
14
On the Verification of Diagnosis Models

Franz Wotawa and Oliver Tazl

Graz University of Technology, Austria

Abstract

Enhancing systems with advanced diagnostic capabilities for detecting,
locating, and compensating faults during operation increases autonomy and
reliability. To assure that the diagnosis-enhanced system really has improved
reliability, we need – besides other means – to check the correctness of the
diagnosis functionality. In this paper, we contribute to this challenge and
discuss the application of testing to the case of model-based diagnosis, where
we focus on testing the system models used for fault detection and local-
ization. We present a simple use case and provide a step-by-step discussion
on introducing testing, its capabilities, and arising issues. We come up with
several challenges that we should tackle in future research.

Keywords: model-based diagnosis, testing, verification and validation.

14.1 Introduction

Every system comprising hardware faces the problem of degradation under
operation, which impacts its behavior over time. To prevent unwanted behav-
ior that may lead to harm, we have to carry out regular maintenance tasks.
Maintenance includes preventive activities like changing the tires of cars
when their surfaces do not meet regulations anymore and looking at errors
occurring during operation. The latter requires root cause identification, i.e.,
searching for components we have to repair for failure recovery. There is
no doubt that the maintenance and diagnosis of engineered systems are of
practical importance and, therefore, worth being considered in research.

189



190 On the Verification of Diagnosis Models

If we aim to support maintenance personnel carrying out diagnoses, we
need to automate the fault detection and localization activities. Since the
beginning of artificial intelligence, diagnosis has been an active research field
leading to expert systems and later to model-based diagnosis. The idea behind
model-based diagnosis is to use system models for localizing the root causes
of detected failures. Early work includes Davis and colleagues [3] papers
discussing the basic ideas and concepts behind model-based reasoning. Later,
Reiter [15] formalized the idea utilizing first-order logic. Based on these
foundations, several authors have discussed several applications of model-
based reasoning for solving real-world problems. Applications range from
power supply networks [1], the automotive domain [13], space probes [14],
robotics [7], self-adaptive systems [16], to debugging [6]. For a more recent
paper, we refer to Wotawa and Kaufmann [22], where the authors introduced
how advanced reasoning systems can be used for computing diagnosis. For
recent applications of diagnosis in the context of cyber-physical systems, have
a look at [9, 23, 21, 20].

In the following, we illustrate the basic ideas and concepts of model-based
reasoning using a small example circuit comprising a battery B, a switch S,
and two bulbs L1, L2. We depict the circuit in Figure 14.1. If we switch on
S, we expect both bulbs to transmit light when we assume the correctness of
every component. It is important to consider such correctness assumptions.
For example, if we switch on S, and only one bulb (e.g., L1) is on, and the
other (e.g., L2) is not, we conclude a broken bulb. But how can we do this?
We may consider a model for each component, e.g., a correct battery provides
electricity, a switch in the on state takes the electricity from the battery and
transmits it to the bulbs, and a correct bulb produces light if there is electricity
available. When we assume that all components are working, we receive a
contradiction from this model. This is due to bulb L2 that should produce
light but we do not observe it. If we assume all components except L2 to be
correct, there is no contradiction anymore, and we have identified the root
cause, i.e., L2.

A prerequisite of model-based diagnosis is the availability of a system
model (or model in short). Modeling is not a trivial task. For model-based
diagnosis, we need models formulated in a language that a reasoning system
can use for deriving logical conclusions. Models are abstract representations
of the system structure and behavior. Only parts of the system classified
as components in the model can be part of a derived root cause. Wires or
connectors need to be stated as components if we want to have them included
in a diagnosis. In model-based diagnosis, only components used in models



14.2 The Model Testing Challenge 19114.1 Introduction 3

B

S

L1 L2

Figure 14.1 A simple electric circuit comprising bulbs, a switch and a battery.

connectors need to be stated as components if we want to have them included
in a diagnosis. In model-based diagnosis, only components used in models
can be part of a root cause. It is also worth noting that we can use uncertainty
in model-based diagnosis. De Kleer and Williams [4] formalized the use
of fault probabilities of components for searching for the most probable
diagnosis. In addition, de Kleer and Williams introduced an algorithm for
selecting the optimal probing locations for minimizing probing steps for
identifying a single diagnosis.

In this manuscript, we do not focus on the diagnosis methods and
processes themselves. Instead, we provide a discussion on how to verify
diagnosis models. The challenge of model verification is of uttermost impor-
tance for assuring that systems equipped with diagnosis functionality work
correctly. Although we may use some of the presented results for verifying
diagnosis models generated by machine learning, we consider models for
model-based reasoning in the context of this paper. For testing machine
learning, we refer the interested reader to a recent survey [24].

The challenge of model-based diagnosis and other logic-based reasoning
systems is not that novel. Wotawa [17] introduced the use of combinatorial
testing and fault injection for testing self-adaptive systems based on models.
The same author also discussed the use of combinatorial testing and meta-
morphic testing for theorem provers in [18] and the general challenge [19].
In any of these papers, the focus is on testing the implementation and not
the underlying models. Koroglu and Wotawa [10] also contributed to the
challenge of verifying the reasoning system but focused on the underlying
compiler that allows reading in logic theories, i.e., system models. Hence,
testing the system models used for diagnosis is still an open challenge worth
tackling for quality assurance.

We organize this paper as follows: In Section 14.2, we introduce the
testing challenge in detail including a first solution. Afterward, we present

Figure 14.1 A simple electric circuit comprising bulbs, a switch and a battery.

can be part of a root cause. It is also worth noting that we can use uncertainty
in model-based diagnosis. De Kleer and Williams [4] formalized the use
of fault probabilities of components for searching for the most probable
diagnosis. In addition, de Kleer and Williams introduced an algorithm for
selecting the optimal probing locations for minimizing probing steps for
identifying a single diagnosis.

In this manuscript, we do not focus on the diagnosis methods and
processes themselves. Instead, we provide a discussion on how to verify
diagnosis models. The challenge of model verification is of uttermost impor-
tance for assuring that systems equipped with diagnosis functionality work
correctly. Although we may use some of the presented results for verifying
diagnosis models generated by machine learning, we consider models for
model-based reasoning in the context of this paper. For testing machine
learning, we refer the interested reader to a recent survey [24].

The challenge of model-based diagnosis and other logic-based reasoning
systems is not that novel. Wotawa [17] introduced the use of combinatorial
testing and fault injection for testing self-adaptive systems based on models.
The same author also discussed the use of combinatorial testing and meta-
morphic testing for theorem provers in [18] and the general challenge [19].
In any of these papers, the focus is on testing the implementation and not
the underlying models. Koroglu and Wotawa [10] also contributed to the
challenge of verifying the reasoning system but focused on the underlying
compiler that allows reading in logic theories, i.e., system models. Hence,
testing the system models used for diagnosis is still an open challenge worth
tackling for quality assurance.

We organize this paper as follows: In Section 14.2, we introduce the
testing challenge in detail including a first solution. Afterward, we present
the results when using the provided solution in a small case study. Finally, we
discuss open issues, and further challenges, and conclude the paper.



192 On the Verification of Diagnosis Models

Figure 14.2 The model-based diagnosis principle and information needed for testing.

14.2 The Model Testing Challenge

Before discussing the model testing challenge in detail, we briefly summarize
model-based diagnosis and the required information. In Figure 14.2 we depict
the basic architecture behind every model-based diagnosis system. On the
right side, we have a (physical) system from which we extract observations.
On the upper left side, we have a model of the system. This model shall
represent the system in a way such that expected observations can be derived.
The model and the observations are passed to a diagnosis engine, which
tries to find an arrangement of health states to components such that no
contradiction can be derived. In the simplest case, we only know the correct
behavior of components. We use a logic predicate nab\1 to represent the
corresponding health state. The diagnosis engine itself is assumed to be
based on either a theorem prover or a constraint solver. It delivers a set of
diagnoses. Each diagnosis itself is a set of faulty components. If the set of
diagnoses comprises the empty set, we know that all components are working
as expected.

It is worth noting that in the context of this paper, we are not interested
in outlining the details regarding model-based diagnosis, the modeling prin-
ciples, and algorithms. We solely focus on testing, and specifically on testing
the system model. What we can take with us from Figure 14.2 are the inputs
and outputs to the diagnosis engine comprising the model, the observations,
and the computed diagnoses. If we want to verify the implementation of



14.2 The Model Testing Challenge 193

the diagnosis engine, we can use models and observations together with
the corresponding expected diagnoses to define a test case. However, when
we want to test the models, which are usually divided into two parts, the
component models, and the structure of the system, we have to further think
about underlying assumptions and prerequisites.

First, we have to assume that the diagnosis engine itself is correct. This
means that the diagnosis engine is delivering the right diagnoses for a given
model and observations. Testing the implementation of the diagnosis engine
might also comprise testing the underlying theorem prover or constraint
solver, the implementation of the diagnosis algorithm, and the compiler that
is used to load a model and the observations into the diagnosis engine.

Second, the observations themselves describe the data that have been
observed from the system. Usually, we do not use the raw data obtained from
the system directly. The data is usually mapped to logical representations.
Because we are only focusing on the verification of models used for diagno-
sis, there might also be faults occurring that originate from the mapping of
data to their logical representations. For verifying the model, we do not need
to deal with this topic. We can stay with the abstract representation of real
observations for testing.

Finally, we assume that models can be divided into component models
and structural models. We further assume that the component models are
generally valid and can be used in several systems. This assumption is of
particular importance because one argument in favor of model-based diag-
nosis is its flexibility in adapting to different systems and its model re-use
capabilities.

Let us now come up with a definition of the challenge of testing diagnosis
models where we have the following information given:

1. A model M for components of given types and their connections.

For testing we want to have the following:

1. A set of systems Σ and for each system S ∈ Σ a model MS representing
the structure, i.e., its components and connections.

2. For each system S, we want to have a set of inputs, i.e., possible
observations, and a set of expected diagnoses. Note that observations
include inputs and outputs of a system, and control commands (like
opening or closing a switch).

Note that the systems, as well as their inputs, must be obtained such that
they may lead the diagnosis engine to compute different values. This principle



194 On the Verification of Diagnosis Models

is well-known in testing where testers focus on revealing faults and try to
bring an implementation into a state of failure. For stating the problem, we
do not rely on automation. Test cases for diagnosis models, and in particular
the behavioral part, may be developed manually or using any method for
automated test case generation (if possible).

In practice, we might be interested in testing a particular model compris-
ing a structural and behavioral part of a given system. For this variant of the
general model testing challenge, we only need to come up with observations
and expected diagnoses. In the next section, we discuss generating test cases
using the two-bulb example as a use case.

14.3 Use Case

In this section, we use the two-bulb example from Figure 14.1 as a use
case for diagnosis model testing. We developed the diagnosis model using
the input format of the Clingo1 theorem prover that relies on the logic
programming language Prolog. In Figure 14.3 we see the source code of the
model. In Line 1, the ordinary behavior of a battery is given. In case the
battery is correctly working (and the predicate nab\1 is true), the battery
provides a nominal output at the pow port. In lines 2-4, we formalize the
model of a switch. A switch is transferring the power from the in_pow
to the out_pow port and vice versa if it is correctly working an on. If the
switch is off, there is no power at the output. Similarly, in lines 5-7, we see
the behavior model of bulbs. If there is nominal power on the input, and the
bulb is working fine, then the bulb is shining. If there is no power, there is also
no light. If there is a light, we know that there must be electricity provided.

In lines 8-10, we have the connection model, stating that there is a transfer
from one port of a component to another, and their values must be the same.
The latter is stated in Line 10. Afterward, we have the structural model of
the circuit. First, we define the components of the circuit b, s, l1, l2 for
the battery, switch, lamp 1 and lamp 2 respectively. Second, we state the
connections between the ports of the components.

For testing the model of the particular two-bulb system, we have to
provide test cases comprising observations (which work as the inputs to the
model) and the expected diagnoses (which are the expected outputs). For the
two bulb example, the position of the switch (on, off), and the state of the

1see https://potassco.org



14.3 Use Case 1953 Use case 7

1. val(pow(X),nominal) :- type(X,bat), nab(X).

2. val(out_pow(X),V) :- type(X,sw), on(X),

val(in_pow(X),V), nab(X).

3. val(in_pow(X),V) :- type(X,sw), on(X),

val(out_pow(X),V), nab(X).

4. val(out_pow(X),zero) :- type(X,sw), off(X), nab(X).

5. val(light(X),on) :- type(X,lamp),

val(in_pow(X),nominal), nab(X).

6. val(light(X),off) :- type(X, lamp),

val(in_pow(X),zero), nab(X).

7. val(in_pow(X), nominal) :- type(X,lamp),

val(light(X),on).

8. val(X,V) :- conn(X,Y), val(Y,V).

9. val(Y,V) :- conn(X,Y), val(X,V).

10. :- val(X,V), val(X,W), not V=W.

11. type(b, bat).

12. type(s, sw).

13. type(l1, lamp).

14. type(l2, lamp).

15. conn(in_pow(s), pow(b)).

16. conn(out_pow(s), in_pow(l1)).

17. conn(out_pow(s), in_pow(l2)).

Figure 3 A model for diagnosis of the two lamp example from Figure 1 comprising the
behavior of the components (lines 1-7) and connections (lines 8-10), and the structure of the
circuit (lines 11-18).

For testing the model of the particular two-bulb system, we have to pro-
vide test cases comprising observations (which work as the inputs to the
model) and the expected diagnoses (which are the expected outputs). For the
two bulb example, the position of the switch (on, off), and the state of the
two bulbs regarding light emission (on, off) serve as the inputs. It is worth
noting that the power supply of the battery might also be observed. However,
for the initial testing, we only consider those observations where we do not
require additional equipment for measurement in practice. Nevertheless, for
testing, we may also consider more observations.

When having 3 observations each having a domain comprising 2 values,
we finally obtain 8 test cases covering all combinations. We depict this test
cases in Table 1. Note that the first two test cases (which are highlighted
in gray) cover the correct behavior of the system, where the switch is used
to turn on and off lamps. Therefore, we see the empty set as the expected

Figure 14.3 A model for diagnosis of the two lamp example from Figure 14.1 comprising
the behavior of the components (lines 1-7) and connections (lines 8-10), and the structure of
the circuit (lines 11-18).

two bulbs regarding light emission (on, off) serve as the inputs. It is worth
noting that the power supply of the battery might also be observed. However,
for the initial testing, we only consider those observations where we do not
require additional equipment for measurement in practice. Nevertheless, for
testing, we may also consider more observations.

When having 3 observations each having a domain comprising 2 values,
we finally obtain 8 test cases covering all combinations. We depict this test
cases in Table 14.1. Note that the first two test cases (which are highlighted
in gray) cover the correct behavior of the system, where the switch is used
to turn on and off lamps. Therefore, we see the empty set as the expected
diagnosis in the corresponding column. The other test cases formalize an
incorrect behavior of the two-bulb circuit.

For testing the model, we run our diagnosis engine model_diagnose
using the observations of a test case. In Clingo adding observations to models
can be simple done via linking the model into a file where we state the



196 On the Verification of Diagnosis Models

Table 14.1 All eight test cases used to verify the 2-bulb example comprising the used
observations and the expected diagnoses. The P/F column indicates whether the original
model passes (

√
) or fails (×) the test.

Observations Expected diagnoses P/F
1 on(s). val(light(l1),on). {{}}

√

val(light(l2,on)).
2 off(s). val(light(l1),off). {{}}

√

val(light(l2,off)).
3 off(s). val(light(l1),on). {{s, l2}}

√

val(light(l2,off)).
4 off(s). val(light(l1),off). {{s, l1}}

√

val(light(l2,on)).
5 off(s). val(light(l1),on). {{s}}

√

val(light(l2,on)).
6 on(s). val(light(l1),on). {{l2}}

√

val(light(l2,off)).
7 on(s). val(light(l1),off). {{l1}}

√

val(light(l2,on)).
8 on(s). val(light(l1),off). {{b}, {s}, {l1, l2}}

√

val(light(l2,off)).

observations. For the first test case the file tle_obs1.pl comprises the
following statements:

#include ẗwo_lamps_example.pl.̈
on(s).
val(light(l1),on).
val(light(l2),on).

The first line includes the model we show in Figure 14.3, which we
store in the file two_lamps_example.pl. For executing a test case,
we run the diagnosis engine in a shell using the following command:
./model_diagnose -f tle_obs1.pl -fault 2. In this call, we
ask for diagnoses comprising up to two components, which we do via setting
the parameter -fault to 2. Finally, we used a shell script to carry out all
test cases. We see the outcome of testing in column P/F in Table 14.1. The
model passes all tests successfully.

After checking the correctness of diagnosis results obtained when using
the model, we wanted to evaluate the quality of the test suite. In software
engineering, measures like code coverage or the mutation score are used
for this purpose. Estimating code coverage, i.e., the number of rules used
to derive a contradiction for diagnosis is difficult because theorem provers



14.3 Use Case 197

Table 14.2 Running 7 model mutations Mi, where we removed line i in the original model
of Figure 14.3, using the 8 test cases from Table 14.1.

M1 M2 M3 M4 M5 M6 M7
1

√ √ √ √ √ √ √

2
√ √ √ √ √ √ √

3
√ √ √

× ×
√

×
4

√ √ √
× ×

√
×

5
√ √ √

×
√ √

×
6

√ √ √ √
×

√
×

7
√ √ √ √

×
√

×
8 × ×

√ √
×

√ √

usually do not provide this information. Therefore, we focused on mutation
testing [2, 12]. The underlying idea is to modify a program and to have a look
at whether this modification can be detected by the test suite. The mutation
score is defined as the fraction of the detected and all mutations. There are
some issues when computing the mutation score, for example, equivalent
mutants, i.e., changes of the program that are not changing the behavior.

For languages like Java, there are tools, e.g., [8]. In our case, because of a
lack of tools, we only removed rules as modification operators. In particular,
we were interested in looking at the consequences to the diagnosis results
when removing a rule from a component model. We define a mutant Mi as the
original program (from Figure 14.3) where we removed the rule in Line i. In
Table 14.2 we find the results obtained for each mutant. We see that there are
two mutants M3 and M6 that cannot be detected by any test cases. Hence, the
mutation score for our test suite is 5

7 = 0.7143. To clarify the reason behind
not having a mutation score of 1.0 we analyzed the corresponding rules of
mutant M3 and M6. M3 allows transferring electricity also from the output to
the input, which might be appropriate when dealing with other circuits. M6
covers the case where there is zero power on the input. Because there are no
other rules allowing to derive zero power, this rule does not provide anything
for the reasoning process for this use case and can be removed. Please note
that the rule might be introduced again when considering a different use case
where we have to deal with zero power at the input.

The question that remains is whether the component models can be used
for other systems as well. To verify the corresponding property, i.e., the
component models are generally applicable, we have to come up with new
systems and apply test case generation again. In this use case, we slightly
modified the original two-bulb example. We added another switch in parallel
such that both provide the functionality of an or-gate. The lamps have to be



198 On the Verification of Diagnosis Models10 On the Verification of Diagnosis Models

B

S1

S2

L1 L2

type(b, bat).
type(s1, sw).
type(s2, sw).
type(l1, lamp).
type(l2, lamp).

conn(in_pow(s1), pow(b)).
conn(out_pow(s1), in_pow(l1)).
conn(out_pow(s1), in_pow(l2)).
conn(in_pow(s2), pow(b)).
conn(out_pow(s2), in_pow(l1)).
conn(out_pow(s2), in_pow(l2)).

Figure 14.4 Another simple electric circuit comprising bulbs, switches and a battery. This
circuit is an extended version of the circuit from Figure 14.1. On the right, we have the
structural model of this circuit in Prolog notation.

off only if both switches are open, i.e., in their off state. See Figure 14.4 for
the schematics of the extended two-bulb circuit.

For testing the extended two-bulb circuit, we have to introduce test cases.
Similar to the original circuit, we use all combinations of input values, and
manually computed the expected diagnoses. We depict the whole test suite in
Table 14.3. There we also see the obtained results after automating the test
execution using shell scripts. For many test cases, the computed diagnoses
are not equivalent to the expected ones. We conclude that the provided model
is not generally applicable.

After carefully analyzing the root cause behind this divergence, we iden-
tified the rule in Line 4 of the component model (from Figure 14.3) as
problematic. This rule states that an open switch assures that there is no
power on the output of the switch. Unfortunately, there might be electricity
available because of another power supplying component like given in the
extended two-bulb example. Unfortunately, we are also not able to remove
this rule because otherwise, the behavior of the original two-bulb example
would change (see Table 14.2). A solution would be to introduce a specific or-
component that takes the outputs of the two switches as inputs and provides
power whenever at least one power output has a nominal value.

14.4 Open Issues and Challenges

We can identify the following results and issues from the use case discussed
in the previous section.

Figure 14.4 Another simple electric circuit comprising bulbs, switches and a battery. This
circuit is an extended version of the circuit from Figure 14.1. On the right, we have the
structural model of this circuit in Prolog notation.

off only if both switches are open, i.e., in their off state. See Figure 14.4 for
the schematics of the extended two-bulb circuit.

For testing the extended two-bulb circuit, we have to introduce test cases.
Similar to the original circuit, we use all combinations of input values, and
manually computed the expected diagnoses. We depict the whole test suite in
Table 14.3. There we also see the obtained results after automating the test
execution using shell scripts. For many test cases, the computed diagnoses
are not equivalent to the expected ones. We conclude that the provided model
is not generally applicable.

After carefully analyzing the root cause behind this divergence, we iden-
tified the rule in Line 4 of the component model (from Figure 14.3) as
problematic. This rule states that an open switch assures that there is no
power on the output of the switch. Unfortunately, there might be electricity
available because of another power supplying component like given in the
extended two-bulb example. Unfortunately, we are also not able to remove
this rule because otherwise, the behavior of the original two-bulb example
would change (see Table 14.2). A solution would be to introduce a specific or-
component that takes the outputs of the two switches as inputs and provides
power whenever at least one power output has a nominal value.

14.4 Open Issues and Challenges

We can identify the following results and issues from the use case discussed
in the previous section.



14.4 Open Issues and Challenges 199

Table 14.3 Test cases for the extended two-bulb example from Figure 14.4 and their test
execution results. In gray we indicate tests that check the expected (fault-free) behavior of the
circuit.

Observations Expected diagnoses P/F
1 on(s1). on(s2). {{}}

√

val(light(l1,on)). val(light(l2),on).
2 off(s1). on(s2). {{}} ×

val(light(l1,on)). val(light(l2),on).
3 on(s1). off(s2). {{}} ×

val(light(l1,on)). val(light(l2),on).
4 off(s1). off(s2). {{}}

√

val(light(l1,off)). val(light(l2),off).
5 on(s1). on(s2). {{l1}}

√

val(light(l1,off)). val(light(l2),on).
6 on(s1). on(s2). {{l2}}

√

val(light(l1,on)). val(light(l2),off).
7 on(s1). on(s2). {{b}, {s1, s2}{l1, l2}}

√

val(light(l1,off)). val(light(l2),off).
8 on(s1). off(s2). {{l1}} ×

val(light(l1,off)). val(light(l2),on).
9 on(s1). off(s2). {{l2}} ×

val(light(l1,on)). val(light(l2),off).
10 on(s1). off(s2). {{b}, {s1}{l1, l2}} ×

val(light(l1,off)). val(light(l2),off).
11 off(s1). on(s2). {{l1}} ×

val(light(l1,off)). val(light(l2),on).
12 off(s1). on(s2). {{l2}} ×

val(light(l1,on)). val(light(l2),off).
13 off(s1). on(s2). {{b}, {s2}, {l1, l2}} ×

val(light(l1,off)). val(light(l2),off).
14 off(s1). off(s2). {{s1, s2, l2}}

√

val(light(l1,on)). val(light(l2),off).
15 off(s1). off(s2). {{s1, s2, l1}}

√

val(light(l1,off)). val(light(l2),on).
16 off(s1). off(s2). {{s1, s2}}

√

val(light(l1,on)). val(light(l2),on).

• Testing a model for a particular system that is based on component
models and a structural part is possible but requires to identify (i)
the input, i.e., observations given to the system, and (ii) the expected
diagnosis. From this result the following issues arise:

– We have to identify the observations given to the system. This
might not be an obvious task requiring to analyse the functionality
of the system. We may start with observations of the input and the
output of the system. But this might not be a complete test suite
when considering the mutation score.



200 On the Verification of Diagnosis Models

– Furthermore, we have to consider different observations. We may
make use of all combinations as we did in the case study. However,
for a larger system, this is infeasible, and other approaches are
required. Combinatorial testing [11] might be a good starting point
for future research.

– The expected diagnoses have to be computed manually. This is a
time-consuming task. Hence, any means for automating this step
would be highly appreciated.

• The generated test suite may not lead to one that allows for detecting
all faults. Fault detection capabilities are usually measured using the
mutation score. From the use case discussed in the previous section, we
see that the mutation score, even when considering only one mutation
operator, might be less than 1.0. Related issues and future research
activities include:

– We need to come up with a well-founded theory of mutation test-
ing for logic rules. This also includes considering more mutation
operators.

– There is a need for generating test cases for diagnosis models
automatically such that the mutation score can be maximized.

• Testing should be extended to check whether the component models can
be used in other systems as well. What is missing in this context is:

– The automated generation of different but still relevant systems for
practical applications is an open research question. For each of the
generated systems, we need to compute test suites and check the
correctness of the computed diagnosis. Note that in principle, we
have an infinite number of such systems. We have to think about
when to stop testing.

– In case of deviations between the expected diagnoses and the
computed ones, someone is interested in identifying the reasons
behind them. Hence, we need debugging functionality that may be
similar to previous work on debugging knowledge bases [5].

In summary, the main challenge relies on the automation of test case
generation. Test cases or at least the expected diagnoses have to be gen-
erated manually. Moreover, we need to adapt existing testing methods and
techniques for logic representations. Partially there is related work someone
can start with. But when compared to corresponding work for ordinary
programming languages, available knowledge can be considered minor.



References 201

14.5 Conclusion

In this paper, we discussed the use of testing for model-based diagnosis. We
focused on assuring the quality of system models used for fault detection
and localization. We discussed how to test models and identified arising
shortcomings, and future research directions. Testing a system model comes
in two flavors: (i) testing a model of a particular system and (ii) testing
component models used in different system models. For both, we need to
define test cases comprising observations and expected diagnoses. For testing
component models, in addition, we need to come up with different systems.
Issues and challenges include providing means for answering the question of
when to stop testing, giving quality guarantees, and the automation of test
case generation.

Acknowledgments

The research was supported by ECSEL JU under the project H2020
826060 AI4DI - Artificial Intelligence for Digitising Industry. AI4DI is
funded by the Austrian Federal Ministry of Transport, Innovation, and
Technology (BMVIT) under the program "ICT of the Future" between
May 2019 and April 2022. More information can be retrieved from
https://iktderzukunft.at/en/ .

References

[1] A. Beschta, O. Dressler, H. Freitag, M. Montag, and P. Struss. A model-
based approach to fault localization in power transmission networks.
Intelligent Systems Engineering, 1992.

[2] T. Budd, R. DeMillo, R. Lipton, and F. Sayward. Theoretical and empir-
ical studies on using program mutation to test the functional correctness
of programs. In Proc. Seventh ACM Symp. on Princ. of Prog. Lang.
(POPL). ACM, January 1980.

[3] R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley, and S. Polit.
Diagnosis based on structure and function. In Proceedings AAAI, pages
137–142, Pittsburgh, August 1982. AAAI Press.

[4] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97–130, 1987.

[5] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency
based diagnosis of configuration knowledge bases. In Proceedings of the



202 On the Verification of Diagnosis Models

European Conference on Artificial Intelligence (ECAI), Berlin, August
2000.

[6] G. Friedrich, M. Stumptner, and F. Wotawa. Model-based diagnosis of
hardware designs. Artificial Intelligence, 111(2):3–39, July 1999.

[7] M. W. Hofbaur, J. Köb, G. Steinbauer, and F. Wotawa. Improving
robustness of mobile robots using model-based reasoning. J. Intell.
Robotic Syst., 48(1):37–54, 2007.

[8] R. Just. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 433–436, San Jose, CA,
USA, 2014.

[9] D. Kaufmann, I. Nica, and F. Wotawa. Intelligent agents diagnostics -
enhancing cyber-physical systems with self-diagnostic capabilities. Adv.
Intell. Syst., 3(5):2000218, 2021.

[10] Y. Koroglu and F. Wotawa. Fully automated compiler testing of a
reasoning engine via mutated grammar fuzzing. In In Proc. of the
14th IEEE/ACM International Workshop on Automation of Software Test
(AST), Montreal, Canada, 27th May 2019.

[11] D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to Combinatorial
Testing. Chapman & Hall/CRC Innovations in Software Engineering
and Software Development Series. Taylor & Francis, 2013.

[12] J. A. Offutt and S. D. Lee. An empirical evaluation of weak mutation.
IEEE Transactions on Software Engineering, 20(5):337–344, 1994.

[13] C. Picardi, R. Bray, F. Cascio, L. Console, P. Dague, O. Dressler,
D. Millet, B. Rehfus, P. Struss, and C. Vallée. Idd: Integrating diagnosis
in the design of automotive systems. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), pages 628–632, Lyon,
France, 2002. IOS Press.

[14] K. Rajan, D. Bernard, G. Dorais, E. Gamble, B. Kanefsky, J. Kurien,
W. Millar, N. Muscettola, P. Nayak, N. Rouquette, B. Smith, W. Taylor,
and Y.-w. Tung. Remote Agent: An Autonomous Control System for
the New Millennium. In Proceedings of the 14th European Conference
on Artificial Intelligence (ECAI), Berlin, Germany, August 2000.

[15] R. Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[16] G. Steinbauer and F. Wotawa. Model-based reasoning for self-adaptive
systems - theory and practice. In Assurances for Self-Adaptive Systems,
volume 7740 of Lecture Notes in Computer Science, pages 187–213.
Springer, Switzerland, 2013.



References 203

[17] F. Wotawa. Testing self-adaptive systems using fault injection and
combinatorial testing. In Proceedings of the Intl. Workshop on Verifica-
tion and Validation of Adaptive Systems (VVASS 2016), pages 305–310,
Vienna, Austria, 2016. IEEE.

[18] F. Wotawa. Combining combinatorial testing and metamorphic testing
for testing a logic-based non-monotonic reasoning system. In In Pro-
ceedings of the 7th International Workshop on Combinatorial Testing
(IWCT) / ICST 2018, April 13th 2018.

[19] F. Wotawa. On the automation of testing a logic-based diagnosis sys-
tem. In In Proceedings of the 13th International Workshop on Testing:
Academia-Industry Collaboration, Practice and Research Techniques
(TAIC PART) / ICST 2018, April 9th 2018.

[20] F. Wotawa. Reasoning from first principles for self-adaptive and
autonomous systems. In E. Lughofer and M. Sayed-Mouchaweh, edi-
tors, Predictive Maintenance in Dynamic Systems – Advanced Methods,
Decision Support Tools and Real-World Applications. Springer, 2019.

[21] F. Wotawa. Using model-based reasoning for self-adaptive control
of smart battery systems. In Moamar Sayed-Mouchaweh, editor,
Artificial Intelligence Techniques for a Scalable Energy Transition –
Advanced Methods, Digital Technologies, Decision Support Tools, and
Applications. Springer, 2020.

[22] F. Wotawa and D. Kaufmann. Model-based reasoning using answer set
programming. Applied Intelligence, 2022.

[23] F. Wotawa, O. A. Tazl, and D. Kaufmann. Automated diagnosis of
cyber-physical systems. In IEA/AIE (2), volume 12799 of Lecture Notes
in Computer Science, pages 441–452. Springer, 2021.

[24] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning test-
ing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, 48(1):1–36, 2022.




