needs, reducing unexpected outages, making fewer scheduled
maintenance repairs or replacements, and using fewer maintenance resources
(including spare parts and supplies) while simultaneously decreasing failures.
PdM provides the prerequisite foundation for PsM and autonomous main-
tenance (by executing actions automatically, without human intervention).
PsM builds on the infrastructure and data collected for PdM, following the
various corrective actions taken by maintenance personnel and the resulting
outcomes.

Figure 12.1 illustrates a typical industrial motor with a rotor, stator,
bearings, and shaft as essential components for the engine’s normal operation.

The various components conditions and operations are possible causes
that can generate anomalous behaviour, thus defining various abnormal states
(classes). A large amount of historical and real-time information is required
to identify, classify, and predict motor’s possible failures. AI-based ML and
DL algorithms are suitable to deal with these types of tasks.

This paper focuses on AI-based PdM approaches, which learn from
historical and real-time data and recommend the best timing and course of
action for a given set of conditions and sub conditions employing ML and
DL models implemented using micro-edge-embedded devices. For example,
the implementation of an ML solution into a PdM application includes
several steps: data preparation, feature engineering, algorithm selection and
parameter tuning.

The interaction between the edge IIoT devices, ML and DL have opened
opportunities for new data-driven approaches for PdM solutions in industrial
processes. In this paper, different techniques and tools were successfully
tested using various methods based on ML and DL to predict the state
of industrial motors and to detect and classify motors conditions based
on trained data. The PdM monitoring has been tested on measurements

Figure 12.1 Industrial motor components [5] [6]

12.3 Approaches for Predictive Maintenance 161

performed on bench motors using computation at the micro-edge, allowing
real-time acquisition, processing, and wireless communication.

12.3 Approaches for Predictive Maintenance

AI-based PdM approaches [2][3][7], employing ML and DL models imple-
mented using micro-edge-embedded devices, are designed on different
hardware platforms and software suites, generating embedded code, and
performing learning and inference engine optimisations. Depending on the
application and the frameworks and inference engines for integrating AI
mechanisms within MCUs, several variants of the workflows are used.

This paper focuses on NanoEdgeTM AI (NEAI) Studio [14], Edge
Impulse (EI) [8][10] and STM32 Cube.AI [10][13].

Table 12.1 gives an overview of the features of these frameworks, which
support the workflows of ML and DL model development and deployment on
microcontroller class devices. AI/ ML models work on frameworks such as
Keras, ONNX, Lasagne, Caffe, Convetjs etc.

Table 12.1 Frameworks and inference engines for integrating AI mechanisms within MCUs

Framework Platforms Models Training Libraries
Edge Impulse
(EI)

Armr Cortexr-M,
TI CC1352P,
Armr Cortexr-M
-A, Espressif
ESP32, Himax
WE-I Plus,
TENSAI SoC

NN, k-means,
regressors
(including feature
extraction)

Tensor Flow,
Scikit-Learn

Nano Edge AI
Studio
(NEAI)

Armr Cortexr-M
(STM32 series)

Unsupervised
learning

-

STM32Cube.AI Armr Cortexr-M
(STM32 series)

NN, k-means,
SVM, RF, kNN,
DT,
NB, regressors

PyTorch,
Scikit-Learn,
Tensor Flow, Keras,
Caffe, MATLAB,
Microsoft
Cognitive Toolkit,
Lasagne,
ConvNetJS

162 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

12.3.1 Hardware and Software Platforms

The experiments in this paper perform the processing of various types of
input data, including three-axis vibration, temperature, and device logs. The
data for the experiments was collected from bench motors using a STWIN
Sensor Tile Wireless Industrial Node IIoT device.

This micro-edge IIoT device comprises of three axis ultrawide bandwidth
(DC to 6 kHz) acceleration sensor (ISM330DHCX), a 12-bit analog-to-
digital converter, a user-configurable digital filter chain, a temperature sensor,
and a serial peripheral interface. The micro electro mechanical systems
(MEMS) vibration sensor has a selectable sensitivity (±2, ±4, ±8, or ±16
g) and processing capabilities ensured by an Armr Cortexr-M4 processor
(120 MHz, 640 KB RAM, 2 MB Flash). The micro-edge device can be
powered externally or by an internal lithium-ion battery and has BLE and
Wi-Fi connectivity.

The design flow allows collecting or uploading training data from micro-
edge devices, labelling the data, training an ML model, and launching and
monitoring ML models in a production environment.

The PdM AI-based design flow uses the sensors and hardware platforms,
software development kits (SDKs), frameworks and inference engines for
integrating AI mechanisms within MCUs to generate code to be deployed
on MCUs that allow running AI models in embedded systems by performing
predictions at the edge. The ML and DL models deployed on the micro-edge
devices become part of the firmware flashed into the MCUs.

A micro-edge AI processing flow is illustrated in Figure 12.2.
The AI-based flow uses an embedded compiler that can convert models to

C/C++ to increase the efficiency of models trained on the edge platform and
reduce RAM, storage usage and code size by tens of percent.

Figure 12.2 Micro-edge AI processing flow

12.4 Experimental Setup 163

12.3.2 Motor Classification Use Case

The use case analysed in this article is the classification of the state of a motor
based on the vibration measurements using an accelerometer sensor from an
IIoT device. The signals covering all states to be classified were collected
using a built-in three-axis accelerometer (ISM330DHCX) to measure the
accelerations of three orthogonal directions.

In general, the n-class classification of n different states uses static models
with pretrained libraries.

The classes were defined based on conditions (motor speeds) and sub-
conditions (malfunctions). The motor was operating at fixed speeds, which
were divided into three classes based on various percentages of the maxi-
mum speed (50%, 75% and 100%). A malfunction of the motor (motor fan
trepidations) was added to the second class to obtain a new class. The classes
defined are:

• MOTOR_OFF: just record signals when nothing is happening
• MOTOR_ON_NORMAL_50: the motor is running at 50% of the

maximum speed
• MOTOR_ON_NORMAL_75: the motor is running at 75% of the

maximum speed
• MOTOR_ON_NORMAL_75_B: the motor fan produces additional

trepidations to the motor, while the motor is running at 75% of the
maximum speed

• MOTOR_ON_NORMAL_MAX: motor is running at maximum speed.

12.4 Experimental Setup

The design and implementation steps and the experimental setup of the
end-to-end (E2E) classification application use two main primary flows,
including NEAI Studio and EI. The former creates ML static libraries based
on unsupervised algorithms, while the later employs deep neural networks
(NNs) for the classification task. A third flow was branched out from EI into
Python using Tensor Flow’s Keras API, and the resulted model was fed onto
STM32Cube.AI.

The experimental process started by collecting the vibration signals from
the micro-edge IIoT device mounted on the motor, through a simple data-
logger application in real-time. The recorded signals were then analysed in
both the time and frequency domain, filtrated, and datasets were prepared for
each flow. The classification AI models were then built in each flow, using

164 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

the accelerometer spectral features (e.g., root mean square (RMS), frequency
and amplitude of spectral power peaks, etc.) and optimise the performance.
In the end the three models were deployed and integrated with the firmware
using STM32 CubeIDE. Finally, inference classifications were run to note the
performance of the implementations and deployments.

12.4.1 Signal Data Acquisition and Pre-processing

Prior to acquiring the signals, a thorough analysis of the vibration patterns
of the motor have been conducted, landing to the conclusion that the most
suitable sampling frequency to capture vibration patterns is 1667 Hz.

Both NEAI and EI offer several ways to take the measurements from
the sensor IIoT device directly from within their GUIs. Acquiring signals
with datalogger functionality in NEAI seemed to be the most straightforward
data acquisition approach as it only requires the SD card. In the experimental
use case, a simple logger application was used that reads and logs the raw
accelerometer sensor data directly on the serial port, so that logs can be
retrieved from a computer using serial tools such as Tera Term or from the
console of the integrated development environment (IDE).

For the three-axis accelerometer sensor, a collection of signals (split
in 60% training, 20% validation and 20% test) was acquired for each of
the classes, with a buffer size of 512 samples on each axis, in total 1536
values per signal. Thus, with a sampling frequency of 1667 Hz, each buffer
represents a snapshot of approximately 300 milliseconds of the accelerometer
temporal vibration data, which is sufficient to capture the essence of the motor
vibration patterns. The vibration signals collected are visualised as shown
in Figure 12.3, in both temporal and frequency plots for the accelerometer
sensor Z-axis for each of the two classes.

To be able to better differentiate the individual classes and thus ensur-
ing high accuracy score, the recorded signals were processed in frequency
domain. Filter settings was activated in the signals pre-processing steps. By
providing filtering, only the frequencies that represent the characteristics of
the motor vibration are kept, and the rest are attenuated. Filtering techniques
also help to eliminate high frequency noise that interfere with the vibration
signal, and eliminate frequencies for transitions between states, which would
normally yield unknown class.

The recorded signals for each class were downloaded and then converted
into a format accepted by EI, to ensure the same signals are being used for
the signal processing, thus yielding similar results.

12.4 Experimental Setup 165

Figure 12.3 Visualisation of two selected classes signals in both temporal and frequency
domain with NEAI

Till acceptable quality-labelled data sets were arrived at, several iter-
ations were performed, and this included recording new signals without
background noise, collecting/recording longer signals and even changing the
categorisation of classes.

12.4.2 Feature Extraction, ML/DL Model Selection and Training

Both NEAI and EI offer an automated mechanism for generating the AI
model architecture and training, although the mechanisms differ since NEAI
employs unsupervised algorithms, whereas EI employs DL NNs.

The benchmarking process for n-class classification with NEAI involves
searching through a pool of ML algorithms and tests combinations of three
elements: pre-processing, ML algorithms (e.g., random forest-RF, support
vector machines-SVM, etc.) and hyper-parameters for each model. Each
combination results in a library that is evaluated for accuracy, confidence
and memory usage, and the results provide a ranking of these libraries.
Accuracy reflects the library’s ability to correctly attribute each signal to the
correct class, whereas confidence reflects the library’s ability to separate the
n-classes.

Figure 12.4 shows that the top library for the PdM classification case has
an accuracy of 100%, confidence 99.94%, uses the RF algorithm, and takes
6.2kB RAM and 8.3 kB Flash. 100% means that all classes are completely
separated, there is no overlap.

In the “Confusion Matrix”, the 200 number means that the performance
for each class is 100%, i.e., all 200 signals extracted from initial data (20%
of 1000 signals) have been properly classified.

166 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

 8

only the frequencies that represent the characteristics of the motor vibration are
kept, and the rest are attenuated. Filtering techniques also help to eliminate high
frequency noise that interfere with the vibration signal, and eliminate frequencies
for transitions between states, which would normally yield unknown class.

The recorded signals for each class were downloaded and then converted into a
format accepted by EI, to ensure the same signals are being used for the signal
processing, thus yielding similar results.

Till acceptable quality-labelled datasets were arrived at, several iterations were
performed, and this included recording new signals without background noise,
collecting/recording longer signals and even changing the categorisation of classes

1.4.2 Feature extraction, ML/DL model selection and training

Both NEAI and EI offer an automated mechanism for generating the AI model
architecture and training, although the mechanisms differ since NEAI employs
unsupervised algorithms, whereas EI employs DLNNs.

The benchmarking process for n-class classification with NEAI involvessearching
through a pool of ML algorithms and tests combinations of three elements: pre-
processing, ML algorithms (e.g., random forest-RF, support vector machines-
SVM, etc.) and hyper-parameters for each model. Each combination results in a
library that is evaluated for accuracy, confidence and memory usage, and the
results provide a ranking of these libraries. Accuracy reflects the library’s ability
to correctly attribute each signal to the correct class, whereas confidence reflects
the library’s ability to separate the n-classes.

Figure 1.4 shows that the top library for the PdM classification case has an
accuracy of 100%, confidence 99.94%, uses the RF algorithm, and takes6.2kB
RAM and 8.3 kB Flash. 100% means that all classes are completely separated,
there is no overlap.

Figure 1.4Benchmarking with NEAI Figure 12.4 Benchmarking with NEAI

In the EI platform, a Spectral Analysis signal processing block was used
to apply a filter, perform spectral analysis, and extract frequency and spectral
power data. A useful aspect of the platform is the possibility to visualise
and explore the features (Figure 12.5). The fact that the features are visually
clustered is a good indication that the model can be trained to perform
the classification. During the first iterations, the features overlapped to a
significant degree and were intertwined, and the trained model had difficulties
differentiating between classes. This problem was addressed by collecting
more signals and increasing the size of the sampling signal to better capture
signal patterns.

It is also possible to calculate and visualise feature importance when
generating the features, indicating how important the features are for each
class compared with all other classes. RMS and peak values of vibration
along the three-axis proved to be the most important features in determining
the class in this case. Based on this information, the dimension reduction
algorithms can be used to simplify the model by deleting the less important
or redundant information from the data set to make it manageable while
maintaining relevance and performance.

To implement the solution in EI, a classification learning block was used,
which employs TensorFlow with Keras. It takes the features from Spectral
Analysis signal processing block and learns to distinguish between the five
classes. The strategy adopted was to start with a small deep NN model and
experiment with it, i.e., two dense layers, using EI graphical user interface
(GUI). Most of the experimentations have been performed around an archi-
tecture consisting of multiple dense layers and dropout layers. Convolutional
layers were also included.

12.4 Experimental Setup 167

 9

In the "Confusion Matrix", the 200 number means that the performance for each
class is 100%, i.e., all 200 signals extracted from initial data (20% of 1000 signals)
have been properly classified.

In the EI platform, a Spectral Analysis signal processing block was used to apply a
filter, perform spectral analysis, and extract frequency and spectral power data. A
useful aspect of the platform is the possibility to visualise and explore the features
(Figure 1.5). The fact that the features are visually clustered is a good indication
that the model can be trained to perform the classification. During the first
iterations, the features overlapped to a significant degree and were intertwined,
and the trained model had difficulties differentiating between classes. This
problem was addressed by collecting more signals and increasing the size of the
sampling signal to better capture signal patterns.

Figure 1.5Snapshots of Feature Explorer in EI based on the pre-processing block early in

the process.

It is also possible to calculate and visualise feature importance when generating
the features, indicating how important the features are for each class compared
with all other classes. RMS and peak values of vibration along the three-
axisproved to be the most important features in determining the class in this case.
Based on this information, the dimension reduction algorithms can be used to
simplify the model by deleting the less important or redundant information from
the dataset to make it manageable while maintaining relevance and performance.

Figure 12.5 Snapshots of Feature Explorer in EI based on the pre-processing block early in
the process.

At the end of the training, the model’s performance and the confusion
matrix of the validation data can be evaluated. Figure 12.6 shows an accuracy
and a loss on the training and validation datasets, comparable with the results
obtained with NEAI with a different model architecture. To avoid overfitting,
the learning rate was reduced, and more data was collected, and the model
was re-trained.

12.4.3 Optimisation and Tuning Performance

Developing the most efficient ML/DL flows for the classification PdM appli-
cation was challenging. It required many iterative experiments and insights
into the workings of motor vibration patterns, digital signal processing, AI
algorithms, architectures, and microcontrollers. Nevertheless, both NEAI and
EI provided automation and transparency for these processes, though to
varying degrees.

168 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

Figure 12.6 Confusion Matrix and Data Explorer based on full training set: Correctly
Classified (Green) and Misclassified (Red).

For the NEAI classification, the learning is fixed at library generation
based on the data provided for each class. The benchmarking implementation
includes patented elements; thus, the internal working of the engine is not
transparent. Nevertheless, multiple benchmarks can be created, and a high
degree of automation allows for the best results to be obtained from signal
capturing and formatting. The benchmarking process takes around 60 minutes
when running on a processing unit with 6 CPU cores.

EI offers a higher degree of transparency and control over the model
architecture and hyperparameters. The strategy adopted for the case of EI
was to start from a simple model, experiment with it and improve it into
a deeper and wider model. For this improvement step and for validation
purposes, a parallel sub-flow was branched out from the flow with EI to
conduct experiments in a Python framework. The training was launched in
both EI and Python and compared throughout. The updated architecture and

12.4 Experimental Setup 169

Figure 12.7 A comparison between int8 quantized and unoptimized versions of the same
model, showing the difference in performance and results.

hyperparameters were exchanged back and forth between the EI and Python
frameworks.

The improvements consisted in making the model deeper by adding more
layers, and wider by increasing the number of hidden units, changing the
activation and optimisation functions, learning rate, fitting more data.

While the improvement process was run manually in Python, the EI’s
Edge Optimized Neural (EONTM) Compiler [9] can be used to find the
best solution for the Armr Cortexr-M-based MCUs, i.e., the most optimal
combination of processing block and ML model for the given set of con-
straints, including latency, RAM usage, and accuracy. Currently, there are a
limited number of MCUs that are supported and does not include the MCU
of STWIN IIoT device (Armr Cortexr-M4 MCU STM32L4R9), which
operates at a frequency of up to 120MHz. Nevertheless, the estimated on-
device performance could be evaluated for Cortex-M4F 80MHz, to determine
the impact of optimisations such as quantisation across different slices of the
datasets (Figure 12.7).

12.4.4 Testing

ML/DL model testing usually refers to the evaluation of the trained model
on the testing dataset to analyse how well the model performs against unseen
data. However, model testing in NEAI and EI provide more than that. Both
platforms provide a microcontroller emulator to test and debug the generated
model prior to its deployment on the device.

As part of the NEAI toolkit, a microcontroller emulator is provided for
each library to test and debug the generated model without the need to
download, link or compile. Test signals can be imported from file; however,

170 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

 12

As a part of the NEAI toolkit, a microcontroller emulator is provided for each
library to test and debug the generated model without the need to download, link
or compile. Test signals can be imported from file;however,the signals were
imported live from the same datalogger application through serial port, in this way
ensuring completely new signals, not seen before. The classification is
automatically run using the live signals, while changing motor speeds and
triggering shaft disturbances, to switch between classes and cover all five states
and classes.

The results are presented in Figure 1.8, showing that the classifier managed to
properly reproduce and detect all classes with reasonable certainty percentages.

Figure 1.8Evaluation of trained model using NEAI Emulator with live streaming.

In EI, the trained model was evaluated by assessing the accuracy using the test
dataset. To ensure unbiased evaluation of model effectiveness, the test samples
were not used directly or indirectly during training. The EI emulator took care of
extracting the features from the test set, running the trained model, and reporting
the performance in the confusion matrix. The results are shown inFigure 1.9

Figure 12.8 Evaluation of trained model using NEAI Emulator with live streaming.

the signals were imported live from the same datalogger application through
serial port, in this way ensuring completely new signals, not seen before.
The classification is automatically run using the live signals, while changing
motor speeds and triggering shaft disturbances, to switch between classes and
cover all five states and classes.

The results are presented in Figure 12.8, showing that the classifier man-
aged to properly reproduce and detect all classes with reasonable certainty
percentages.

In EI, the trained model was evaluated by assessing the accuracy using
the test dataset. To ensure unbiased evaluation of model effectiveness, the test
samples were not used directly or indirectly during training. The EI emulator
took care of extracting the features from the test set, running the trained
model, and reporting the performance in the confusion matrix. The results
are shown in Figure 12.9.

12.4.5 Deployment

In the context of micro-edge embedded systems, model deployment is depen-
dent on the hardware/software platform and is more or less automated, and
in essence comprises three steps: the first is a format conversion of the
fully trained model; the second is a weight/model compression to reduce the
amount of memory to store the weights in the target hardware platform and
to simplify the computation so it can run efficiently on target processors. The
third entails compiling the model and generating the code to be integrated
with the MCUs firmware.

12.4 Experimental Setup 171

Figure 12.9 EI model testing with test datasets.

The back-end flow consists of wrapping an STM32CubeIDE project with
the generated files from the three deployed models, adding functionality on
top such as retrieving the accelerometer values to be fed to the classification
function and displaying the result, then compiled, built, and flashed onto the
MCU target.

The flow exhibits some particularities in the case of the three model
deployments.

In the case of NEAI, the selected model is deployed in the form of a static
library (libneai.a), an AI header file (NanoEdgeAI.h) containing functions
and variable definitions, and a knowledge header file (knowledge.h) contain-
ing the model’s knowledge. In this case, first the knowledge was initialised,
then the NanoEdge AI classifier was run, and the output was print to the serial
port.

For the EI deployment, the CMSIS-PACK [11][12] for STM32 packaged
all signal processing blocks, configuration and learning blocks up into a
single library (.pack file), which was then added to the STM32 project using
the CubeMX packages manager. This is currently only supported for C++
applications using CubeIDE.

172 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

Figure 12.10 Live classification streaming with detected state and confidence (with Tera
Term)

The third flow was branched out from EI and further developed in a
Python framework using TensorFlow’s Keras API. The resulted model was
converted into optimised C code with STM32 Cube.AI, an extension of the
CubeMX tool, which offers simple and efficient interoperability with other
ML frameworks.

12.4.6 Inference

Inference classifications have been conducted with all applications running
directly from the target hardware platform on the micro-edge IIoT devices,
producing classification in real-time.

The state machine consists mainly of two states with two functions “init”
and “inferencing”, respectively, with the former initialising the deep NN
model and the latter being a continuously running function for collecting
raw data from the sensors on the micro-edge IIoT device and making clas-
sifications in real-time. A snapshot from the classification based on the NEAI
model is shown in Figure 12.10.

12.5 Discussion and Future Work 173

The “?” indicate the state switching, which happens after several con-
secutive confirmations of inference result is encounter, and this number is
programmable.

12.5 Discussion and Future Work

Embedding trained models into the firmware code enables AI/ML capabilities
of intelligent edge devices. Employing different frameworks that permit
the integration of complex AI mechanisms within MCUs - such as NEAI
Studio, EI and STM32 Cube.AI - for deploying AI-based PdM solutions
into micro-edge embedded devices provides designers with the flexibility
to optimise implementation by experimenting with deployment on the same
hardware platform target using several frameworks and inference engines.
The different workflows can be matched to the PdM application requirements
for generating embedded code and performing learning and inference engine
optimisations.

ML and NNs can now be efficiently deployed on resource-constrained
devices, which enable cost-efficient deployment, widespread availability,
and the preservation of sensitive data in PdM applications. However, the
trade-offs associated with optimisation methods, software frameworks and
hardware architecture on performance metrics, such as inference latency and
energy consumption, are yet to be studied and researched in depth.

This preliminary work allowed for the exploration of different scenarios
to evaluate trade-offs between computational cost and performance on actual
classification tasks, laying the foundation for further investigations of more
complex PdM systems using various AI-based techniques. Future work will
aim to enlarge comparison and benchmarking by considering more edge ML
and DL technologies, workflows, and datasets. A more generic and complete
PdM strategy must include insights from other applications, such as anomaly
detection, regression, and forecasting.

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research

174 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

References

[1] R. Sanchez-Iborra and A.F. Skarmeta, “TinyML-Enabled Frugal
Smart Objects: Challenges and Opportunities,” in IEEE Circuits and
Systems Magazine, vol. 20, no. 3, pp. 4-18, third quarter 2020.
https://doi.org/10.1109/MCAS.2020.3005467

[2] T. Hafeez, L. Xu and G. Mcardle, “Edge Intelligence for Data Handling
and Predictive Maintenance in IIoT,“ in IEEE Access, Vol. 9, pp. 49355-
49371, 2021. https://doi.org/10.1109/ACCESS.2021.3069137

[3] Y. Liu, W. Yu, T. Dillon, W. Rahayu and M. Li, “Empowering
IoT Predictive Maintenance Solutions With AI: A Distributed Sys-
tem for Manufacturing Plant-Wide Monitoring,“ in IEEE Transactions
on Industrial Informatics, vol. 18, no. 2, pp. 1345-1354, Feb. 2022.
https://doi.org/10.1109/TII.2021.3091774

[4] H. Wang, H. Sayadi, S.M. Pudukotai Dinakarrao, A. Sasan, S. Rafatirad
and H. Homayoun, “Enabling Micro AI for Securing Edge Devices
at Hardware Level,“ in IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems, vol. 11, no. 4, pp. 803-815, Dec. 2021.
https://doi.org/10.1109/JETCAS.2021.3126816

[5] F. Cipollini, L. Oneto, A. Coraddu, et al. “Unsupervised Deep Learning
for Induction Motor Bearings Monitoring”. Data-Enabled Discov. Appl.
3, 1, 2019. https://doi.org/10.1007/s41688-018-0025-2

[6] M. Guenther. 6 Ways to Improve Electric Motor Lubrication for Better
Bearing Reliability. Available online at: https://blog.chesterton.com/lu
brication-maintenance/improving-electric-motor-lubricaiton/

[7] C. Kammerer, M. Gaust, M. Küstner, P. Starke, R. Radtke, and A. Jesser,
“Motor Classification with Machine Learning Methods for Predictive
Maintenance,“ IFAC-PapersOnLine, vol. 54, no. 1, pp. 1059–1064,
2021. https://doi.org/10.1016/j.ifacol.2021.08.126

[8] Edge Impulse. Available online at: https://www.edgeimpulse.com
[9] EON Tuner. Available online at: https://docs.edgeimpulse.com/docs/eon-

tuner
[10] J. Jongboom, 2020. “Learning for all STM32 developers with

STM32Cube.AI and Edge Impulse”. Available online at: https://ww
w.edgeimpulse.com/blog/machine-learning-for-all-stm32-developers
-with-stm32cube-ai-and-edge-impulse

https://blog.chesterton.com/lubrication-maintenance/improving-electric-motor-lubricaiton/
https://blog.chesterton.com/lubrication-maintenance/improving-electric-motor-lubricaiton/
https://www.edgeimpulse.com/blog/machine-learning-for-all-stm32-developers-with-stm32cube-ai-and-edge-impulse
https://www.edgeimpulse.com/blog/machine-learning-for-all-stm32-developers-with-stm32cube-ai-and-edge-impulse
https://www.edgeimpulse.com/blog/machine-learning-for-all-stm32-developers-with-stm32cube-ai-and-edge-impulse

References 175

[11] ARM-NN. 2020. Available online at: https://github.com/ARM-softwar
e/armnn

[12] CMSIS-NN. 2020. Available online at: https://arm-software.github.io/C
MSIS_5/NN/html/

[13] STM32Cube.AI 2020. Available online at: https://www.st.com/en/embe
dded-software/x-cube-ai.html

[14] NanoEdgeTM AI Studio. Automated Machine Learning (ML) tool for
STM32 developers. Available online at: https://www.st.com/en/develo
pment-tools/nanoedgeaistudio.html

https://github.com/ARM-software/armnn
https://github.com/ARM-software/armnn
https://arm-software.github.io/CMSIS_5/NN/html/
https://arm-software.github.io/CMSIS_5/NN/html/
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/development-tools/nanoedgeaistudio.html
https://www.st.com/en/development-tools/nanoedgeaistudio.html

