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Abstract 

Rotor deformation, material in homogeneity, and manufacturing tolerance lead to unbalance 

inside the rotor-bearing system. Industrial maintenance follows condition monitoring to 

diagnose the faults present. This work employs the matrix method of dimensional analysis 

to identify the unbalance in the rotor-bearing system. Experimentation performed under the 

various operating conditions on the test rig reveals that the vibration amplitude increases as 

unbalanced mass increases; defect frequency corresponds to the shaft frequency of the 

rotating shaft, which conforms to the theoretical results. The method reduced the excessive 

number of variables considered due to simplicity, ultimately reducing the time and effort 

required. Also, the detection potential of the method for unbalance endorses application to 

industrial machines.  
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1. INTRODUCTION 

The rotor-bearing system is vital in modern industry and is predominantly used in machines 

like gensets, aero engines, fabrizer, and gas turbines. A series of failures will happen in 

bearing with localized or distributed faults such as unbalance, misalignment, crack, inner 

race, outer race fault, and ball pits. This ultimately results in increasing the ideal time of 

machinery and loss of production. In rotating machinery, unbalance creates excessive 

vibration and causes a catastrophic or sudden system failure. Unbalance will produce inside 

the system due to deformation of the shaft, in homogeneity in material, and manufacturing 

tolerance. Various techniques have been implemented for the diagnosis of the fault, such as 

condition monitoring using vibration analysis, acoustic analysis, and lubrication analysis.   

Many products and processes rely on rotating systems, from machine tools to autos to 

rockets to ships to submarines to power plants to gadgets in the home to medical equipment. 

The dynamic systems need accurate and reliable predictions of the dynamic properties of 

their important parts as well as the detection of the corresponding fault parameters for proper 
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working. Identifying these systems' multiple fault parameters (MFPs) is a crucial goal for 

researchers in this field. 

Liu et al.[1] studied the rotating system with an outer ring defect is modeled using the energy 

technique. A unique strategy for rotor mass distribution was used to increase the model's 

accuracy with the experimental data. The dynamic equations could be solved using the 

Runge-Kutta method and the simulated vibration signal generated. Mufazzal et al.[2] 

examined vibration response of ball bearings using a modified two-DOF lumped parameter 

model. An extra deflection and multi-impact theory are used to simulate how healthy and 

faulty bearings behave under varying loads and speeds. The bearing response characteristics 

were studied using numerical simulations run at various speeds, loads, defect sizes, and 

locations. Suryawanshi et al. [3] analyzed rolling contact bearing under the influence of 

inclined surface fault. The Buckingham Pi theorem of DA is used to cultivate a mathematical 

model by considering the rotor speed, angle of the incline, surface fault, load, and other 

bearing parameters. Experiments are conducted to determine the impact of the slope and size 

inclined surface fault on the vibration characteristics of spherical roller bearings. Han et al. 

[4] use the rotor-bearing system unbalance parameters identified using an evolutionary 

algorithm and a kriging surrogate model. Yaxi Shen [5] implemented a linear elastic plate, 

actuators, and piezoelectric sensors to model a dynamic structural system. Simulation 

confirms that steady-state resonance vibrations are suppressed. Genetic Algorithm-designed 

PID and Hybrid Fuzzy-PID control aim to minimize performance output error. Wan [6] 

introduced Soft Competitive Learning as a novel approach to classification. The proposed 

diagnosis is implemented for faulty bearings using SFART, or Fuzzy Adaptive Resonance 

Theory. The closeness of neurons was measured using Yu's lateral inhibition theory. Sanches 

et al. [7] uses a finite element approach for modeling the dynamic system, and the faults 

were found utilizing time-domain rotor responses and correlation analysis. A simplified 

system model's Lyapunov matrix equation uses least-squares fitting to identify fault 

parameters. The damping of rotor and coupling is determined using a differential evaluation 

optimization. Sugumaran et al. [8], Using the retrieved features, created a rule set for a fuzzy 

classifier. To identify bearing fault scenarios in train data, a decision tree is used to select 

the best few histogram characteristics. A fuzzy classifier is created and evaluated on real-

world data. The findings are positive.Tiwari and Chakravarthy [9] provided an approach 

based on force response measurements for identifying unbalance parameters. De Queiroz 

[10] presented an unbalance force identification approach based on harmonic response to 

determining unbalanced parameters. Li et al. [11] developed an expert system for identifying 

unbalance utilizing a acoustic signal and Artificial Neural Network (ANN). Harsha [12] 

studied the unbalanced rotor on roller bearings using nonlinear dynamic analysis. They 

demonstrated the dynamic response's appearance of chaos and instability as the speed of the 

system was altered. Shinde et al. [13] studied a matrix method of dimensional analysis to 

find the effect of unbalance and misalignment. The author uses a support vector machine for 

multi-fault classification in a rotor-bearing system. A support vector shows a promising 

performance for a given input parameter. 

The dimensional analysis is a powerful method to predict the vibration characteristics of a 

rolling element bearing (REB) under variety of conditions. The latest machine learning tools 

also increase fault diagnosis performance at different fault conditions [14-22].  
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2. DIMENSIONAL ANALYSIS (MATRIX METHOD) 

The matrix method of dimensional analysis has been used to determine the unbalance rotor-

bearing system characteristics. Fourteen dependent and independent variables have been 

used to generate a mathematical model under the influence of rotor unbalance. All variables 

affecting the dynamic behaviour of a taper roller contact bearing can be defined in terms of 

three fundamental dimensions: length (L), time (T), and either force (F) or mass (M). 

Variables used for the FLT (Force, Length, and Time) model are shown in table no.1 with 

their dimensionless unit. The functional relation between vibration amplitude in terms of 

velocity and 13 dependent variables is shown by the equation, 

�̇�= f(dm,Db, B, 𝐾𝑑 , ρ,E, δ,c,N,𝑊,Fu, K, mr) (1) 

Details of each parameter are given in table no.1 Table 1 represents 14 dimensionless 

parameters 

Table 1. Dimensions to study the system [14] 

Symbol Parameter (Unit) Dimension 

dm Diametric Pitch (mm) L 

Db Diameter of Ball (mm) L 

E Modulus of Elasticity (
N

mm2) FL−2 

𝐾𝑑  Contact force for deformation (
N

mm−1.5) FL−1.5 

ρ Material Density (
kg

m3) FL−4T2 

δ Bearing deflection (mm) L 

c Coefficient of Damping   (
Ns

m
) FL−1T1 

N Speed of Shaft(rpm) T−1 

𝑊 Load (N) F 

U Unbalance mass (kg) FL−1T2 

B Bearing Width (mm) L 

Ks Stiffness (N/m) FT−2 

mr Rotor mass (Kg) FL−1T2 

�̇� Velocity( Amplitude of Vibration- m/s) LT−1 

Table 1 depicts a matrix with fourteen variables. The dependent variables are represented on 

the left side of the matrix, while the independent variables are represented on the right side 

of the matrix. 

Figure 1 represents the following manner  

A matrix- Repeating variables 

B Matrix- Dimensionless parameter 

C Matrix- Derived from equation  

C= - (A-1 B) T [15] 

D Matrix- No. of 'π' terms 
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Figure 1. Dimensionless Set [14] 

From the above dimensionless matrix 11 π terms are obtained and listed in the Table No. 2.  

 

Table 2. Dimensionless Variables 

Variable π-terms Variable π-terms 

𝑈, N,  
W and 𝑑𝑚 πa =  

𝑑𝑚𝑈 𝑁2

𝑊
 

𝑈, N, 
 W and C 

πg =
𝐶 

𝑈 𝑁
 

𝑈, N,  
W and 𝐷𝑏   

πb =
𝐷𝑏  𝑈 𝑁2

𝑊
 

𝑈, N,  
W and B πh =

B 𝑈 𝑁2

𝑊
 

𝑈, N,  
W and 𝐸 

πc =  
𝐸 𝑊

𝑈2𝑁4
 

𝑈, N,  
W and 𝐾𝑠 

πi =
Ks

𝑁2 𝑊
 

𝑈, N,  
W and 𝐾𝑑  

πd =  
𝐾𝑑 𝑊

0.5

𝑈1.5𝑁3
 

𝑈, N,  
W and Mr 

πj =  
M𝑟

U 𝑁4
 

𝑈, N,  
W and 𝜌 πe =

𝜌 𝑊3

𝑈4𝑁6
 

𝑈, N, 
 W and �̇� 

πk =
�̇� 𝑈 𝑁

𝑊
 

𝑈, N,  
W and δ πf =

δ 𝑈 𝑁2

𝑊
   

 

Vibration amplitude is function of all the π terms and represented by equation no. 2,  

�̇� 𝑈 𝑁

𝑊
= 𝑓 (

𝑑𝑚𝑈 𝑁2

𝑊
,

𝐷𝑏  𝑈 𝑁2

𝑊
,

𝐸 𝑊

𝑈2𝑁4 ,
𝐾𝑑 𝑊

0.5

𝑈1.5𝑁3 ,
𝜌 𝑊3

𝑈4𝑁6 ,

,
δ 𝑈 𝑁2

𝑊
 ,

𝐶 

𝑈 𝑁
,

B 𝑈 𝑁2

𝑊
,

Ks

𝑁2 𝑊
,

M𝑟

U 𝑁4

)   (2)    

It is reasonably challenging to manage a number of π terms in such a way that dimensional 

reduction occurs in following way, 

πI =  
πa

πb

=   
𝑑𝑚

𝐷𝑏

 
(3) 
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πII =  
πf

πh

=  
𝛿

𝐵
 

(4) 

πIII =  
πi ×  πj

π𝑔

=  
𝑊 𝑀𝑟

𝐾𝑠𝐶 𝑁
 

(5) 

Eq. 3 indicates vibration amplitude after a sequence of reductions in the dimensionless 

parameter.  

π𝑘 = (𝜑 × πI × πII × πIII) (6) 

Where,𝜑 is the dimensional groups which not assorted during experimental analysis. After 

putting the π terms we get 

�̇�𝑊2

𝑈 𝑁
=  (𝜑 ×  

𝑑𝑚

𝐷𝑏

×
𝛿

𝐵
×  

𝑊 𝑀𝑟

𝐾𝑠𝐶 𝑁
) (7) 

The above equation represents a mathematical equation for the rotor-bearing system under 

unbalance conditions. 

3. EXPERIMENTATION 

For the rotor-bearing setup, the dynamic response of the test setup is investigated by taking 

unbalanced mass and shaft speed into account. The schematic view of the test setup, as 

shown in figure 2, consists of a shaft with a disc supported between two bearings that are 

driven at operating speed by a DC motor via a dimmer stat. The shaft is coupled with a DC 

motor with a flexible coupling.  

 

Figure 2. Experimental Setup 

 

Table 3. Specifications of Bearing  

Bearing Type SKF 6209-K 

(d)- Bearing Inner Dia. 45 mm 

(D)- Bearing Outer Dia. 85 mm 

No. of Balls (N) 9  

Diameter of balls  9 mm 
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Two deep groove ball bearings, specifications mentioned in table 3, are used for 

experimentation. To measure vibration signals, Adash VAPro 4400 Fast Fourier transforms 

(FFT) with an accelerometer of the piezoelectric type with a sensitivity of 100 mV/g was 

placed on the test bearing housing. The different combination of bearing speed and 

unbalanced mass was simulated between 500 rpm to 1300 rpm. Table 2 shows the bearing 

specifications that were used in the experiment.  

4. RESULTS AND DISCUSSION 

Different combinations of unbalance mass of 50 gm to 125 gm and shaft speed of 700 rpm 

to 1300 rpm are considered for experimentation. Sixteen experiments were performed on 

the test setup, and frequency responses were obtained below. 

 

Figure 3. Vibration characteristics for trial-2 

 

Figure 4. Vibration characteristics for trial-8 
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An unbalance mass of 125 gm and speed of 700 rpm is a combination for trial 2 is 

considered. The vibration response obtained using the test is shown in figure 3. The figure 

depicts that vibration spectrum is obtained at first harmonics of shaft frequency (1 × fs). The 

vibration amplitude for a given unbalance mass is 1.29 mm/s. 

A combination of unbalance mass and speed for trial 2 is 75 gm and 900 rpm, respectively, 

shown in figure 4. The vibration response obtained using the test is shown in figure 4. The 

vibration amplitude for conducted trial is 1.18 mm/s. As the unbalance mass increase with 

speed, vibration amplitude also increases.   

 

Figure 5. Vibration characteristics for trial-13 

 

Figure 6. Vibration characteristics for trial-15 

The above trial is conducted for rotor speed of 1100 rpm and 75 gm of unbalance mass. The 

peak amplitude is obtained for a given speed, and the mass is 1.65 mm/s. The peak amplitude 

is obtained at first harmonics of shaft frequency. The vibration response for the above trial 

is shown in figure 5.  

Similarly, a combination of unbalance mass and speed of 1300 rpm and 50 gm unbalance, 

the vibration responses are shown in figure 6. The vibration amplitude for conducted trial is 

2.354 mm/s. 
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Table 4. Summary of the vibration responses 

Trial 

No. 
Speed 

Unbalance 

Mass 

Experimental 

vibration 

amplitude (mm/s) 

Model vibration 

amplitude 

(mm/s) 

% Error in 

amplitude 

1 700 50 0.927 0.91 1.83 

2 900 75 1.18 1.12 5.08 

3 1100 100 2.07 2.03 1.93 

4 1300 125 3.4 3.31 2.65 

5 700 75 0.997 1.04 4.31 

6 900 100 1.49 1.43 4.03 

7 1100 125 2.35 2.3 2.13 

8 1300 50 2.354 2.28 3.14 

9 700 100 1.09 1.05 3.67 

10 900 125 1.58 1.5 5.06 

11 1100 50 1.59 1.52 4.40 

12 1300 75 2.89 2.84 1.73 

13 700 125 1.29 1.26 2.33 

14 900 50 1.02 0.97 4.90 

15 1100 75 1.65 2.06 0.48 

16 1300 100 3.17 3.15 0.63 

Similarly, all trials are conducted for different speeds and unbalanced mass. The combination 

of unbalanced mass and speed and respective vibration response is reported in table 4. It is 

observed from trials that as unbalanced mass is introduced with combinations of speed 

increases the vibration levels of the system and shows a vibration peak at first harmonics of 

shaft frequency, i.e. (1 × fs). Speed, geometric proportions, and mass distribution of the 

rotor and the shaft, bearings, and foundation's dynamic rigidity primarily determine the 

unbalance response. The disc unbalance is created by attaching the unbalance mass to the 

disc. 

 

Figure 7. Influence of unbalance mass to speed of the shaft 

 

Figure 7 shows the vibration amplitude vs. speed of the rotor in rpm. The maximum vibration 

amplitude is obtained at 125 gm of unbalance and at 1300 rpm of speed, while at 700 rpm 
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of speed and at 50 gm of unbalance amplitude of vibration is minimum. It is observed from 

the pilot experiments that the amplitude of vibration increases as speed increases. Also, 

defect frequency corresponds to the shaft's rotating speed fs, which conforms to the 

theoretical results.  

5. CONCLUSION 

A model-based matrix method (MMDA) is proposed for the rotor-bearing system under the 

influence of unbalance. An unbalance mass can cause complete failure of the rotating 

machine. The proposed method is found to be accurate and effective in obtaining the 

vibration amplitude under unbalance conditions. 

The following findings are noted. 

• The difference between the vibration amplitude measured experimentally and the 

amplitude calculated using a mathematical model demonstrates a close match with a 

marginal error.  

• Experimentation shows that the dominating peak is obtained at first and several 

harmonics of the shaft frequency. 

• The mathematical model proposed is consistent with the results found experimentally. 

• The findings indicate that the vibration amplitude is enhanced as the unbalance mass 

increases. 
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