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Abstract 
 

The theoretical analysis of railway vehicles’ dynamic behavior requires track models that 

include track irregularities. The power spectrum density (PSD) function is a well-accepted 

mathematical expression suitable for the irregular random nature. Since there are various 

PSD parameters according to the impact on the vehicles, track engineering quantifies track 

quality into six classes in the USA but two categories in Germany. EN13848 considers track 

irregularity at different wavelengths, while UIC518 classified the track quality as QN1, 

QN2, and QN3 by a standard deviation depending on the speeds of the rail vehicles. 

Minimum separated lengths of errors are also recommended. This paper presents a unified 

algorithm to synthesize the track irregularity conforming to each standard when PSD is 

provided with a standard deviation of the data, sample length, and track length. The 

algorithm implements the parameters in Discrete Fourier Transformation (DFT) 

representation, giving the availability to use Fast Fourier Transformation (FFT) that can 

speed up the computational time.  

Keywords. track irregularity, power spectral density, rail vehicle dynamics, Discrete Fourier 

Transform, Fast Fourier Transform 

1. INTRODUCTION 

One system input that influences the rail vehicle dynamics is the track on which the vehicle 

runs. The track geometry is not plenary but contains intentionally and unintentionally 

variations described in four irregularities, i.e., cross-level, alignment, vertical, and gage track 

profile [1, 2]. Different classes of track quality exist depending on the influence of the 

parameters on track/vehicle interaction aspects such as vehicle performance, passenger 
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comfort, and safety issue analysis compared to a safety threshold. The Federal Railroad 

Administration (FRA) divides the track into six classes [3], whereas the German high-speed 

train engineers classify two classes of the track [2]. Depending on the speed of the vehicles, 

track quality in the European network is represented under three quality levels defined as 

QN1, QN2, and QN3 [4]. Due to the importance of the geometry variation, researchers and 

designers have studied two interrelated aspects of the subject, i.e., the measurement of track 

irregularities and the dynamic response behaviors of rail vehicles to the irregularity. 

The first aspect states the design of the device structure to measure, record, and interpret 

the irregularity information. The track measurement devices range from human pushed 

trolleys to fully automated measuring Track Recording Vehicles (TRV). TRV equipped with 

sensors records data that requires a fast algorithm to transform data into helpful information. 

In all cases, PSD is the appropriate mathematical expression that concludes the track 

irregularity [5]. The latter aspect of the subject involves some methods to generate the track 

model at a specific level of required irregularity understudying. The main approaches to 

developing random rail irregularities are either time integration [6] or spatial integration 

methods [7]. A transfer function that relates the frequency domain of an irregularity to a 

white noise signal with constant PSD can be derived directly from a determined PSD 

function. After applying the appropriate integral transform, they obtained differential 

equations to be integrated numerically. The other approach employs a discrete-time method 

using a state-space transition matrix. The derived transfer function is the shape filter whose 

frequency response magnitude squared matches the PSD [8]. 

According to the Weiner-Khinchin theorem, two-sided PSD is the Fourier transform of 

autocorrelation of a time- domain function [9]. Given the PSD, one can determine the 

amplitude of the real signals using the application of the Inverse Fourier transform. In the 

discrete sense, the computation of the Fourier transform can be accomplished by the FFT 

algorithm, which speeds up the calculation of the integrals greatly. The Fourier transform 

methods or spectral methods provide an efficient computational tool in an extensive field of 

science and engineering. Indeed, the vast application is possible due to the FFT algorithm in 

approximating the integral numerically. This paper applies the FFT algorithm to create 

irregularity with the provided PSD data format. The method is suitable for transforming 

measuring data to classify track quality onboard in various classes of tracks in the USA and 

Europe. 

 

2. DESCRIPTION OF TRACK IRREGULARITIES 

Many aspects of rail vehicle study require an analytical representation of the track geometry. 

The quality of the geometry could be described in vertical (𝑣), alignment (𝑎), cross-level (𝑐), 
and gage variation (𝑔) [1, 2]. These parameters are expressed in Fig. 1 and mathematically 

in (1) – (4). Among the irregularity, cross-level and alignment variation strongly influences 

lateral vibration, whereas the gage controls lateral stability. The other vertical irregularity 

has little impact on lateral vibration. 

 

 𝑣 = (𝑧𝐿 + 𝑧𝑅)/2 (1) 
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 𝑎 = (𝑦𝐿 + 𝑦𝑅)/2 (2) 

 𝑐 = (𝑧𝐿 − 𝑧𝑅)/2𝑏 (3) 

 𝑔 = (𝑦𝐿 − 𝑦𝑅)/2 (4) 

 

 
Figure 1 Track irregularity schematic diagram [1] 

 

Due to the random nature of the quantities, PSD in the form of (5) is an appropriate 

statistical representation of the irregularity [5]. 

 𝑆() =
𝐴

2
  (5) 

The equations of the PSD described by German high- speed train applications [2] and 

ORE B176 [10] are expressed for cross-level ( 𝑆𝑪 ), alignment ( 𝑆𝑨 ), and vertical ( 𝑆𝑽 ) 

irregularity in (6)-(8). 

 𝑆𝑪() =
𝐴𝑉𝐶

2
2

𝑏2(2+𝑟
2)(2+𝐶

2)(2+𝑆
2)

  (6) 

 𝑆𝑨() =
𝐴𝐴𝐴

2

(2+𝑟
2)(2+𝐶

2 )
  (7) 

 𝑆𝑽() =
𝐴𝑉𝐶

2

(2+𝑟
2)(2+𝐶

2)
  (8) 

in which C = 0.8246 rad/m, r = 0.0206 rad/m, S = 0.4380 rad/m, and A = 0.8246 

rad/m. The values of 𝐴𝑖 are given in TABLE I for the lower and higher interference track 

classes [2, 11]. 
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Table 1 Track Parameters [2, 11] 

𝑨𝒊 Lower Higher 

𝑨𝑽 (𝒎 𝒓𝒂𝒅) 4.032 × 10-7 1.080 × 10-6 

𝑨𝑨 (𝒎 𝒓𝒂𝒅) 2.119 × 10-7 6.124 × 10-7 

 

Fig. 2 shows the PSD of the alignment irregularity analytically obtained from (7) with 

the provided constants. The recommended wavelength considered in EN13848 to describe 

the geometric irregularity acceptable levels is in three different ranges of [3, 25], [25, 70], 

and [70, 200] m. The wavelengths are between 2 to 100 meters for a demonstration to cover 

all shorter and middle track lengths. This range covers the lowest sampling rate of 0.01 to 

0.5 sample/m or the wavenumber () from 0.0628 to 3.1416 rad/m. However, for the other 

end of the sampling rate, if any supposed two separated irregular indicators are statistically 

0.2 m, the corresponded Nyquist frequency is five samples per meter or 15.57 rad/m. In 

conclusion, the lowest sampling rate is randomly selected in 0.01 to 0.5 sample/m for each 

section, whereas the highest sampling rate is more than ten sample/m. 

 

 

Figure 2 PSD of the two quality levels of alignment irregularity 

 

3. THE CONTINUOUS REPRESENTATION OF THE PSD 

Any track irregularity parameters can be described in a continuous function in the spatial 

domain as ℎ(𝑥) or in the wavenumber domain as 𝐻(𝑠). The two quantities are by mean of 

the following Fourier transform pair as represented by (9) and (10). 

 𝐻(𝑠) = ∫ ℎ(𝑥)𝑒2𝜋𝑖𝑠𝑥𝑑𝑥
∞

−∞
   (9) 

 ℎ(𝑥) = ∫ 𝐻(𝑠)𝑒−2𝜋𝑖𝑠𝑥𝑑𝑠
∞

−∞
  (10) 
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In order to get an expression of PSD, we rely on the correlation theorem of 𝑔(𝑥) and 

ℎ(𝑥) , which states that Fourier transformation of 𝑐𝑜𝑟𝑟(ℎ, 𝑔) is 𝐺(𝑠)𝐻∗(𝑠). According to 

the Wiener-Khinchin theorem, Fourier transformation of the autocorrelation of ℎ(𝑥)  is 
|𝐻(𝑠)|2 or two-sided PSD, Φ(𝑠). 
 

 (𝑠) = ∫ 𝑐𝑜𝑟𝑟(ℎ, ℎ)𝑒−2𝜋𝑖𝑠𝑥𝑑𝑥
∞

−∞
= |𝐻(𝑠)|2  

 

(11) 

A one-sided PSD or 𝑆(𝑠) is defined in (12). 

 
 𝑆(𝑠) = {

(0),     𝑖𝑓 𝑠 = 0

2(𝑠),   𝑖𝑓 𝑠 ≠ 0
  

 

(12) 

  
 

4. DISCRETE REPRESENTATION OF PSD IN A FINITE LENGTH 

In a discrete form of ℎ(𝑥), the signal values are sampled evenly every interval ∆ in (13). For 

a finite length, 𝐿 is equal to 𝑁∆ in which 𝑁 is an integer and the power of 2. For a 𝑁 

consecutive samples, a discrete approximation of (9) is (14). 

 

 ℎ𝑛 = ℎ(𝑥𝑛) = ℎ(𝑛∆); 𝑛 = 1,2,3,… ,𝑁 − 1 (13) 

 𝐻(𝑠𝑘) = ∆∑ 𝑁−1
𝑛=0

 ℎ𝑛𝑒
2𝜋𝑖𝑘𝑛/𝑁 (14) 

 

in which 𝑠𝑛 =
𝑛

𝑁∆
, 𝑛 = −

𝑁

2
, … ,

𝑁

2
− 1. We can ignore the scale factor ∆. It is only considered 

when we need to interpret the result in a physical interval in space. As a result, the formula 
for the discrete Fourier transform for a set of pair of N samples becomes 

 𝐻𝑘 = ∑ 𝑁−1
𝑛=0

 ℎ𝑛𝑒
2𝜋𝑖𝑘𝑛/𝑁 (15) 

 ℎ𝑛 =
1

𝑁
∑ 𝐻𝑘𝑒

−2𝜋𝑖𝑘𝑛/𝑁𝑁−1
𝑘=0   (16) 

 

A relevant total power to our application is the mean squared amplitude (𝜎2), i.e. 

 𝜎2 =
1

𝐿
∫ |ℎ(𝑥)|2𝑑𝑥
𝐿

0
≈

1

𝑁
∑ |ℎ𝑛|

2𝑁−1
𝑛=0    

   =
1

𝑁2
∑ |𝐻𝑘|

2𝑁−1
𝑘=0 =

1

𝑁2
∑ 𝑆𝒌
𝑁/2
𝑘=0   (17) 

As a result,  

 

 𝑆𝑘 =
1

𝑁2

{
 

 
|𝐻0|

2                                                              

|𝐻𝑘|
2 + |𝐻𝑁−𝑘|

2,   𝑘 = 1,2, … , (
𝑁

2
− 1)

2|𝐻𝑁/2|
2
                                                          

  

 

(18) 
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5. DFT SYNTHESIS METHOD FOR ALIGNMENT IRREGULARITY 

Given the power spectral density either from track measurement system or track 

classification spectrum, a selection of 𝑆𝑘 in the discrete sense should represent 𝑆(𝑘) for 

the equivalent power of the bin covering the wavenumber range of ∆ = 2𝜋/𝐿 . 
Consequently, 𝑆𝑘 is calculated in the integral form over the window function centered of its 

𝑆(𝑠𝑘). 

 
 𝑆(𝑘) = 𝑆𝑘 = 2(𝑘) ≈

1

∆
∫ 𝑆()𝑑

𝑘+
∆

2

𝑘−
∆

2

  

 

(19) 

in which 𝑘 = 1,… , 𝑁/2. We assume that the total power of the signal is zero; thus, 

∫ 𝑎(𝑥)𝑑𝑥
∞

−∞
= 0 or 𝑆(𝑠0) = 𝑆0 = 0. The magnitude of a discrete quantity in two-sided PSD 

can be derived directly from 𝑆𝑘 as 

 
|𝐻𝑘| = √

1

2
𝑆𝑘 , 𝑘 = 0, … ,𝑁/2 

 

(20) 

Since ℎ𝑛 is a real signal, this leads to 𝐻−𝑘 = 𝐻𝑘
∗. To create a set of stochastic data from 

the one-sided PSD, a random phase angle set, 𝜑𝑘, of 𝑁/2 data is generated and substituted 

into (21), by which we can generate the signal for the whole wavelength range 𝑘 =
0,1,2,… , 𝑁/2. 

 𝐻𝑘 = |𝐻𝑘|(cos(𝜑𝑘) + 𝑖 sin(𝜑𝑘)) (21) 

A spatial signal, ℎ𝑛 is generated after we apply the Inverse FFT algorithm to (21). 

6. DESCRIPTION OF THE PROCEDURE FOR ALIGNMENT IRREGULARITY  

The section presents the approach to synthesize the track alignment PSD given by the 

German high-speed railway description. The total energy can be determined from (17), of 

which the square root is the standard deviation corresponding to the track quality level stated 

in Table II. The interchange of the irregularity expression in Germany and the USA to be 

qualified as UIC518 become possible by finding a scale factor 𝐴𝑄𝑁 from (22) given 𝑆𝑞𝑛𝒌 =

𝐴𝑄𝑁𝑆𝒌 by substitute (20) in (17) 

 𝐴𝑄𝑁 = (𝜎𝑄𝑁/𝜎𝑟𝑒𝑓)
2  

 

(22) 

in which 𝜎𝑟𝑒𝑓 =
1

𝑁
√∑ 𝑆𝒌

𝑁/2
𝑘=0  and 𝜎𝑄𝑁  is given in [4] 

The development of the process is described by stating the total track length 𝐿𝑡𝑜𝑡𝑎𝑙  
having 𝑝 section, each of which has a constant length 𝐿𝑖  and 𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐿𝑖

𝑝
𝑖=1  

  𝐿𝑡𝑜𝑡𝑎𝑙 = {𝐿1 𝐿2 𝐿3…𝐿𝑝} (23) 

 

𝐿𝑖 is also divided into 𝑘 sections; thus, 𝐿𝑖 = ∑ 𝑙𝑚𝑗
𝑘
𝑗=1  

  𝐿𝑖 = {𝑙𝑚1 𝑙𝑚2 𝑙𝑚3… 𝑙𝑚𝑘}, 𝑙𝑚𝑗 ∈ [𝑙𝑚𝑚𝑖𝑛 , 𝑙𝑚𝑚𝑎𝑥]  (24) 
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in which 𝑙𝑚1 to 𝑙𝑚𝑘−1 have a random length except 𝑙𝑚𝑘 is determined by the remaining 

length. Each section has its own sample length (𝑠𝑎𝑖) and quality level (𝑞𝑛𝑖) 

 𝑠𝑎𝑖 = {𝑠𝑙1 𝑠𝑙2 𝑠𝑙3…𝑠𝑙𝑘}𝑖 , 𝑠𝑙𝑗 ∈ [𝑠𝑙𝑚𝑖𝑛 , 𝑠𝑙𝑚𝑎𝑥] (25) 

 𝑞𝑛𝑖  = {𝜎1 𝜎2 𝜎3…𝜎𝑘}𝑖 , 𝜎𝑗 ∈ [𝜎𝑚𝑖𝑛 , 𝜎𝑚𝑎𝑥] (26) 

After setting up the requirement, we have a restriction for each 𝑙𝑚𝑘 to be sampled by 𝑁 

data to be the power of 2. This can be implemented by 𝑚𝑗 = 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝑙𝑚𝑗/𝑠𝑙𝑗)) and 𝑁𝑗 =

2𝑚𝑗 . Equation (25) is revised by the expression, 𝑠𝑙𝑗 = 𝑙𝑚𝑗/𝑠𝑙𝑗. The algorithm for each 

section 𝑙𝑚𝑗 for alignment is as follows 
 
For  𝑗 = 1 𝑡𝑜 𝑘 

 𝑚 = 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝑙𝑚𝑗/𝑠𝑙𝑗))  

 𝑁 = 2𝑚 

 𝑠𝑙𝑗 =
𝐿𝑚𝑗

𝑁
 

 𝑥𝑠𝑢𝑏𝑗 =
𝐿𝑚𝑗

𝑁
{0 1 2 …  𝑁 − 1} 

 𝜔𝑠𝑢𝑏𝑗 =
2𝜋

𝐿𝑚𝑗
{0 1 2…  𝑁/2}  

 𝑙 = 𝜔𝑠𝑢𝑏𝑗𝑙 

 𝑆 = {𝑆0 𝑆1 𝑆2…𝑆𝑁
2

}  

 𝑆𝑙 = {
0;      𝑙 = 0

𝑆(𝑙) =
𝐴2

2(𝑙
2+1

2)

𝑙
4(𝑙

2+2
2)
;  𝑙 = 1,2,… ,

𝑁

2

 

 𝜎𝑟𝑒𝑓 =
1

𝑁
√∑ 𝑆𝒌

𝑁

2
𝑘=0

 

Generate a random phase angle (Uniform distribution) 

 𝜑 = { 𝜑1  𝜑2 …𝜑𝑁
2

},   𝜑𝑙 ∈ [0,2𝜋)  
 

 

Generate stochastic wave length complex number 

 𝐴 = {𝐴0 𝐴1 𝐴2…𝐴𝑁−1},  
 

 

 

𝐴𝑙 =

{
 
 

 
 

0,   𝑙 = 0   

√
1

2
𝑆𝑙𝑒

−𝑖𝜑𝑙𝑥 , 𝑙 = 1,2, … ,
𝑁

2

          √
1

2
𝑆𝑁−𝑙𝑒

−𝑖𝜑𝑁−𝑙𝑥 , 𝑙 =
𝑁

2
+ 1,… , 𝑁 − 1
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Generate a random number 𝑎𝑄𝑁 (Normal distribution) 

 𝑎𝑠𝑢𝑏𝑗 = 𝑎𝑄𝑁  𝐼𝐹𝐹𝑇[𝐴]  

end 

Our algorithm can specify the separation error length and section length. In this 

demonstration, we set the sample length to be less than 0.1 m to capture the minimum 

separated errors at 0.2 m and random section length between 2 to 100 m. The section length 

is uniformly selected except for the last one, which has a restriction to complete the total 

length and is greater than the minimum section range. Nevertheless, our Matlab scripts can 

change the section length range according to EN13848. Once the above algorithm is 

implemented for lower interference track quality, the algorithm has been verified by 

comparing the back-calculated one-sided PSD of each section to their original data in Fig. 

2. 

A pseudo-stochastic function is quickly introduced by randomly choosing 𝑎𝑄𝑁  with a 

provided normal distribution. We set the mean equal to 𝜎𝑄𝑁/𝜎𝑟𝑒𝑓 and the standard deviation 

is equal to 5% of the mean. For demonstration, five km-length tracks with different 

alignment qualities of QN1 and QN2 are generated according to the German PSD function. 

The standard deviation at 80 < V ≤ 120 km/h is 1.20 mm for QN1 and 1.50 mm for QN2 

[4]. An additional parameter of the track is the range of the irregularity wavelength of [2, 

100] m and sample length of 0.2 m. There are 359 track sections within the wavelength 

range. A cut-off 500 m-length of the generated track is shown in Fig. 3. From (2) and (4), 

we are then able to synthesize the lateral displacement of the right/left rail for further study 

in the field of railway vehicle dynamics. 

To verify the algorithm, we use (17) to evaluate 𝜎 of each section. There are 359 sections 

for the generated 5-km test track. Fig. 4 shows that the distribution matches the Normal 

distribution in which the average value complies with the requirement of track quality QN1 

at 1.2 mm and QN2 at 1.5 mm. This verifies our algorithm to generate track irregularity at a 

required track quality. 

 

7. CONCLUSION 

The Discrete Fourier Transformation representation of the random irregularity offers an 

attractive computational form to be implemented using the Fast Fourier Transform 

algorithm. In addition, the parameters involved can be interpreted in various track quality 

requirements that relate to the method used to measure the track digitally. The track 

wavelength stated in EN13848 is the lowest sampling frequency, while the standard 

deviation stated in UIC518 is interpreted as the root mean square of the amplitude of the 

irregularity. The irregularity synthesized by the algorithm has the flexibility to conform with 

both UIC518 and EN13848 upon the given PSDs. This work has to be implemented to 

further study the influence of the irregularity on railway vehicles dynamics and the track 

quality measuring system verification. 
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Figure 3 The track alignment synthesis: (a) track quality level QN1 

(b) track quality level QN2 

 

 

 

Figure 4 The standard deviation distribution of the generated track  

for classes QN1 and QN2 
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